1
|
Vaitaitis GM, Wagner DH. Modulating CD40 and integrin signaling in the proinflammatory nexus using a 15-amino-acid peptide, KGYY 15. J Biol Chem 2023; 299:104625. [PMID: 36944397 PMCID: PMC10141526 DOI: 10.1016/j.jbc.2023.104625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023] Open
Abstract
CD40 signaling has long been a target in autoimmunity. Attempts to block signaling between CD40 and CD154 during clinical trials using monoclonal antibodies suffered severe adverse events. Previously, we developed a peptide, KGYY15, that targets CD40 and, in preclinical trials, prevents type 1 diabetes in >90% of cases and reverses new-onset hyperglycemia in 56% of cases. It did so by establishing normal effector T-cell levels rather than ablating the cells and causing immunosuppression. However, the relationship between KGYY15 and other elements of the complex signaling network of CD40 is not clear. Studying interactions between proteins from autoimmune and nonautoimmune mice, we demonstrate interactions between CD40 and integrin CD11a/CD18, which complicates the understanding of the inflammatory nexus and how to prevent autoinflammation. In addition to interacting with CD40, KGYY15 interacts with the integrins CD11a/CD18 and CD11b/CD18. We argue that modulation of CD40-CD154 signaling may be more advantageous than complete inhibition because it may preserve normal immunity to pathogens.
Collapse
Affiliation(s)
- Gisela M Vaitaitis
- Webb-Waring Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - David H Wagner
- Webb-Waring Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
2
|
Curran C, Vaitaitis G, Waid D, Volmer T, Alverez E, Wagner DH. Ocrevus reduces TH40 cells, a biomarker of systemic inflammation, in relapsing multiple sclerosis (RMS) and in progressive multiple sclerosis (PMS). J Neuroimmunol 2023; 374:578008. [PMID: 36535240 PMCID: PMC9868100 DOI: 10.1016/j.jneuroim.2022.578008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/16/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Treating MS has been difficult. One successful drug is Ocrelizumab (anti-CD20), used for the chronic relapsing MS (RMS) and the progressive MS (PMS) forms. TH40 cells are pathogenic effector T cells that increase in percentage and numbers during chronic inflammation. Here we show that in the earliest MS course, clinically isolated syndrome (CIS), TH40 cells expand in number. In PMS TH40 cell numbers remain expanded demonstrating sustained chronic inflammation. In RMS TH40 cells were found in CSF and express CD20. Ocrelizumab reduced TH40 cells to healthy control levels in patients. During treatment inflammatory cytokine producing TH40 cells were decreased.
Collapse
Affiliation(s)
- Christian Curran
- The Webb Waring Center and Department of Medicine, The University of Colorado Anschutz Medical Campus, 12850 East Montview Blvd, Aurora, CO 80045, United States of America
| | - Gisela Vaitaitis
- The Webb Waring Center and Department of Medicine, The University of Colorado Anschutz Medical Campus, 12850 East Montview Blvd, Aurora, CO 80045, United States of America
| | - Dan Waid
- The Webb Waring Center and Department of Medicine, The University of Colorado Anschutz Medical Campus, 12850 East Montview Blvd, Aurora, CO 80045, United States of America
| | - Timothy Volmer
- The Department of Neurology, The University of Colorado Anschutz Medical Campus, 12850 East Montview Blvd, Aurora, CO 80045, United States of America
| | - Enrique Alverez
- The Department of Neurology, The University of Colorado Anschutz Medical Campus, 12850 East Montview Blvd, Aurora, CO 80045, United States of America
| | - David H Wagner
- The Webb Waring Center and Department of Medicine, The University of Colorado Anschutz Medical Campus, 12850 East Montview Blvd, Aurora, CO 80045, United States of America.
| |
Collapse
|
3
|
Song R, Jia X, Zhao J, Du P, Zhang JA. T cell receptor revision and immune repertoire changes in autoimmune diseases. Int Rev Immunol 2021; 41:517-533. [PMID: 34243694 DOI: 10.1080/08830185.2021.1929954] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Autoimmune disease (AID) is a condition in which the immune system breaks down and starts to attack the body. Some common AIDs include systemic lupus erythematosus, rheumatoid arthritis, type 1 diabetes mellitus and so forth. The changes in T-cell receptor (TCR) repertoire have been found in several autoimmune diseases, and may be responsible for the breakdown of peripheral immune tolerance. In this review, we discussed the processes of TCR revision in peripheral immune environment, the changes in TCR repertoire that occurred in various AIDs, and the specifically expanded T cell clones. We hope our discussion can provide insights for the future studies, helping with the discovery of disease biomarkers and expanding the strategies of immune-targeted therapy. HighlightsRestricted TCR repertoire and biased TCR-usage are found in a variety of AIDs.TCR repertoire shows tissue specificity in a variety of AID diseases.The relationship between TCR repertoire diversity and disease activity is still controversial in AIDs.Dominant TCR clonotypes may help to discover new disease biomarkers and expand the strategies of immune-targeted therapy.
Collapse
Affiliation(s)
- Ronghua Song
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xi Jia
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Jing Zhao
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Peng Du
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Jin-An Zhang
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
4
|
Vaitaitis GM, Olmstead MH, Waid DM, Carter JR, Wagner DH. CD40-targeted peptide proposed for type 1 diabetes therapy lacks relevant binding affinity to its cognate receptor. Reply to Pagni PP, Wolf A, Lo Conte M et al [letter]. Diabetologia 2019; 62:1730-1731. [PMID: 31286154 PMCID: PMC6679809 DOI: 10.1007/s00125-019-4945-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/03/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Gisela M Vaitaitis
- Webb-Waring Center, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, C322, Aurora, CO, USA
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Dan M Waid
- Webb-Waring Center, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, C322, Aurora, CO, USA
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jessica R Carter
- Webb-Waring Center, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, C322, Aurora, CO, USA
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- , Salem, USA
| | - David H Wagner
- Webb-Waring Center, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, C322, Aurora, CO, USA.
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
5
|
Vaitaitis GM, Yussman MG, Wagner DH. A CD40 targeting peptide prevents severe symptoms in experimental autoimmune encephalomyelitis. J Neuroimmunol 2019; 332:8-15. [PMID: 30925295 PMCID: PMC6535109 DOI: 10.1016/j.jneuroim.2019.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/15/2019] [Accepted: 03/20/2019] [Indexed: 01/07/2023]
Abstract
CD40/CD154-interaction is critical in the development of Experimental Autoimmune Encephalomyelitis (EAE; mouse model of Multiple Sclerosis). Culprit CD4+CD40+ T cells drive a more severe form of EAE than conventional CD4 T cells. Blocking CD40/CD154-interaction with CD154-antibody prevents or ameliorates disease but had thrombotic complications in clinical trials. We targeted CD40 using a CD154-sequence based peptide. Peptides in human therapeutics demonstrate good safety. A small peptide, KGYY6, ameliorates EAE when given as pretreatment or at first symptoms. KGYY6 binds Th40 and memory T cells, affecting expression of CD69 and IL-10 in the CD4 T cell compartment, ultimately hampering disease development.
Collapse
Affiliation(s)
- Gisela M Vaitaitis
- Webb-Waring Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Martin G Yussman
- Webb-Waring Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - David H Wagner
- Webb-Waring Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
6
|
Vaitaitis GM, Rihanek M, Alkanani AK, Waid DM, Gottlieb PA, Wagner DH. Biomarker discovery in pre-Type 1 Diabetes; Th40 cells as a predictive risk factor. J Clin Endocrinol Metab 2019; 104:4127-4142. [PMID: 31063181 PMCID: PMC6685715 DOI: 10.1210/jc.2019-00364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/01/2019] [Indexed: 01/31/2023]
Abstract
CONTEXT The incidence of Type 1 Diabetes (T1D) is increasing worldwide. The quest to understand T1D etiology as well as how to predict diabetes is ongoing and, in many ways, those goals intertwine. While genetic components associate with T1D, not all T1D individuals have those components and not all subjects with those components develop disease. OBJECTIVE More robust methods for prediction of T1D are needed. Can high CD4+CD40+ T cell (Th40) levels be used as a biomarker in addition to other markers? METHODS Th40 levels were assessed along with other parameters in blood collected from prediabetic TrialNet subjects. RESULTS Pre-diabetic subjects, stratified according to their Th40 cell levels, demonstrate patterns that parallel those seen between control and T1D subjects. Cytokine patterns are significantly different between Th40-high and -low subjects and a CD4/CD8 double-positive population is more represented in Th40-high groups. Subjects experiencing impaired glucose tolerance present a significantly higher Th40 level than control subjects do. HLA DR4/DR4 and DQ8/DQ8, HLAs associated with T1D, are more likely found among Th40-high subjects. Interestingly, HLA DR4/DR4 subjects were significantly older compared with all other subjects, suggesting that this haplotype together with a high Th40 level may represent someone who will onset after age 30, which is reported for 42% of T1D cases. CONCLUSION Considering the differences found in relation to prediabetic Th40 cell level, it may be possible to devise methods that more accurately predicts who will proceed toward diabetes and, possibly, at what stage of prediabetes a subject is.
Collapse
Affiliation(s)
- Gisela M Vaitaitis
- Webb-Waring Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Marynette Rihanek
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Aimon K Alkanani
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Dan M Waid
- Webb-Waring Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Peter A Gottlieb
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - David H Wagner
- Webb-Waring Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Correspondence and Reprint Requests: David H. Wagner, Jr., PhD, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, Colorado 80045. E-mail:
| | | |
Collapse
|
7
|
Jia X, Wang B, Zhai T, Yao Q, Li Q, Zhang JA. WITHDRAWN: T cell receptor revision and immune repertoire changes in autoimmune diseases. Clin Immunol 2018:S1521-6616(18)30724-1. [PMID: 30543918 DOI: 10.1016/j.clim.2018.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Xi Jia
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Bing Wang
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Tianyu Zhai
- Department of Endocrinology, Zhongshan Hospital of Fudan University, Shanghai 201508, China
| | - Qiuming Yao
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Qian Li
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Jin-An Zhang
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China.
| |
Collapse
|
8
|
Bleich D, Wagner DH. Challenges to Reshape the Future of Type 1 Diabetes Research. J Clin Endocrinol Metab 2018; 103:2838-2842. [PMID: 29912401 PMCID: PMC6692708 DOI: 10.1210/jc.2018-00568] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 06/04/2018] [Indexed: 12/25/2022]
Abstract
CONTEXT Immunotherapy trials to prevent type 1 diabetes have been unsuccessful for >15 years. Understanding pitfalls and knowledge gaps in the immunology of type 1 diabetes should lead us in new directions that will yield better trial outcomes. A proposal is made for precision medicine trial design in future type 1 diabetes studies. EVIDENCE ACQUISITION High-quality peer-reviewed basic science and clinical research trials for type 1 diabetes were used in this Perspective article. Type 1 diabetes publications were reviewed from 2000 to 2018 by using Google Scholar and PubMed reference databases. EVIDENCE SYNTHESIS Personalized medicine for type 1 diabetes should recognize that each individual has phenotypic and genotypic quirks that distinguish them from other study participants. A uniform protocol for antigen-specific immunotherapy has consistently failed to prevent disease. An alternative approach using molecular tools to personalize the preventive treatment strategy might be a road forward for type 1 diabetes research. Assumptions or lack of knowledge about disease stratification (not all type 1 diabetes is the same disease), individualized antigen-specific T cells, regulatory T-cell populations, and T-cell receptor rearrangement are just a few aspects of immunology that require integration with clinical trial design. CONCLUSIONS The type 1 diabetes research community continues to bring forward novel immunotherapy trials to prevent disease, but this approach is unlikely to succeed until several fundamental aspects of clinical immunology are recognized and addressed. Here, we identify several knowledge gaps that could rectify type 1 diabetes trial design and lead to future success.
Collapse
Affiliation(s)
- David Bleich
- Division of Endocrinology, Diabetes, & Metabolism, Rutgers New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
- Correspondence and Reprint Requests: David Bleich, MD, Division of Endocrinology, Diabetes, & Metabolism, Rutgers New Jersey Medical School, Rutgers, The State University of New Jersey, 185 South Orange Avenue, MSB I-588, Newark, New Jersey 07103. E-mail:
| | - David H Wagner
- Immunology Section, Department of Medicine and The Webb-Waring Center, The University of Colorado Anschutz Medical Center, Aurora, Colorado
| |
Collapse
|
9
|
Vaitaitis GM, Waid DM, Yussman MG, Wagner DH. CD40-mediated signalling influences trafficking, T-cell receptor expression, and T-cell pathogenesis, in the NOD model of type 1 diabetes. Immunology 2017; 152:243-254. [PMID: 28542921 DOI: 10.1111/imm.12761] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/27/2017] [Accepted: 05/08/2017] [Indexed: 12/23/2022] Open
Abstract
CD40 plays a critical role in the pathogenesis of type 1 diabetes (T1D). The mechanism of action, however, is undetermined, probably because CD40 expression has been grossly underestimated. CD40 is expressed on numerous cell types that now include T cells and pancreatic β cells. CD40+ CD4+ cells [T helper type 40 (TH40)] prove highly pathogenic in NOD mice and in translational human T1D studies. We generated BDC2.5.CD40-/- and re-derived NOD.CD154-/- mice to better understand the CD40 mechanism of action. Fully functional CD40 expression is required not only for T1D development but also for insulitis. In NOD mice, TH40 cell expansion in pancreatic lymph nodes occurs before insulitis and demonstrates an activated phenotype compared with conventional CD4+ cells, apparently regardless of antigen specificity. TH40 T-cell receptor (TCR) usage demonstrates increases in several Vα and Vβ species, particularly Vα3.2+ that arise early and are sustained throughout disease development. TH40 cells isolated from diabetic pancreas demonstrate a relatively broad TCR repertoire rather than restricted clonal expansions. The expansion of the Vα/Vβ species associated with diabetes depends upon CD40 signalling; NOD.CD154-/- mice do not expand the same TCR species. Finally, CD40-mediated signals significantly increase pro-inflammatory Th1- and Th17-associated cytokines whereas CD28 co-stimulus alternatively promotes regulatory cytokines.
Collapse
Affiliation(s)
- Gisela M Vaitaitis
- The Webb-Waring Center, The University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dan M Waid
- The Webb-Waring Center, The University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Martin G Yussman
- The Webb-Waring Center, The University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - David H Wagner
- The Webb-Waring Center, The University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Division of Pulmonary Sciences and Critical Care, Department of Medicine, The University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
10
|
Vaitaitis GM, Yussman MG, Waid DM, Wagner DH. Th40 cells (CD4+CD40+ Tcells) drive a more severe form of Experimental Autoimmune Encephalomyelitis than conventional CD4 T cells. PLoS One 2017; 12:e0172037. [PMID: 28192476 PMCID: PMC5305068 DOI: 10.1371/journal.pone.0172037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/30/2017] [Indexed: 12/31/2022] Open
Abstract
CD40-CD154 interaction is critically involved in autoimmune diseases, and CD4 T cells play a dominant role in the Experimental Autoimmune Encephalomyelitis (EAE) model of Multiple Sclerosis (MS). CD4 T cells expressing CD40 (Th40) are pathogenic in type I diabetes but have not been evaluated in EAE. We demonstrate here that Th40 cells drive a rapid, more severe EAE disease course than conventional CD4 T cells. Adoptively transferred Th40 cells are present in lesions in the CNS and are associated with wide spread demyelination. Primary Th40 cells from EAE-induced donors adoptively transfer EAE without further in-vitro expansion and without requiring the administration of the EAE induction regimen to the recipient animals. This has not been accomplished with primary, non-TCR-transgenic donor cells previously. If co-injection of Th40 donor cells with Freund's adjuvant (CFA) in the recipient animals is done, the disease course is more severe. The CFA component of the EAE induction regimen causes generalized inflammation, promoting expansion of Th40 cells and infiltration of the CNS, while MOG-antigen shapes the antigen-specific TCR repertoire. Those events are both necessary to precipitate disease. In MS, viral infections or trauma may induce generalized inflammation in susceptible individuals with subsequent disease onset. It will be important to further understand the events leading up to disease onset and to elucidate the contributions of the Th40 T cell subset. Also, evaluating Th40 levels as predictors of disease onset would be highly useful because if either the generalized inflammation event or the TCR-honing can be interrupted, disease onset may be prevented.
Collapse
Affiliation(s)
- Gisela M. Vaitaitis
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
- Webb-Waring Center, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Martin G. Yussman
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
- Webb-Waring Center, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Dan M. Waid
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
- Webb-Waring Center, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - David H. Wagner
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
- Webb-Waring Center, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
11
|
Wagner DH. Overlooked Mechanisms in Type 1 Diabetes Etiology: How Unique Costimulatory Molecules Contribute to Diabetogenesis. Front Endocrinol (Lausanne) 2017; 8:208. [PMID: 28878738 PMCID: PMC5572340 DOI: 10.3389/fendo.2017.00208] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/08/2017] [Indexed: 01/16/2023] Open
Abstract
Type 1 Diabetes (T1D) develops when immune cells invade the pancreatic islets resulting in loss of insulin production in beta cells. T cells have been proven to be central players in that process. What is surprising, however, is that classic mechanisms of tolerance cannot explain diabetogenesis; alternate mechanisms must now be considered. T cell receptor (TCR) revision is the process whereby T cells in the periphery alter TCR expression, outside the safety-net of thymic selection pressures. This process results in an expanded T cell repertoire, capable of responding to a universe of pathogens, but limitations are that increased risk for autoimmune disease development occurs. Classic T cell costimulators including the CD28 family have long been thought to be the major drivers for full T cell activation. In actuality, CD28 and its family member counterparts, ICOS and CTLA-4, all drive regulatory responses. Inflammation is driven by CD40, not CD28. CD40 as a costimulus has been largely overlooked. When naïve T cells interact with antigen presenting cell CD154, the major ligand for CD40, is induced. This creates a milieu for T cell (CD40)-T cell (CD154) interaction, leading to inflammation. Finally, defined pathogenic effector cells including TH40 (CD4+CD40+) cells can express FOXP3 but are not Tregs. The cells loose FOXP3 to become pathogenic effector cells. Each of these mechanisms creates novel options to better understand diabetogenesis and create new therapeutic targets for T1D.
Collapse
Affiliation(s)
- David H. Wagner
- The Program in Integrated Immunology, Department of Medicine, Webb-Waring Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- *Correspondence: David H. Wagner Jr.,
| |
Collapse
|
12
|
Wagner DH. Of the multiple mechanisms leading to type 1 diabetes, T cell receptor revision may play a prominent role (is type 1 diabetes more than a single disease?). Clin Exp Immunol 2016; 185:271-80. [PMID: 27271348 DOI: 10.1111/cei.12819] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/20/2016] [Accepted: 05/31/2016] [Indexed: 12/30/2022] Open
Abstract
A single determinant factor for autoimmunity does not exist; disease development probably involves contributions from genetics, the environment and immune dysfunction. Type 1 diabetes is no exception. Genomewide-associated studies (GWAS) analysis in T1D has proved disappointing in revealing contributors to disease prediction; the only reliable marker has been human leucocyte antigen (HLA). Specific HLAs include DR3/DR4/DQ2/DQ8, for example. Because HLA molecules present antigen to T cells, it is reasonable that certain HLA molecules have a higher affinity to present self-antigen. Recent studies have shown that additional polymorphisms in HLA that are restricted to autoimmune conditions are further contributory. A caveat is that not all individuals with the appropriate 'pro-autoimmune' HLA develop an autoimmune disease. Another crucial component is autoaggressive T cells. Finding a biomarker to discriminate autoaggressive T cells has been elusive. However, a subset of CD4 helper cells that express the CD40 receptor have been described as becoming pathogenic. An interesting function of CD40 on T cells is to induce the recombination-activating gene (RAG)1/RAG2 T cell receptor recombination machinery. This observation is contrary to immunology paradigms that changes in TCR molecules cannot take place outside the thymic microenvironment. Alteration in TCR, called TCR revision, not only occurs, but may help to account for the development of autoaggressive T cells. Another interesting facet is that type 1 diabetes (T1D) may be more than a single disease; that is, multiple cellular components contribute uniquely, but result ultimately in the same clinical outcome, T1D. This review considers the process of T cell maturation and how that could favor auto-aggressive T cell development in T1D. The potential contribution of TCR revision to autoimmunity is also considered.
Collapse
Affiliation(s)
- D H Wagner
- Department of Medicine, Department of Neurology, Webb-Waring Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
13
|
Jansen MF, Hollander MR, van Royen N, Horrevoets AJ, Lutgens E. CD40 in coronary artery disease: a matter of macrophages? Basic Res Cardiol 2016; 111:38. [PMID: 27146510 PMCID: PMC4856717 DOI: 10.1007/s00395-016-0554-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/05/2016] [Indexed: 12/20/2022]
Abstract
Coronary artery disease (CAD), also known as ischemic heart disease (IHD), is the leading cause of mortality in the western world, with developing countries showing a similar trend. With the increased understanding of the role of the immune system and inflammation in coronary artery disease, it was shown that macrophages play a major role in this disease. Costimulatory molecules are important regulators of inflammation, and especially, the CD40L-CD40 axis is of importance in the pathogenesis of cardiovascular disease. Although it was shown that CD40 can mediate macrophage function, its exact role in macrophage biology has not gained much attention in cardiovascular disease. Therefore, the goal of this review is to give an overview on the role of macrophage-specific CD40 in cardiovascular disease, with a focus on coronary artery disease. We will discuss the function of CD40 on the macrophage and its (proposed) role in the reduction of atherosclerosis, the reduction of neointima formation, and the stimulation of arteriogenesis.
Collapse
Affiliation(s)
- Matthijs F Jansen
- Department of Molecular Cell Biology and Immunology, VU University Medical Centre, Amsterdam, The Netherlands
- Department of Medical Biochemistry, Academic Medical Centre, Meibergdreef 15, 1105AZ, Amsterdam, The Netherlands
| | - Maurits R Hollander
- Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Niels van Royen
- Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Anton J Horrevoets
- Department of Molecular Cell Biology and Immunology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Esther Lutgens
- Department of Medical Biochemistry, Academic Medical Centre, Meibergdreef 15, 1105AZ, Amsterdam, The Netherlands.
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University, Munich, Germany.
| |
Collapse
|
14
|
Tian J, Zhu T, Liu J, Guo Z, Cao X. Platelets promote allergic asthma through the expression of CD154. Cell Mol Immunol 2014. [PMID: 25418472 DOI: 10.1038/cmi.2014.111.[epubaheadofprint]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Platelet activation is associated with multiple immune responses and the pathogenesis of various immune-related diseases. However, the exact role and the underlying mechanism of platelets in the progression of allergic asthma remain largely unclear. In this study, we demonstrate that during antigen sensitization, platelets can be activated by ovalbumin (OVA) aerosol via the upregulation of CD154 (CD40L) expression. Platelet transfer promoted allergic asthma progression by inducing more severe leukocyte infiltration and lung inflammation, elevated IgE production and strengthened T helper 2 (Th2) responses in asthma-induced mice. Accordingly, platelet depletion compromised allergic asthma progression. Cd154-deficient platelets failed to promote asthma development, indicating the requirement of CD154 for platelets to promote asthma progression. The mechanistic study showed that platelets inhibited the induction of Foxp3(+) regulatory T cells both in vivo and in vitro at least partially through CD154, providing an explanation for the increase of Th2 responses by platelet transfer. Our study reveals the previously unknown role of platelet CD154 in the promotion of asthma progression by polarizing Th2 responses and inhibiting regulatory T-cell generation and thus provides a potential clue for allergic disease interventions.
Collapse
Affiliation(s)
- Jun Tian
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.,National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Tianyi Zhu
- Department of Respiration, General Hospital of Shenyang Military Region, Shenyang, China
| | - Juan Liu
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Zhenhong Guo
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Xuetao Cao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.,National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
| |
Collapse
|
15
|
Platelets promote allergic asthma through the expression of CD154. Cell Mol Immunol 2014; 12:700-7. [PMID: 25418472 DOI: 10.1038/cmi.2014.111] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/12/2014] [Accepted: 10/13/2014] [Indexed: 01/13/2023] Open
Abstract
Platelet activation is associated with multiple immune responses and the pathogenesis of various immune-related diseases. However, the exact role and the underlying mechanism of platelets in the progression of allergic asthma remain largely unclear. In this study, we demonstrate that during antigen sensitization, platelets can be activated by ovalbumin (OVA) aerosol via the upregulation of CD154 (CD40L) expression. Platelet transfer promoted allergic asthma progression by inducing more severe leukocyte infiltration and lung inflammation, elevated IgE production and strengthened T helper 2 (Th2) responses in asthma-induced mice. Accordingly, platelet depletion compromised allergic asthma progression. Cd154-deficient platelets failed to promote asthma development, indicating the requirement of CD154 for platelets to promote asthma progression. The mechanistic study showed that platelets inhibited the induction of Foxp3(+) regulatory T cells both in vivo and in vitro at least partially through CD154, providing an explanation for the increase of Th2 responses by platelet transfer. Our study reveals the previously unknown role of platelet CD154 in the promotion of asthma progression by polarizing Th2 responses and inhibiting regulatory T-cell generation and thus provides a potential clue for allergic disease interventions.
Collapse
|
16
|
Vaitaitis GM, Olmstead MH, Waid DM, Carter JR, Wagner DH. A CD40-targeted peptide controls and reverses type 1 diabetes in NOD mice. Diabetologia 2014; 57:2366-73. [PMID: 25104468 PMCID: PMC4183717 DOI: 10.1007/s00125-014-3342-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/04/2014] [Indexed: 01/11/2023]
Abstract
AIMS/HYPOTHESIS The CD40-CD154 interaction directs autoimmune inflammation. Therefore, a long-standing goal in the treatment of autoimmune disease has been to control the formation of that interaction and thereby prevent destructive inflammation. Antibodies blocking CD154 are successful in mouse models of autoimmune disease but, while promising when used in humans, unfortunate thrombotic events have occurred, forcing the termination of those studies. METHODS To address the clinical problem of thrombotic events caused by anti-CD154 antibody treatment, we created a series of small peptides based on the CD154 domain that interacts with CD40 and tested the ability of these peptides to target CD40 and prevent type 1 diabetes in NOD mice. RESULTS We identified a lead candidate, the 15-mer KGYY15 peptide, which specifically targets CD40-positive cells in a size- and sequence-dependent manner. It is highly efficient in preventing hyperglycaemia in NOD mice that spontaneously develop type 1 diabetes. Importantly, KGYY15 can also reverse new-onset hyperglycaemia. KGYY15 is well tolerated and functions to control the cytokine profile of culprit Th40 effector T cells. The KGYY15 peptide is 87% homologous to the human sequence, suggesting that it is an important candidate for translational studies. CONCLUSIONS/INTERPRETATION Peptide KGYY15 constitutes a viable therapeutic option to antibody therapy in targeting the CD40-CD154 interaction in type 1 diabetes. Given the involvement of CD40 in autoimmunity in general, it will also be important to evaluate KGYY15 in the treatment of other autoimmune diseases. This alternative therapeutic approach opens new avenues of exploration in targeting receptor-ligand interactions.
Collapse
Affiliation(s)
- Gisela M. Vaitaitis
- Webb-Waring Center, University of Colorado Denver, C322, 12850 East Montview Boulevard, Aurora, CO, USA
- Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| | | | - Dan M. Waid
- Webb-Waring Center, University of Colorado Denver, C322, 12850 East Montview Boulevard, Aurora, CO, USA
- Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Jessica R. Carter
- Webb-Waring Center, University of Colorado Denver, C322, 12850 East Montview Boulevard, Aurora, CO, USA
- Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - David H. Wagner
- Webb-Waring Center, University of Colorado Denver, C322, 12850 East Montview Boulevard, Aurora, CO, USA
- Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
17
|
Waid DM, Schreiner T, Vaitaitis G, Carter JR, Corboy JR, Wagner DH. Defining a new biomarker for the autoimmune component of Multiple Sclerosis: Th40 cells. J Neuroimmunol 2014; 270:75-85. [PMID: 24690203 DOI: 10.1016/j.jneuroim.2014.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 02/28/2014] [Accepted: 03/06/2014] [Indexed: 12/31/2022]
Abstract
Multiple Sclerosis (MS) is a chronic inflammatory, neurodegenerative disease. Diagnosis is very difficult requiring defined symptoms and multiple CNS imaging. A complicating issue is that almost all symptoms are not disease specific for MS. Autoimmunity is evident, yet the only immune-related diagnostic tool is cerebral-spinal fluid examination for oligoclonal bands. This study addresses the impact of Th40 cells, a pathogenic effector subset of helper T cells, in MS. MS patients including relapsing/remitting MS, secondary progressive MS and primary progressive MS were examined for Th40 cell levels in peripheral blood and, similar to our findings in autoimmune type 1 diabetes, the levels were significantly (p<0.0001) elevated compared to controls including healthy non-autoimmune subjects and another non-autoimmune chronic disease. Classically identified Tregs were at levels equivalent to non-autoimmune controls but the Th40/Treg ratio still predicted autoimmunity. The cohort displayed a wide range of HLA haplotypes including the GWAS identified predictive HLA-DRB1*1501 (DR2). However half the subjects did not carry DR2 and regardless of HLA haplotype, Th40 cells were expanded during disease. In RRMS Th40 cells demonstrated a limited TCR clonality. Mechanistically, Th40 cells demonstrated a wide array of response to CNS associated self-antigens that was dependent upon HLA haplotype. Th40 cells were predominantly memory phenotype producing IL-17 and IFNγ with a significant portion producing both inflammatory cytokines simultaneously suggesting an intermediary between Th1 and Th17 phenotypes.
Collapse
Affiliation(s)
- Dan M Waid
- Webb-Waring Center and Department of Medicine, University of Colorado Denver Anschutz Medical Campus, 12850 East Montview Blvd., Aurora, CO 80045, United States
| | - Teri Schreiner
- Department of Neurology, University of Colorado Denver Anschutz Medical Campus, 12850 East Montview Blvd., Aurora, CO 80045, United States
| | - Gisela Vaitaitis
- Webb-Waring Center and Department of Medicine, University of Colorado Denver Anschutz Medical Campus, 12850 East Montview Blvd., Aurora, CO 80045, United States
| | - Jessica R Carter
- Webb-Waring Center and Department of Medicine, University of Colorado Denver Anschutz Medical Campus, 12850 East Montview Blvd., Aurora, CO 80045, United States
| | - John R Corboy
- Department of Neurology, University of Colorado Denver Anschutz Medical Campus, 12850 East Montview Blvd., Aurora, CO 80045, United States
| | - David H Wagner
- Webb-Waring Center and Department of Medicine, University of Colorado Denver Anschutz Medical Campus, 12850 East Montview Blvd., Aurora, CO 80045, United States.
| |
Collapse
|