1
|
Risemberg EL, Smeekens JM, Cruz Cisneros MC, Hampton BK, Hock P, Linnertz CL, Miller DR, Orgel K, Shaw GD, de Villena FPM, Burks AW, Valdar W, Kulis MD, Ferris MT. A mutation in Themis contributes to anaphylaxis severity following oral peanut challenge in CC027 mice. J Allergy Clin Immunol 2024; 154:387-397. [PMID: 38670234 PMCID: PMC11323216 DOI: 10.1016/j.jaci.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND The development of peanut allergy is due to a combination of genetic and environmental factors, although specific genes have proven difficult to identify. Previously, we reported that peanut-sensitized Collaborative Cross strain CC027/GeniUnc (CC027) mice develop anaphylaxis upon oral challenge to peanut, in contrast to C3H/HeJ (C3H) mice. OBJECTIVE This study aimed to determine the genetic basis of orally induced anaphylaxis to peanut in CC027 mice. METHODS A genetic mapping population between CC027 and C3H mice was designed to identify the genetic factors that drive oral anaphylaxis. A total of 356 CC027xC3H backcrossed mice were generated, sensitized to peanut, then challenged to peanut by oral gavage. Anaphylaxis and peanut-specific IgE were quantified for all mice. T-cell phenotyping was conducted on CC027 mice and 5 additional Collaborative Cross strains. RESULTS Anaphylaxis to peanut was absent in 77% of backcrossed mice, with 19% showing moderate anaphylaxis and 4% having severe anaphylaxis. There were 8 genetic loci associated with variation in response to peanut challenge-6 associated with anaphylaxis (temperature decrease) and 2 associated with peanut-specific IgE levels. There were 2 major loci that impacted multiple aspects of the severity of acute anaphylaxis, at which the CC027 allele was associated with worse outcome. At one of these loci, CC027 has a private genetic variant in the Themis gene. Consistent with described functions of Themis, we found that CC027 mice have more immature T cells with fewer CD8+, CD4+, and CD4+CD25+CD127- regulatory T cells. CONCLUSIONS Our results demonstrate a key role for Themis in the orally reactive CC027 mouse model of peanut allergy.
Collapse
Affiliation(s)
- Ellen L Risemberg
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Johanna M Smeekens
- Division of Allergy and Immunology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Marta C Cruz Cisneros
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Brea K Hampton
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Pablo Hock
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Colton L Linnertz
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Darla R Miller
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Kelly Orgel
- Division of Allergy and Immunology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ginger D Shaw
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Fernando Pardo Manuel de Villena
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - A Wesley Burks
- Division of Allergy and Immunology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - William Valdar
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC.
| | - Michael D Kulis
- Division of Allergy and Immunology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC.
| | - Martin T Ferris
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC.
| |
Collapse
|
2
|
Risemberg EL, Smeekens JM, Cisneros MCC, Hampton BK, Hock P, Linnertz CL, Miller DR, Orgel K, Shaw GD, de Villena FPM, Burks AW, Valdar W, Kulis MD, Ferris MT. A mutation in Themis contributes to peanut-induced oral anaphylaxis in CC027 mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557467. [PMID: 37745496 PMCID: PMC10515941 DOI: 10.1101/2023.09.13.557467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Background The development of peanut allergy is due to a combination of genetic and environmental factors, although specific genes have proven difficult to identify. Previously, we reported that peanut-sensitized CC027/GeniUnc (CC027) mice develop anaphylaxis upon oral challenge to peanut, unlike C3H/HeJ (C3H) mice. Objective To determine the genetic basis of orally-induced anaphylaxis to peanut in CC027 mice. Methods A genetic mapping population between CC027 and C3H mice was designed to identify the genetic factors that drive oral anaphylaxis. A total of 356 CC027xC3H backcrossed mice were generated, sensitized to peanut, then challenged to peanut by oral gavage. Anaphylaxis and peanut-specific IgE were quantified for all mice. T-cell phenotyping was conducted on CC027 and five additional CC strains. Results Anaphylaxis to peanut was absent in 77% of backcrossed mice, with 19% showing moderate anaphylaxis, and 4% having severe anaphylaxis. A total of eight genetic loci were associated with variation in response to peanut challenge, six associated with anaphylaxis (temperature decrease) and two associated with peanut-specific IgE levels. There were two major loci that impacted multiple aspects of the severity of acute anaphylaxis, at which the CC027 allele was associated with worse outcome. At one of these loci, CC027 has a private genetic variant in the Themis (thymocyte-expressed molecule involved in selection) gene. Consistent with Themis' described functions, we found that CC027 have more immature T cells with fewer CD8+, CD4+, and CD4+CD25+CD127- regulatory T cells. Conclusion Our results demonstrate a key role for Themis in the orally-reactive CC027 mouse model of peanut allergy.
Collapse
Affiliation(s)
- Ellen L. Risemberg
- Curriculum in Bioinformatics and Computational Biology, UNC Chapel Hill
- Department of Genetics, UNC Chapel Hill
| | - Johanna M. Smeekens
- Department of Pediatrics, Division of Allergy and Immunology, UNC Chapel Hill
| | - Marta C. Cruz Cisneros
- Department of Genetics, UNC Chapel Hill
- Curriculum in Genetics and Molecular Biology, UNC Chapel Hill
| | - Brea K. Hampton
- Department of Genetics, UNC Chapel Hill
- Curriculum in Genetics and Molecular Biology, UNC Chapel Hill
| | | | | | | | - Kelly Orgel
- Department of Pediatrics, Division of Allergy and Immunology, UNC Chapel Hill
| | - Ginger D. Shaw
- Department of Genetics, UNC Chapel Hill
- Lineberger Comprehensive Cancer Center, UNC Chapel Hill
| | | | - A. Wesley Burks
- Department of Pediatrics, Division of Allergy and Immunology, UNC Chapel Hill
| | - William Valdar
- Department of Genetics, UNC Chapel Hill
- Lineberger Comprehensive Cancer Center, UNC Chapel Hill
| | - Michael D. Kulis
- Department of Pediatrics, Division of Allergy and Immunology, UNC Chapel Hill
| | | |
Collapse
|
3
|
Shannon CP, Blimkie TM, Ben-Othman R, Gladish N, Amenyogbe N, Drissler S, Edgar RD, Chan Q, Krajden M, Foster LJ, Kobor MS, Mohn WW, Brinkman RR, Le Cao KA, Scheuermann RH, Tebbutt SJ, Hancock RE, Koff WC, Kollmann TR, Sadarangani M, Lee AHY. Multi-Omic Data Integration Allows Baseline Immune Signatures to Predict Hepatitis B Vaccine Response in a Small Cohort. Front Immunol 2020; 11:578801. [PMID: 33329547 PMCID: PMC7734088 DOI: 10.3389/fimmu.2020.578801] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Background Vaccination remains one of the most effective means of reducing the burden of infectious diseases globally. Improving our understanding of the molecular basis for effective vaccine response is of paramount importance if we are to ensure the success of future vaccine development efforts. Methods We applied cutting edge multi-omics approaches to extensively characterize temporal molecular responses following vaccination with hepatitis B virus (HBV) vaccine. Data were integrated across cellular, epigenomic, transcriptomic, proteomic, and fecal microbiome profiles, and correlated to final HBV antibody titres. Results Using both an unsupervised molecular-interaction network integration method (NetworkAnalyst) and a data-driven integration approach (DIABLO), we uncovered baseline molecular patterns and pathways associated with more effective vaccine responses to HBV. Biological associations were unravelled, with signalling pathways such as JAK-STAT and interleukin signalling, Toll-like receptor cascades, interferon signalling, and Th17 cell differentiation emerging as important pre-vaccination modulators of response. Conclusion This study provides further evidence that baseline cellular and molecular characteristics of an individual's immune system influence vaccine responses, and highlights the utility of integrating information across many parallel molecular datasets.
Collapse
Affiliation(s)
- Casey P. Shannon
- Prevention of Organ Failure (PROOF) Centre of Excellence and Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
- UBC Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
| | - Travis M. Blimkie
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Rym Ben-Othman
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
- Telethon Kids Institute, Perth Children’s Hospital, University of Western Australia, Nedlands, WA, Australia
| | - Nicole Gladish
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| | - Nelly Amenyogbe
- Telethon Kids Institute, Perth Children’s Hospital, University of Western Australia, Nedlands, WA, Australia
- Department of Experimental Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Sibyl Drissler
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Rachel D. Edgar
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Queenie Chan
- Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Mel Krajden
- British Columbia Centre for Disease Control, Vancouver, BC, Canada
| | - Leonard J. Foster
- Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Michael S. Kobor
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| | - William W. Mohn
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Ryan R. Brinkman
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Kim-Anh Le Cao
- Melbourne Integrative Genomics, School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, Australia
| | - Richard H. Scheuermann
- Department of Informatics, J. Craig Venter Institute, La Jolla, CA, United States
- Department of Pathology, University of California, San Diego, CA, United States
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Scott J. Tebbutt
- Prevention of Organ Failure (PROOF) Centre of Excellence and Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
- UBC Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Robert E.W. Hancock
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | | | - Tobias R. Kollmann
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
- Telethon Kids Institute, Perth Children’s Hospital, University of Western Australia, Nedlands, WA, Australia
| | - Manish Sadarangani
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
- Vaccine Evaluation Center, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Amy Huei-Yi Lee
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
4
|
Thymic-specific regulation of TCR signaling by Tespa1. Cell Mol Immunol 2019; 16:897-907. [PMID: 31316154 DOI: 10.1038/s41423-019-0259-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/17/2019] [Indexed: 11/08/2022] Open
Abstract
Double-positive (DP) thymocytes undergo positive selection to become mature single-positive CD4+ and CD8+ T cells in response to T cell receptor (TCR) signaling. Unlike mature T cells, DP cells must respond to low-affinity self-peptide-MHC ligands before full upregulation of their surface TCR expression can occur. Thus, DP thymocytes must be more sensitive to ligands than mature T cells. A number of molecules have been found that are able to enhance the strength of the TCR signal to facilitate positive selection. However, almost all of these molecules are also active in mature T cells. Themis (thymocyte expressed molecule involved in selection) and Tespa1 (thymocyte expressed positive selection associated 1) are two recently discovered molecules essential for optimal TCR signaling and thymocyte development. A deficiency in both molecules leads to defects in positive selection. Here, we compared the relative contributions of Themis and Tespa1 to positive selection in thymocytes. We show that Tespa1 deficiency led to more limited and specific gene expression profile changes in cells undergoing positive selection. In mixed bone marrow transfer experiments, Tespa1-/- cells showed more severe defects in thymocyte development than Themis-/- cells. However, Tespa1-/- cells showed a substantial degree of homeostatic expansion and became predominant in the peripheral lymphoid organs, suggesting that Tespa1 is a thymic-specific TCR signaling regulator. This hypothesis is further supported by our observations in Tespa1 conditional knockout mice, as Tespa1 deletion in peripheral T cells did not affect TCR signaling or cell proliferation. The different regulatory effects of Tespa1 and Themis are in accordance with their nonredundant roles in thymocyte selection, during which Tespa1 and Themis double knockouts showed additive defects.
Collapse
|