1
|
Masson CD, Findlay-Greene F, Sousa FH, Henderson P, Fraser JA, Barlow PG, Stevens C. Characterisation of autophagy induction by the thiopurine drugs azathioprine, mercaptopurine and thioguanine in THP-1 macrophages. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03563-0. [PMID: 39485532 DOI: 10.1007/s00210-024-03563-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024]
Abstract
Activating autophagy may be therapeutically beneficial, and we have previously shown that azathioprine (AZA), an immunomodulatory drug, induces autophagy. Here, we evaluated the induction of autophagy by the thiopurines AZA, mercaptopurine (6-MP) and thioguanine (6-TG) in THP-1 macrophages and investigated the mechanism of action in the context of this cellular process. The cytotoxicity of thiopurines was evaluated using an LDH assay. Induction of endogenous LC3 by thiopurines was evaluated using immunostaining. To confirm autophagy activation by thiopurines, a GFP-RFP-LC3 reporter plasmid was used to monitor the maturation of autophagosomes to autolysosomes. Induction of apoptosis by thiopurines was evaluated using Annexin V/PI staining, and ER stress was assessed via RT‒PCR analysis of XBP1 splicing. To gain insight into the mechanism of action of thiopurines, mTORC1 activity and eIF2α-S51 phosphorylation were evaluated by immunoblotting. Thiopurines were not cytotoxic to cells and induced strong time- and concentration-dependent autophagy. Thiopurines activate autophagy with complete progression through the pathway. Induction of autophagy by thiopurines occurred independently of apoptosis and ER stress. Immunoblotting revealed that AZA inhibited mTORC1 activity, and AZA and 6-TG increased eIF2α-S51 phosphorylation. In contrast, 6-MP had a minor effect on either signalling pathway. Thiopurines are strong inducers of autophagy, and autophagy induction should be considered among the mechanisms responsible for patient response to thiopurines.
Collapse
Affiliation(s)
- Connan D Masson
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, EH11 4BN, UK
| | - Fern Findlay-Greene
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, EH11 4BN, UK
| | - Filipa Henderson Sousa
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Paul Henderson
- Child Life and Health, University of Edinburgh, Edinburgh, EH16 4TJ, UK
- Department of Paediatric Gastroenterology and Nutrition, Royal Hospital for Children and Young People, Edinburgh, EH16 4TJ, UK
| | - Jennifer A Fraser
- Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK
| | - Peter G Barlow
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, EH11 4BN, UK
| | - Craig Stevens
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, EH11 4BN, UK.
| |
Collapse
|
2
|
Varol A, Boulos JC, Jin C, Klauck SM, Zhitkovich A, Efferth T. Inhibition of MSH6 augments the antineoplastic efficacy of cisplatin in non-small cell lung cancer as autophagy modulator. Chem Biol Interact 2024; 402:111193. [PMID: 39168426 DOI: 10.1016/j.cbi.2024.111193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/18/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
The altered response to chemotherapeutic agents predominantly stems from heightened single-point mutations within coding regions and dysregulated expression levels of genes implicated in drug resistance mechanisms. The identification of biomarkers based on mutation profiles and expression levels is pivotal for elucidating the underlying mechanisms of altered drug responses and for refining combinatorial therapeutic strategies in the field of oncology. Utilizing comprehensive bioinformatic analyses, we investigated the impact of eight mismatch repair (MMR) genes on overall survival across 23 cancer types, encompassing more than 7500 tumors, by integrating their mutation profiles. Among these genes, MSH6 emerged as the most predictive biomarker, characterized by a pronounced mutation frequency and elevated expression levels, which correlated with poorer patient survival outcomes. The wet lab experiments disclosed the impact of MSH6 in mediating altered drug responses. Cytotoxic assays conducted revealed that the depletion of MSH6 in H460 non-small lung cancer cells augmented the efficacy of cisplatin, carboplatin, and gemcitabine. Pathway analyses further delineated the involvement of MSH6 as a modulator, influencing the delicate equilibrium between the pro-survival and pro-death functions of autophagy. Our study elucidates the intricate interplay between MSH6, autophagy, and cisplatin efficacy, highlighting MSH6 as a potential therapeutic target to overcome cisplatin resistance. By revealing the modulation of autophagy pathways by MSH6 inhibition, our findings offer insights into novel approaches for enhancing the efficacy of cisplatin-based cancer therapy through targeted interventions.
Collapse
Affiliation(s)
- Ayşegül Varol
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, 55128, Mainz, Germany
| | - Joelle C Boulos
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, 55128, Mainz, Germany
| | - Chunmei Jin
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, 55128, Mainz, Germany
| | - Sabine M Klauck
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ) Heidelberg, National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Anatoly Zhitkovich
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, 02903, USA
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, 55128, Mainz, Germany.
| |
Collapse
|
3
|
Feng T, Tang Z, Karges J, Shen J, Jin C, Chen Y, Pan Y, He Y, Ji L, Chao H. Exosome camouflaged coordination-assembled Iridium(III) photosensitizers for apoptosis-autophagy-ferroptosis induced combination therapy against melanoma. Biomaterials 2023; 301:122212. [PMID: 37385136 DOI: 10.1016/j.biomaterials.2023.122212] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Melanoma represents the most fatal form of skin cancer due to its resistance mechanisms and high capacity for the development of metastases. Among other medicinal techniques, photodynamic therapy is receiving increasing attention. Despite promising results, the application of photodynamic therapy is inherently limited due to interference from melanin, poor tissue penetration of photosensitizers, low loading into drug delivery systems, and a lack of tumor selectivity. To overcome these limitations, herein, the coordination-driven assembly of Ir(III) complex photosensitizers with Fe(III) ions into nanopolymers for combined photodynamic therapy and chemodynamic therapy is reported. While remaining stable under physiological conditions, the nanopolymers dissociated in the tumor microenvironment. Upon exposure to light, the Ir(III) complexes produced singlet oxygen and superoxide anion radicals, inducing cell death by apoptosis and autophagy. The Fe(III) ions were reduced to Fe(II) upon depletion of glutathione and reduction of the GPX4 levels, triggering cell death by ferroptosis. To provide tumor selectivity, the nanopolymers were further camouflaged with exosomes. The generated nanoparticles were found to eradicate a melanoma tumor as well as inhibit the formation of metastases inside a mouse model.
Collapse
Affiliation(s)
- Tao Feng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, PR China
| | - Zixin Tang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, PR China
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Jinchao Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, PR China
| | - Chengzhi Jin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, PR China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, PR China
| | - Yihang Pan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, PR China.
| | - Yulong He
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, PR China.
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, PR China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, PR China; MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 400201, PR China.
| |
Collapse
|
4
|
Dong L, Jiang H, Kang Z, Guan M. Biomarkers for chemotherapy and drug resistance in the mismatch repair pathway. Clin Chim Acta 2023; 544:117338. [PMID: 37060988 DOI: 10.1016/j.cca.2023.117338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
Drugs targeting DNA repair have developed rapidly in cancer therapy, and numerous inhibitors have already been utilized in preclinical and clinical stages. To optimize the selection of patients for treatment, it is essential to discover biomarkers to anticipate chemotherapy response. The DNA mismatch repair (MMR) pathway is closely correlated with cancer susceptibility and plays an important role in the occurrence and development of cancers. Here, we give a concise introduction of the MMR genes and focus on the potential biomarkers of chemotherapeutic response and resistance. It has been clarified that the status of MMR may affect the outcome of chemotherapy. However, the specific underlying mechanisms as well as contradictory results continue to raise considerable controversy and concern. In this review, we summarize the current literature to provide a general overview.
Collapse
Affiliation(s)
- Liu Dong
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, People's Republic of China
| | - Haoqin Jiang
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, People's Republic of China
| | - Zhihua Kang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, USA.
| | - Ming Guan
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
5
|
Peng C, Li X, Ao F, Li T, Guo J, Liu J, Zhang X, Gu J, Mao J, Zhou B. Mitochondrial ROS driven by NOX4 upregulation promotes hepatocellular carcinoma cell survival after incomplete radiofrequency ablation by inducing of mitophagy via Nrf2/PINK1. J Transl Med 2023; 21:218. [PMID: 36964576 PMCID: PMC10039571 DOI: 10.1186/s12967-023-04067-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/17/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND The recurrence of hepatocellular carcinoma (HCC) after radiofrequency ablation (RFA) remains a major clinical problem. Cells that survive the sublethal heat stress that is induced by incomplete RFA are the main source of HCC relapse. Heat stress has long been reported to increase intracellular reactive oxygen species (ROS) generation. Although ROS can induce apoptosis, a pro-survival effect of ROS has also been demonstrated. However, the role of ROS in HCC cells exposed to sublethal heat stress remains unclear. METHODS HepG2 and HuH7 cells were used for this experiment. Insufficient RFA was performed in cells and in a xenograft model. ROS and antioxidant levels were measured. Apoptosis was analyed by Annexin-V/PI staining and flow cytometry. Protein expression was measured using western blotting. Colocalization of lysosomes and mitochondria was analyzed to assess mitophagy. Corresponding activators or inhibitors were applied to verify the function of specific objectives. RESULTS Here,we showed that sublethal heat stress induced a ROS burst, which caused acute oxidative stress. This ROS burst was generated by mitochondria, and it was initiated by upregulated NOX4 expression in the mitochondria. N-acetylcysteine (NAC) decreased HCC cell survival under sublethal heat stress conditions in vivo and in vitro. NOX4 triggers the production of mitochondrial ROS (mtROS), and NOX4 inhibitors or siNOX4 also decreased HCC cell survival under sublethal heat stress conditions in vitro. Increased mtROS trigger PINK1-dependent mitophagy to eliminate the mitochondria that are damaged by sublethal heat stress and to protect cells from apoptosis. Nrf2 expression was elevated in response to this ROS burst and mediated the ROS burst-induced increase in PINK1 expression after sublethal heat stress. CONCLUSION These data confirmed that the ROS burst that occurs after iRFA exerted a pro-survival effect. NOX4 increased the generation of ROS by mitochondria. This short-term ROS burst induced PINK1-dependent mitophagy to eliminate damaged mitochondria by increasing Nrf2 expression.
Collapse
Affiliation(s)
- Chao Peng
- Department of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Xi Li
- Department of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Feng Ao
- Department of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Ting Li
- Department of Anesthesiology, Gansu Provincial People's Hospital, Lanzhou, 730000, Gansu, China
| | - Jingpei Guo
- Department of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Junfeng Liu
- Department of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Xiaoting Zhang
- Department of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Jinyan Gu
- Library Department, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China.
| | - Junjie Mao
- Department of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China.
| | - Bin Zhou
- Department of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China.
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China.
| |
Collapse
|
6
|
Wang M, Li H, Liu S, Ge L, Muhmood A, Liu D, Gan F, Liu Y, Chen X, Huang K. Lipopolysaccharide aggravates canine influenza a (H3N2) virus infection and lung damage via mTOR/autophagy in vivo and in vitro. Food Chem Toxicol 2023; 172:113597. [PMID: 36596444 DOI: 10.1016/j.fct.2022.113597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/02/2023]
Abstract
Influenza A (H3N2) accounts for the majority of influenza worldwide and continues to challenge human health. Disturbance in the gut microbiota caused by many diseases leads to increased production of lipopolysaccharide (LPS), and LPS induces sepsis and conditions associated with local or systemic inflammation. However, to date, little attention has been paid to the potential impact of LPS on influenza A (H3N2) infection and the potential mechanism. Hence, in this study we used canine influenza A (H3N2) virus (CIV) as a model of influenza A virus to investigate the effect of low-dose of LPS on CIV replication and lung damage and explore the underlying mechanism in mice and A549 and HPAEpiC cells. The results showed that LPS (25 μg/kg) increased CIV infection and lung damage in mice, as indicated by pulmonary virus titer, viral NP levels, lung index, and pulmonary histopathology. LPS (1 μg/ml) also increased CIV replication in A549 cells as indicated by the above same parameters. Furthermore, low doses of LPS reduced CIV-induced p-mTOR protein expression and enhanced CIV-induced autophagy-related mRNA/protein expressions in vivo and in vitro. In addition, the use of the mTOR activator, MHY1485, reversed CIV-induced autophagy and CIV replication in A549 and HPAEpiC cells, respectively. siATG5 alleviated CIV replication exacerbated by LPS in the two lines. In conclusion, LPS aggravates CIV infection and lung damage via mTOR/autophagy.
Collapse
Affiliation(s)
- Mengmeng Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Haolei Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Shuiping Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Lei Ge
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Azhar Muhmood
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Dandan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Yunhuan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
7
|
Platonin protects against cerebral ischemia/reperfusion injury in rats by inhibiting NLRP3 inflammasomes via BNIP3/LC3 signaling mediated autophagy. Brain Res Bull 2022; 180:12-23. [DOI: 10.1016/j.brainresbull.2021.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/04/2021] [Accepted: 12/20/2021] [Indexed: 12/26/2022]
|
8
|
Lu N, Bai R, Liu B, Cheng W, Wu Z. Attenuation of the cytoprotection induced by hypoxic preconditioning upon transfection with BNIP3-siRNA in human neuroblastoma SH-SY5Y cells. Int J Neurosci 2021:1-10. [PMID: 34871150 DOI: 10.1080/00207454.2021.2015349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE The aim of this study was to investigate the functional role of hypoxic preconditioning (HPC) in human neuroblastoma cells. METHODS BNIP3 small-interfering RNA (BNIP3-siRNA) sequence was synthesized and used to transfect human neuroblastoma SH-SY5Y cell lines. Thereafter, BNIP3 expression at mRNA and protein levels and its effects on the cell proliferation were analyzed. The most effective pair of siRNA was selected to knockdown the expression level of BNIP3. Moreover, the effects of HPC on oxygen-glucose deprivation/reperfusion (OGD/R)-induced apoptosis and autophagy in SH-SY5Y cells were explored to further reveal the possible mechanisms underlying HPC. RESULTS BNIP3-siRNA attenuated the protective effects of HPC by decreasing the cell viability, increasing the enzymatic activity of caspase-3 and 9, increasing the rate of apoptosis, and increasing the protein expression level of activated caspase-3. Additionally, BNIP3-siRNA had no significant influence on the expression level of HIF-1α induced by HPC, while it substantially inhibited HPC-induced BNIP3/Beclin1 and autophagy. CONCLUSIONS HPC promoted autophagy through regulating BNIP3 to reduce OGD/R.
Collapse
Affiliation(s)
- Na Lu
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Ruiying Bai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Bo Liu
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Weijia Cheng
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Zekun Wu
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
9
|
Wen J, Wang Y, Yuan M, Huang Z, Zou Q, Pu Y, Zhao B, Cai Z. Role of mismatch repair in aging. Int J Biol Sci 2021; 17:3923-3935. [PMID: 34671209 PMCID: PMC8495402 DOI: 10.7150/ijbs.64953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/07/2021] [Indexed: 01/10/2023] Open
Abstract
A common feature of aging is the accumulation of genetic damage throughout life. DNA damage can lead to genomic instability. Many diseases associated with premature aging are a result of increased accumulation of DNA damage. In order to minimize these damages, organisms have evolved a complex network of DNA repair mechanisms, including mismatch repair (MMR). In this review, we detail the effects of MMR on genomic instability and its role in aging emphasizing on the association between MMR and the other hallmarks of aging, serving to drive or amplify these mechanisms. These hallmarks include telomere attrition, epigenetic alterations, mitochondrial dysfunction, altered nutrient sensing and cell senescence. The close relationship between MMR and these markers may provide prevention and treatment strategies, to reduce the incidence of age-related diseases and promote the healthy aging of human beings.
Collapse
Affiliation(s)
- Jie Wen
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, China.,Department and Institute of Neurology, Guangdong Medical University, Guangdong, 524001, China.,Guangdong Key Laboratory of aging related cardio cerebral diseases, Guangdong, 524001, China
| | - Yangyang Wang
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, China
| | - Minghao Yuan
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, China
| | - Zhenting Huang
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, China
| | - Qian Zou
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, China
| | - Yinshuang Pu
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, China
| | - Bin Zhao
- Department and Institute of Neurology, Guangdong Medical University, Guangdong, 524001, China.,Guangdong Key Laboratory of aging related cardio cerebral diseases, Guangdong, 524001, China
| | - Zhiyou Cai
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, China
| |
Collapse
|
10
|
Demirbağ-Sarikaya S, Çakir H, Gözüaçik D, Akkoç Y. Crosstalk between autophagy and DNA repair systems. ACTA ACUST UNITED AC 2021; 45:235-252. [PMID: 34377049 PMCID: PMC8313936 DOI: 10.3906/biy-2103-51] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/09/2021] [Indexed: 12/15/2022]
Abstract
Autophagy and DNA repair are two essential biological mechanisms that maintain cellular homeostasis. Impairment of these mechanisms was associated with several pathologies such as premature aging, neurodegenerative diseases, and cancer. Intrinsic or extrinsic stress stimuli (e.g., reactive oxygen species or ionizing radiation) cause DNA damage. As a biological stress response, autophagy is activated following insults that threaten DNA integrity. Hence, in collaboration with DNA damage repair and response mechanisms, autophagy contributes to the maintenance of genomic stability and integrity. Yet, connections and interactions between these two systems are not fully understood. In this review article, current status of the associations and crosstalk between autophagy and DNA repair systems is documented and discussed.
Collapse
Affiliation(s)
| | - Hatice Çakir
- SUNUM Nanotechnology Research and Application Center, İstanbul Turkey
| | - Devrim Gözüaçik
- SUNUM Nanotechnology Research and Application Center, İstanbul Turkey.,Koç University School of Medicine, İstanbul Turkey.,Koç University Research Center for Translational Medicine (KUTTAM), İstanbul Turkey
| | - Yunus Akkoç
- Koç University Research Center for Translational Medicine (KUTTAM), İstanbul Turkey
| |
Collapse
|
11
|
Chong ZX, Yeap SK, Ho WY. Role of miRNAs in regulating responses to radiotherapy in human breast cancer. Int J Radiat Biol 2021; 97:289-301. [PMID: 33356761 DOI: 10.1080/09553002.2021.1864048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Breast cancer is the most common type of cancer that affects females globally. Radiotherapy is a standard treatment option for breast cancer, where one of its most significant limitations is radioresistance development. MicroRNAs (miRNAs) are small, non-protein-coding RNAs that have been widely studied for their roles as disease biomarkers. To date, several in vitro, in vivo, and clinical studies have reported the roles of miRNAs in regulating radiosensitivity and radioresistance in breast cancer cells. This article reviews the roles of miRNAs in regulating treatment response toward radiotherapy and the associating cellular pathways. We identified 36 miRNAs that play a role in mediating radio-responses; 22 were radiosensitizing, 12 were radioresistance-promoting, and two miRNAs were reported to promote both effects. A brief overview of breast cancer therapy options, mechanism of action of radiation, and molecular mechanism of radioresistance was provided in this article. A summary of the latest clinical researches involving miRNAs in breast cancer radiotherapy was also included.
Collapse
Affiliation(s)
- Zhi Xiong Chong
- Faculty of Science and Engineering, University of Nottingham Malaysia, Selangor, Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Selangor, Malaysia
| | - Wan Yong Ho
- Faculty of Science and Engineering, University of Nottingham Malaysia, Selangor, Malaysia
| |
Collapse
|
12
|
Umar SA, Tasduq SA. Integrating DNA damage response and autophagy signalling axis in ultraviolet-B induced skin photo-damage: a positive association in protecting cells against genotoxic stress. RSC Adv 2020; 10:36317-36336. [PMID: 35517978 PMCID: PMC9057019 DOI: 10.1039/d0ra05819j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/13/2020] [Indexed: 01/27/2023] Open
Abstract
The skin acts as both physical as well as an immunological barrier against hazardous agents from the outside environment and protects the internal organs against damage. Skin ageing is a dynamic process caused by the influence of various external factors, including damage from ultraviolet (UV-B) radiation, which is known as photo-ageing, and due to internal chronological mechanisms. A normal ageing process requires several orchestrated defense mechanisms to diverse types of stress responses, the concomitant renewal of cellular characteristics, and the homeostasis of different cell types that directly or indirectly protect the integrity of skin. Cumulative oxidative and endoplasmic reticulum (ER) stress responses and their adverse impact on biological systems in the skin are a common mechanism of the ageing process, negatively impacting DNA by causing mutations that lead to many physiological, functional, and aesthetic changes in the skin, culminating in the development of many diseases, including photo-damage and photo-carcinogenesis. Exposure of the skin to ultraviolet-(B) elicits the activation of signal transduction pathways, including DNA damage response, autophagy, and checkpoint signal adaptations associated with clearing radiation-induced DNA damage. Recent experimental reports suggest that autophagy is involved in maintaining skin homeostasis upon encountering different stresses, notably genotoxic stress. It has also been revealed that autophagy positively regulates the recognition of DNA damage by nucleotide excision repair and that skin ageing is associated with defects in the autophagy process. Moreover, autophagy is constitutively active in the skin epithelium, imparting protection to skin cells against a diverse range of outside insults, thus increasing resistance to environmental stressors. It has also been found that the stress-induced suppression of the autophagy response in experimental settings leads to enhanced apoptosis during photo-ageing upon UV-B exposure and that the maintenance of homeostasis depends on cellular autophagy levels. More recent reports in this domain claim that relieving the oxidative-stress-mediated induction of the ER stress response upon UV-B irradiation protects skin cells from photo-damage effects. The integration of autophagy and the DNA damage response under genotoxic stress is being considered as a meaningful partnership for finding novel molecular targets and devising suitable therapeutic strategies against photo-ageing disorders. Here, we summarize and review the current understanding of the mechanisms governing the intricate interplay between autophagy and the DNA damage response and its regulation by UV-B, the roles of autophagy in regulating the cellular response to UV-B-induced photodamage, and the implications of the modulation of autophagy as a meaningful partnership in the treatment and prevention of photoaging disorders.
Collapse
Affiliation(s)
- Sheikh Ahmad Umar
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Pharmacokinetics-Pharmacodynamics and Toxicology Division, CSIR-Indian Institute of Integrative Medicine Jammu Tawi Jammu and Kashmir India +91-1912569000-10 ext.332
| | - Sheikh Abdullah Tasduq
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Pharmacokinetics-Pharmacodynamics and Toxicology Division, CSIR-Indian Institute of Integrative Medicine Jammu Tawi Jammu and Kashmir India +91-1912569000-10 ext.332
| |
Collapse
|
13
|
Ambrosio S, Majello B. Autophagy Roles in Genome Maintenance. Cancers (Basel) 2020; 12:E1793. [PMID: 32635505 PMCID: PMC7407194 DOI: 10.3390/cancers12071793] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022] Open
Abstract
In recent years, a considerable correlation has emerged between autophagy and genome integrity. A range of mechanisms appear to be involved where autophagy participates in preventing genomic instability, as well as in DNA damage response and cell fate decision. These initial findings have attracted particular attention in the context of malignancy; however, the crosstalk between autophagy and DNA damage response is just beginning to be explored and key questions remain that need to be addressed, to move this area of research forward and illuminate the overall consequence of targeting this process in human therapies. Here we present current knowledge on the complex crosstalk between autophagy and genome integrity and discuss its implications for cancer cell survival and response to therapy.
Collapse
Affiliation(s)
- Susanna Ambrosio
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy;
| | - Barbara Majello
- Department of Biology, University of Naples ‘Federico II’, 80138 Naples, Italy
| |
Collapse
|
14
|
Cheon SY, Kim H, Rubinsztein DC, Lee JE. Autophagy, Cellular Aging and Age-related Human Diseases. Exp Neurobiol 2019; 28:643-657. [PMID: 31902153 PMCID: PMC6946111 DOI: 10.5607/en.2019.28.6.643] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/04/2019] [Accepted: 11/04/2019] [Indexed: 12/22/2022] Open
Abstract
Macroautophagy/autophagy is a conserved degradation system that engulfs intracytoplasmic contents, including aggregated proteins and organelles, which is crucial for cellular homeostasis. During aging, cellular factors suggested as the cause of aging have been reported to be associated with progressively compromised autophagy. Dysfunctional autophagy may contribute to age-related diseases, such as neurodegenerative disease, cancer, and metabolic syndrome, in the elderly. Therefore, restoration of impaired autophagy to normal may help to prevent age-related disease and extend lifespan and longevity. Therefore, this review aims to provide an overview of the mechanisms of autophagy underlying cellular aging and the consequent disease. Understanding the mechanisms of autophagy may provide potential information to aid therapeutic interventions in age-related diseases.
Collapse
Affiliation(s)
- So Yeong Cheon
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge CB2 0XY, United Kingdom.,Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Hyunjeong Kim
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge CB2 0XY, United Kingdom.,Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge CB2 0XY, United Kingdom.,UK Dementia Research Institute, University of Cambridge, Cambridge CB2 0AH, United Kingdom
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea.,BK21 PLUS Project for Medical Science, and Brain Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
15
|
Zhang Y, Liu D, Hu H, Zhang P, Xie R, Cui W. HIF-1α/BNIP3 signaling pathway-induced-autophagy plays protective role during myocardial ischemia-reperfusion injury. Biomed Pharmacother 2019; 120:109464. [PMID: 31590128 DOI: 10.1016/j.biopha.2019.109464] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 10/25/2022] Open
Abstract
OBJECTIVE The study was established to inquire into the protective effect of the HIF-1α (Hypoxia-inducible factor-1α)/ BNIP3(Bcl-2/adenovirus E1B 19-kDa interacting protein) signal path-induced-autophagy during myocardial ischemia/ reperfusion (I/R) and oxygen-glucose deprivation/recovery (OGD/R) injury in heart-derived H9C2 cells as well as its potential underlying mechanism. METHODS Immediate myocardial I/R in SD (Spraque Dawley) rats and cytotoxicity of OGD/R injury on H9C2 cells with and without inhibitors or agonists of HIF-1α and BNIP3 were evaluated. Expression of mitochondrial autophagic protein were detected by Western blot and immunofluorescence. And the mitochondrial autophagosome were detected using Transmission Electron Microscope (TEM). RESULTS I/R and OGD/R injury increased the expression level of HIF-1α, activated the downstream BNIP3 and subsequently triggered mitochondria-dependent autophagy. Up-regulation the expression of HIF-1α and BNIP3 may promote the cardiac myocytes of SD rats of I/R injure and OGD/R injury-induced autophagy of H9C2 cells. Moreover, down-regulation the expression of HIF-1α or BNIP3-siRNA decreased H9C2 cells autophagy under OGD/R injury. CONCLUSIONS Together, our studies indicated that HIF-1α synchronization regulate BNIP3 during OGD/R injury-induced autophagy in H9C2 cells, though BNIP3-induced autophagy acting as a survival mechanism.
Collapse
Affiliation(s)
- Yanan Zhang
- First Department of Cardiology, The Second Hospital of Hebei Medical University, Hebei Institute of Cardiovascular Research, Hebei, 050000, China
| | - Dawei Liu
- First Department of Cardiology, The Second Hospital of Hebei Medical University, Hebei Institute of Cardiovascular Research, Hebei, 050000, China
| | - Haijuan Hu
- First Department of Cardiology, The Second Hospital of Hebei Medical University, Hebei Institute of Cardiovascular Research, Hebei, 050000, China
| | - Puqiang Zhang
- First Department of Cardiology, The Second Hospital of Hebei Medical University, Hebei Institute of Cardiovascular Research, Hebei, 050000, China
| | - Ruiqin Xie
- First Department of Cardiology, The Second Hospital of Hebei Medical University, Hebei Institute of Cardiovascular Research, Hebei, 050000, China
| | - Wei Cui
- First Department of Cardiology, The Second Hospital of Hebei Medical University, Hebei Institute of Cardiovascular Research, Hebei, 050000, China.
| |
Collapse
|
16
|
Yang L, Ying S, Hu S, Zhao X, Li M, Chen M, Zhu Y, Song P, Zhu L, Jiang T, An H, Yousafzai NA, Xu W, Zhang Z, Wang X, Feng L, Jin H. EGFR TKIs impair lysosome-dependent degradation of SQSTM1 to compromise the effectiveness in lung cancer. Signal Transduct Target Ther 2019; 4:25. [PMID: 31637005 PMCID: PMC6799834 DOI: 10.1038/s41392-019-0059-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/30/2019] [Accepted: 06/02/2019] [Indexed: 01/07/2023] Open
Abstract
Tyrosine kinase inhibitors for epidermal growth factor receptor (EGFR TKIs) greatly improved clinical outcomes of patients with non-small cell lung cancer (NSCLC). Unfortunately, primary and acquired resistance limits their clinical benefits. To overcome such resistance, new generations of EGFR TKIs have been developed by targeting newly identified mutations in EGFR. However, much less effort has been put into alternative strategies, such as targeting the intrinsic protective responses to EGFR TKIs. In this study, we found that EGFR TKIs, including gefitinib and AZD9291, impaired lysosome-dependent degradation of SQSTM1, thus compromising their anti-cancer efficiency. By accumulating in the lysosome lumen, gefitinib and AZD9291 attenuated lysosomal acidification and impaired autolysosomal degradation of SQSTM1 owing to their intrinsic alkalinity. As a result, SQSTM1 protein was stabilized in response to gefitinib and AZD9291 treatment and conferred EGFR TKI resistance. Depleting SQSTM1 significantly increased the sensitivity of NSCLC cells to gefitinib and AZD9291 both in vitro and in vivo. Furthermore, a chemically modified gefitinib analog lacking alkalinity displayed stronger inhibitory effects on NSCLC cells. Therefore, targeting accumulated SQSTM1 or chemically modified EGFR TKIs may represent new strategies to increase the effectiveness of EGFR targeted therapy.
Collapse
Affiliation(s)
- Lixian Yang
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Shilong Ying
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Shiman Hu
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Xiangtong Zhao
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Muchun Li
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Miaoqin Chen
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Yiran Zhu
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Ping Song
- Department of Medical Oncology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Liyuan Zhu
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Tingting Jiang
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Huimin An
- Department of Pathology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Neelum Aziz Yousafzai
- Department of Medical Oncology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Wenxia Xu
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Xian Wang
- Department of Medical Oncology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Lifeng Feng
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
Xu S, Sui S, Zhang X, Pang B, Wan L, Pang D. Modulation of autophagy in human diseases strategies to foster strengths and circumvent weaknesses. Med Res Rev 2019; 39:1953-1999. [PMID: 30820989 DOI: 10.1002/med.21571] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/20/2019] [Accepted: 02/05/2019] [Indexed: 12/19/2022]
Abstract
Autophagy is central to the maintenance of intracellular homeostasis across species. Accordingly, autophagy disorders are linked to a variety of diseases from the embryonic stage until death, and the role of autophagy as a therapeutic target has been widely recognized. However, autophagy-associated therapy for human diseases is still in its infancy and is supported by limited evidence. In this review, we summarize the landscape of autophagy-associated diseases and current autophagy modulators. Furthermore, we investigate the existing autophagy-associated clinical trials, analyze the obstacles that limit their progress, offer tactics that may allow barriers to be overcome along the way and then discuss the therapeutic potential of autophagy modulators in clinical applications.
Collapse
Affiliation(s)
- Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Shiyao Sui
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Xianyu Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Boran Pang
- Department of Surgery, Rui Jin Hospital, Shanghai Key Laboratory of Gastric Neoplasm, Shanghai Institute of Digestive Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Wan
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
- Heilongjiang Academy of Medical Sciences, Harbin, Heilongjcontrary, induction of autophagy elongiang, China
| |
Collapse
|
18
|
Autophagy Roles in the Modulation of DNA Repair Pathways. Int J Mol Sci 2017; 18:ijms18112351. [PMID: 29112132 PMCID: PMC5713320 DOI: 10.3390/ijms18112351] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/27/2017] [Accepted: 11/01/2017] [Indexed: 02/07/2023] Open
Abstract
Autophagy and DNA repair are biological processes vital for cellular homeostasis maintenance and when dysfunctional, they lead to several human disorders including premature aging, neurodegenerative diseases, and cancer. The interchange between these pathways is complex and it may occur in both directions. Autophagy is activated in response to several DNA lesions types and it can regulate different mechanisms and molecules involved in DNA damage response (DDR), such as cell cycle checkpoints, cell death, and DNA repair. Thus, autophagy may modulate DNA repair pathways, the main focus of this review. In addition to the already well-documented autophagy positive effects on homologous recombination (HR), autophagy has also been implicated with other DNA repair mechanisms, such as base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR). Given the relevance of these cellular processes, the clinical applications of drugs targeting this autophagy-DNA repair interface emerge as potential therapeutic strategies for many diseases, especially cancer.
Collapse
|
19
|
Ma Z, Chen C, Tang P, Zhang H, Yue J, Yu Z. BNIP3 induces apoptosis and protective autophagy under hypoxia in esophageal squamous cell carcinoma cell lines: BNIP3 regulates cell death. Dis Esophagus 2017; 30:1-8. [PMID: 28859361 DOI: 10.1093/dote/dox059] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Indexed: 12/11/2022]
Abstract
Bcl-2/adenovirus E1B 19-kDa interacting protein (BNIP3), a pro-apoptosis protein regulated by the methylation status of its promoter, has been implicated in inducing autophagy. However, the roles of BNIP3 and BNIP3-induced autophagy under hypoxia remain uncertain in esophageal squamous cell carcinoma (ESCC). Two esophageal squamous cancer cell lines, CAES17 and KYSE140, were selected on the basis of the expression and methylation status of BNIP3 to investigate the features of BNIP3 under hypoxia. Hypoxia increased cell death and the expression of BNIP3, whose promoter status was lower methylation, in a time-dependent manner. BNIP3 knockdown by RNA interference downregulated cell death. These studies demonstrated that the exposure of ESCC cells to hypoxia increased the autophagic punctate distribution of MDC staining and GFP-LC3 and that autophagy rate could be inhibited by BNIP3-siRNA. In addition, under hypoxia, cells transfected with BNIP3-siRNA exhibited a lower apoptosis rate than the control, and the apoptosis induced by BNIP3 exhibited a caspase-independent manner. Furthermore, the administration of the autophagic inhibitor 3-methyladenine (3-MA) could augment BNIP3-induced cell apoptosis and death, suggesting that autophagy plays a protective role under hypoxia. Together, our studies indicated that BNIP3 exerts prodeath effects through the induction of caspase-independent apoptosis under hypoxia in ESCC, though BNIP3-induced autophagy acting as a survival mechanism.
Collapse
Affiliation(s)
- Z Ma
- Department of Esophageal Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - C Chen
- Department of Esophageal Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - P Tang
- Department of Esophageal Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - H Zhang
- Department of Esophageal Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - J Yue
- Department of Esophageal Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Z Yu
- Department of Esophageal Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
20
|
Abstract
Autophagy, a self-eating machinery, has been reported as an adaptive response to maintain metabolic homeostasis when cancer cells encounter stress. It has been appreciated that autophagy acts as a double-edge sword to decide the fate of cancer cells upon stress factors, molecular subtypes, and microenvironmental conditions. Currently, the majority of evidence support that autophagy in cancer cells is a vital mechanism bringing on resistance to current and prospective treatments, yet whether autophagy affects the anticancer immune response remains unclear and controversial. Accumulated studies have demonstrated that triggering autophagy is able to facilitate anticancer immunity due to an increase in immunogenicity, whereas other studies suggested that autophagy is likely to disarm anticancer immunity mediated by cytotoxic T cells and nature killer (NK) cells. Hence, this contradiction needs to be elucidated. In this review, we discuss the role of autophagy in cancer cells per se and in cancer microenvironment as well as its dual regulatory roles in immune surveillance through modulating presentation of tumor antigens, development of immune cells, and expression of immune checkpoints. We further focus on emerging roles of autophagy induced by current treatments and its impact on anticancer immune response, and illustrate the pros and cons of utilizing autophagy in cancer immunotherapy based on preclinical references.
Collapse
|
21
|
Wang Q, Xiao Z, Lin Z, Zhou J, Chen W, Jie W, Cao X, Yin Z, Cheng J. Autophagy influences the low-dose hyper-radiosensitivity of human lung adenocarcinoma cells by regulating MLH1. Int J Radiat Biol 2017; 93:600-606. [PMID: 28117625 DOI: 10.1080/09553002.2017.1286052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE To investigate the impact of autophagy on the low-dose hyper-radiosensitivity (HRS) of human lung adenocarcinoma cells via MLH1 regulation. MATERIALS AND METHODS Immunofluorescent staining, Western blotting, and electron microscopy were utilized to detect autophagy in A549 and H460 cells. shRNA was used to silence MLH1 expression. The levels of MLH1, mTOR, p-mTOR, BNIP3, and Beclin-1 were measured by real-time polymerase chain reaction (PCR) and Western blotting. RESULTS A549 cells, which have low levels of MLH1 expression, displayed HRS/induced radioresistance (IRR). Conversely, the radiosensitivity of H460 cells, which express high levels of MLH1, conformed to the linear-quadratic (LQ) model. After down-regulating MLH1 expression, A549 cells showed increased HRS and inhibition of autophagy, whereas H460 cells exhibited HRS/IRR. The levels of mTOR, p-mTOR, and BNIP3 were reduced in cells harboring MLH1 shRNA, and the changes in the mTOR/p-mTOR ratio mirrored those in MLH1 expression. CONCLUSIONS Low MLH1-expressing A549 cells may exhibit HRS. Both the mTOR/p-mTOR and BNIP3/Beclin-1 signaling pathways were found to be related to HRS, but only mTOR/p-mTOR is involved in the regulation of HRS via MLH1 and autophagy.
Collapse
Affiliation(s)
- Qiong Wang
- a Cancer Center, Union Hospital , Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Zhuya Xiao
- a Cancer Center, Union Hospital , Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Zhenyu Lin
- a Cancer Center, Union Hospital , Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Jie Zhou
- a Cancer Center, Union Hospital , Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Weihong Chen
- a Cancer Center, Union Hospital , Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Wuyun Jie
- a Cancer Center, Union Hospital , Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Xing Cao
- a Cancer Center, Union Hospital , Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Zhongyuan Yin
- a Cancer Center, Union Hospital , Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Jing Cheng
- a Cancer Center, Union Hospital , Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| |
Collapse
|
22
|
Zheng K, Li Y, Wang S, Wang X, Liao C, Hu X, Fan L, Kang Q, Zeng Y, Wu X, Wu H, Zhang J, Wang Y, He Z. Inhibition of autophagosome-lysosome fusion by ginsenoside Ro via the ESR2-NCF1-ROS pathway sensitizes esophageal cancer cells to 5-fluorouracil-induced cell death via the CHEK1-mediated DNA damage checkpoint. Autophagy 2016; 12:1593-613. [PMID: 27310928 PMCID: PMC5082787 DOI: 10.1080/15548627.2016.1192751] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 01/18/2023] Open
Abstract
Modulation of autophagy has been increasingly regarded as a promising cancer therapeutic approach. In this study, we screened several ginsenosides extracted from Panax ginseng and identified ginsenoside Ro (Ro) as a novel autophagy inhibitor. Ro blocked the autophagosome-lysosome fusion process by raising lysosomal pH and attenuating lysosomal cathepsin activity, resulting in the accumulation of the autophagosome marker MAP1LC3B/LC3B and SQSTM1/p62 (sequestosome 1) in various esophageal cancer cell lines. More detailed studies demonstrated that Ro activated ESR2 (estrogen receptor 2), which led to the activation of NCF1/p47(PHOX) (neutrophil cytosolic factor 1), a subunit of NADPH oxidase, and subsequent reactive oxygen species (ROS) production. Treatment with siRNAs or inhibitors of the ESR2-NCF1-ROS axis, such as N-acetyl-L-cysteine (NAC), diphenyleneiodonium chloride (DPI), apocynin (ACN), Tiron, and Fulvestrant apparently decreased Ro-induced LC3B-II, GFP-LC3B puncta, and SQSTM1, indicating that ROS instigates autophagic flux inhibition triggered by Ro. More importantly, suppression of autophagy by Ro sensitized 5-fluorouracil (5-Fu)-induced cell death in chemoresistant esophageal cancer cells. 5-Fu induced prosurvival autophagy, and by inhibiting such autophagy, siRNAs against BECN1/beclin 1, ATG5, ATG7, and LC3B enhanced 5-Fu-induced autophagy-associated and apoptosis-independent cell death. We observed that Ro potentiates 5-Fu cytotoxicity via delaying CHEK1 (checkpoint kinase 1) degradation and downregulating DNA replication process, resulting in the delayed DNA repair and the accumulation of DNA damage. In summary, these data suggest that Ro is a novel autophagy inhibitor and could function as a potent anticancer agent in combination therapy to overcome chemoresistance.
Collapse
Affiliation(s)
- Kai Zheng
- Department of Pharmacy, School of Medicine, Innovation Platform for Natural Small Molecule Drugs, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Shenzhen University, Shenzhen, China
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yan Li
- The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shaoxiang Wang
- Department of Pharmacy, School of Medicine, Innovation Platform for Natural Small Molecule Drugs, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Shenzhen University, Shenzhen, China
| | - Xiao Wang
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Chenghui Liao
- Department of Pharmacy, School of Medicine, Innovation Platform for Natural Small Molecule Drugs, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Shenzhen University, Shenzhen, China
| | - Xiaopeng Hu
- Department of Pharmacy, School of Medicine, Innovation Platform for Natural Small Molecule Drugs, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Shenzhen University, Shenzhen, China
| | - Long Fan
- Department of Pharmacy, School of Medicine, Innovation Platform for Natural Small Molecule Drugs, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Shenzhen University, Shenzhen, China
| | - Qiangrong Kang
- Department of Pharmacy, School of Medicine, Innovation Platform for Natural Small Molecule Drugs, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Shenzhen University, Shenzhen, China
| | - Yong Zeng
- The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xuli Wu
- Department of Pharmacy, School of Medicine, Innovation Platform for Natural Small Molecule Drugs, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Shenzhen University, Shenzhen, China
| | - Haiqiang Wu
- Department of Pharmacy, School of Medicine, Innovation Platform for Natural Small Molecule Drugs, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Shenzhen University, Shenzhen, China
| | - Jian Zhang
- Department of Pharmacy, School of Medicine, Innovation Platform for Natural Small Molecule Drugs, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Shenzhen University, Shenzhen, China
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhendan He
- Department of Pharmacy, School of Medicine, Innovation Platform for Natural Small Molecule Drugs, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Shenzhen University, Shenzhen, China
| |
Collapse
|
23
|
Filippi-Chiela EC, Bueno e Silva MM, Thomé MP, Lenz G. Single-cell analysis challenges the connection between autophagy and senescence induced by DNA damage. Autophagy 2016; 11:1099-113. [PMID: 25701485 PMCID: PMC4590630 DOI: 10.1080/15548627.2015.1009795] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Autophagy and senescence have been described as central features of cell biology, but the interplay between these mechanisms remains obscure. Using a therapeutically relevant model of DNA damage-induced senescence in human glioma cells, we demonstrated that acute treatment with temozolomide induces DNA damage, a transitory activation of PRKAA/AMPK-ULK1 and MAPK14/p38 and the sustained inhibition of AKT-MTOR. This produced a transient induction of autophagy, which was followed by senescence. However, at the single cell level, this coordinated transition was not observed, and autophagy and senescence were triggered in a very heterogeneous manner. Indeed, at a population level, autophagy was highly negatively correlated with senescence markers, while in single cells this correlation did not exist. The inhibition of autophagy triggered apoptosis and decreased senescence, while its activation increased temozolomide-induced senescence, showing that DNA damage-induced autophagy acts by suppressing apoptosis.
Collapse
Key Words
- 3MA, 3-methyladenine
- AMP-activated
- AO, acridine orange
- BafA1, bafilomycin A1
- CDKN1A/p21, cyclin-dependent kinase inhibitor 1A (p21 Cip1)
- CPD, cumulative population doubling
- DDR, DNA damage response
- DFM, drug-free medium
- DNA damage
- H2AFX, H2A histone family
- MAP1LC3A/LC3, microtubule-associated protein 1 light chain 3 α
- MTOR, mechanistic target of rapamycin
- MTORC1, MTOR complex 1
- NA, nuclear area
- NMA, nuclear morphometric analysis
- PRKAA/AMPKα, protein kinase
- RAPA, rapamycin
- RPTOR/RAPTOR, regulatory-associated protein of MTOR
- SA-β-gal, senescence associated β-galactosidase assay
- SQSTM1/p62, sequestosome 1
- TMZ, temozolomide
- autophagy
- cP1-4, cellular population 1 to 4
- complex 1
- member X
- nP1–5, nuclear population 1 to 5
- senescence
- single cell
- temozolomide
Collapse
|
24
|
Single-cell analysis challenges the connection between autophagy and senescence induced by DNA damage. Autophagy 2016. [PMID: 25701485 DOI: 10.0180/15548627.2015.1009795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Autophagy and senescence have been described as central features of cell biology, but the interplay between these mechanisms remains obscure. Using a therapeutically relevant model of DNA damage-induced senescence in human glioma cells, we demonstrated that acute treatment with temozolomide induces DNA damage, a transitory activation of PRKAA/AMPK-ULK1 and MAPK14/p38 and the sustained inhibition of AKT-MTOR. This produced a transient induction of autophagy, which was followed by senescence. However, at the single cell level, this coordinated transition was not observed, and autophagy and senescence were triggered in a very heterogeneous manner. Indeed, at a population level, autophagy was highly negatively correlated with senescence markers, while in single cells this correlation did not exist. The inhibition of autophagy triggered apoptosis and decreased senescence, while its activation increased temozolomide-induced senescence, showing that DNA damage-induced autophagy acts by suppressing apoptosis.
Collapse
Key Words
- 3MA, 3-methyladenine
- AMP-activated
- AO, acridine orange
- BafA1, bafilomycin A1
- CDKN1A/p21, cyclin-dependent kinase inhibitor 1A (p21 Cip1)
- CPD, cumulative population doubling
- DDR, DNA damage response
- DFM, drug-free medium
- DNA damage
- H2AFX, H2A histone family
- MAP1LC3A/LC3, microtubule-associated protein 1 light chain 3 α
- MTOR, mechanistic target of rapamycin
- MTORC1, MTOR complex 1
- NA, nuclear area
- NMA, nuclear morphometric analysis
- PRKAA/AMPKα, protein kinase
- RAPA, rapamycin
- RPTOR/RAPTOR, regulatory-associated protein of MTOR
- SA-β-gal, senescence associated β-galactosidase assay
- SQSTM1/p62, sequestosome 1
- TMZ, temozolomide
- autophagy
- cP1-4, cellular population 1 to 4
- complex 1
- member X
- nP1–5, nuclear population 1 to 5
- senescence
- single cell
- temozolomide
Collapse
|
25
|
Stundon JL, Zakian VA. Identification of Saccharomyces cerevisiae Genes Whose Deletion Causes Synthetic Effects in Cells with Reduced Levels of the Nuclear Pif1 DNA Helicase. G3 (BETHESDA, MD.) 2015; 5:2913-8. [PMID: 26483010 PMCID: PMC4683662 DOI: 10.1534/g3.115.021139] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/08/2015] [Indexed: 02/07/2023]
Abstract
The multifunctional Saccharomyces cerevisiae Pif1 DNA helicase affects the maintenance of telomeric, ribosomal, and mitochondrial DNAs, suppresses DNA damage at G-quadruplex motifs, influences the processing of Okazaki fragments, and promotes breakage induced replication. All of these functions require the ATPase/helicase activity of the protein. Owing to Pif1's critical role in the maintenance of mitochondrial DNA, pif1Δ strains quickly generate respiratory deficient cells and hence grow very slowly. This slow growth makes it difficult to carry out genome-wide synthetic genetic analysis in this background. Here, we used a partial loss of function allele of PIF1, pif1-m2, which is mitochondrial proficient but has reduced abundance of nuclear Pif1. Although pif1-m2 is not a null allele, pif1-m2 cells exhibit defects in telomere maintenance, reduced suppression of damage at G-quadruplex motifs and defects in breakage induced replication. We performed a synthetic screen to identify nonessential genes with a synthetic sick or lethal relationship in cells with low abundance of nuclear Pif1. This study identified eleven genes that were synthetic lethal (APM1, ARG80, CDH1, GCR1, GTO3, PRK1, RAD10, SKT5, SOP4, UMP1, and YCK1) and three genes that were synthetic sick (DEF1, YIP4, and HOM3) with pif1-m2.
Collapse
Affiliation(s)
| | - Virginia A Zakian
- Department of Molecular Biology, Princeton University, New Jersey 08544
| |
Collapse
|
26
|
Sun L, Li T, Wei Q, Zhang Y, Jia X, Wan Z, Han L. Upregulation of BNIP3 mediated by ERK/HIF-1α pathway induces autophagy and contributes to anoikis resistance of hepatocellular carcinoma cells. Future Oncol 2015; 10:1387-98. [PMID: 25052749 DOI: 10.2217/fon.14.70] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AIM Acquisition of anoikis resistance is the hallmark of cancer and has been shown to be involved in metastasis of melignant cells. Our previous work showed that anoikis resistance is associated with the metastasis of hepatocellular carcinoma (HCC) cells. The aim of this study is to elucidate the mechanisms of this course. MATERIALS & METHODS Expression of BNIP3 and HIF-1α at the mRNA and protein level in HCC cells were detected by realtime PCR and western blot, respectively. Autophagy activation and signaling transduction pathway were detected by western blot. Cell viabilities were detected by CCK8 assay and trypan blue exclusion assay. RESULTS Upregulation of BNIP3 promoted the activation of autophagy, one type of cell survival strategy in response to external stress, by suppressing mTOR/S6K1 signaling system. The upregulation of BNIP3 was mediated by ERK/HIF-1α pathway, which further contributed to anoikis resistance of HCC cells through the mTORC1 signaling pathway. CONCLUSION Upregulation of BNIP3 contributs to anoikis resistance of HCC cells, and BNIP3 may serve as a novel therapeutic target for manipulation of cancer metastasis.
Collapse
Affiliation(s)
- Lei Sun
- Department of Immunology, Shandong University School of Medicine, Jinan 250012, China
| | | | | | | | | | | | | |
Collapse
|
27
|
ZOU YUHUI, WANG QIONG, WANG WEIMIN. MutL homolog 1 contributes to temozolomide-induced autophagy via ataxia-telangiectasia mutated in glioma. Mol Med Rep 2015; 11:4591-6. [DOI: 10.3892/mmr.2015.3293] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 12/02/2014] [Indexed: 11/06/2022] Open
|
28
|
Zhang SM, Shang ZF, Zhou PK. Autophagy as the effector and player in DNA damage response of cells to genotoxicants. Toxicol Res (Camb) 2015. [DOI: 10.1039/c5tx00043b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In this review, we provide an overview and discuss the molecular mechanism of DNA damage induced autophagy, and their mutual regulation and its role in cell fate determination in response to genotoxic effects of environmental toxicants.
Collapse
Affiliation(s)
- Shi-Meng Zhang
- Department of Radiation Toxicology and Oncology
- Beijing Key Laboratory for Radiobiology (BKLRB)
- Beijing Institute of Radiation Medicine
- Beijing
- China
| | - Zeng-Fu Shang
- School of Radiation Medicine and Protection
- Medical College of Soochow University
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions
- Suzhou 215123
- China
| | - Ping-Kun Zhou
- Department of Radiation Toxicology and Oncology
- Beijing Key Laboratory for Radiobiology (BKLRB)
- Beijing Institute of Radiation Medicine
- Beijing
- China
| |
Collapse
|
29
|
Ling H, Lu LF, He J, Xiao GH, Jiang H, Su Q. Diallyl disulfide selectively causes checkpoint kinase-1 mediated G2/M arrest in human MGC803 gastric cancer cell line. Oncol Rep 2014; 32:2274-82. [PMID: 25176258 DOI: 10.3892/or.2014.3417] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 08/04/2014] [Indexed: 11/06/2022] Open
Abstract
Previous studies have shown that diallyl disulfide (DADS), a naturally occurring anticancer agent in garlic, arrested human gastric cancer cells (MGC803) in the G2/M phase of the cell cycle. Due to the importance of cell cycle redistribution in DADS-mediated anticarcinogenic effects, we investigated the role of checkpoint kinases (Chk1 and Chk2) during DADS-induced cell cycle arrest. In the present study, the northern blot analysis showed that mRNA expression of for Chkl and Chk2 was unchanged. Notably, DADS induced the accumulation of phosphorylated Chk1, but not of Chk2, activated phospho-ATR (ATM-RAD3-related gene), and dowregulated CDC25C and cyclin B1 expression. Furthermore, CDC25C was immunoprecipitated by anti-Chk1 but not anti-Chk2. Results of the overexpression and knockdown studies, showed that Chk1 but not Chk2 regulated the DADS-induced G2/M arrest of MGC803 cells. The overexpression of Chk1 resulted in significantly increased DADS-induced G2/M arrest, increased DADS-induced Chk1 phosphorylation and inhibited CDC25C expression. Knockdown of Chk1 reduced DADS‑induced G2/M arrest and blocked the DADS-induced inhibition of CDC25C and cyclin B1 expression. These results suggested that Chk1 is important in DADS‑induced cell cycle G2/M arrest in the human MGC803 gastric cancer cell line. Furthermore, the DADS-induced G2/M checkpoint response is mediated by Chk1 signaling through ATR/Chk1/CDC25C/cyclin B1.
Collapse
Affiliation(s)
- Hui Ling
- Key Laboratory of Tumor Cellular and Molecular Pathology (University of South China), College of Hunan Province, Cancer Research Institute, Hengyang, Hunan 421001, P.R. China
| | - Li-Feng Lu
- Key Laboratory of Tumor Cellular and Molecular Pathology (University of South China), College of Hunan Province, Cancer Research Institute, Hengyang, Hunan 421001, P.R. China
| | - Jie He
- Key Laboratory of Tumor Cellular and Molecular Pathology (University of South China), College of Hunan Province, Cancer Research Institute, Hengyang, Hunan 421001, P.R. China
| | - Guo-Hua Xiao
- Key Laboratory of Tumor Cellular and Molecular Pathology (University of South China), College of Hunan Province, Cancer Research Institute, Hengyang, Hunan 421001, P.R. China
| | - Hao Jiang
- Center for Gastric Cancer Research of Hunan Province, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Qi Su
- Key Laboratory of Tumor Cellular and Molecular Pathology (University of South China), College of Hunan Province, Cancer Research Institute, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
30
|
Induction of autophagy biomarker BNIP3 requires a JAK2/STAT3 and MT1-MMP signaling interplay in Concanavalin-A-activated U87 glioblastoma cells. Cell Signal 2014; 26:917-24. [PMID: 24462646 DOI: 10.1016/j.cellsig.2014.01.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 01/13/2014] [Indexed: 11/20/2022]
Abstract
Plant lectins have been considered as possible anti-tumor drugs because of their property to induce autophagic cell death. Given that expression of membrane type-1 matrix metalloproteinase (MT1-MMP) has been found to regulate expression of the autophagy biomarker Bcl-2/adenovirus E1B 19kDa interacting protein 3 (BNIP3), we sought to investigate possible signaling interplay mechanisms between MT1-MMP and BNIP3 in Concanavalin-A (ConA) lectin-activated U87 glioblastoma cells. ConA induced acidic vacuole organelle formation as well as BNIP3 and MT1-MMP gene and protein expressions, whereas only BNIP3 expression was dose-dependently inhibited by the JAK2 tyrosine kinase inhibitor AG490 suggesting a requirement for some STAT-mediated signaling. Gene silencing of MT1-MMP and of STAT3 abrogated ConA-induced STAT3 phosphorylation and BNIP3 expression. Correlative analysis shows that STAT3 signaling events occur downstream from MT1-MMP induction. Overexpression of a full length MT1-MMP recombinant protein led to increased BNIP3 gene and protein expressions. The cytoplasmic domain of MT1-MMP was also found necessary for transducing STAT3 phosphorylation. Among JAK1, JAK2, JAK3, and TYK2, only JAK2 gene silencing abrogated ConA's effects on MT1-MMP and BNIP3 gene and protein expressions. Our study elucidates how MT1-MMP signals autophagy, a process which could contribute to the chemoresistance phenotype in brain cancer cells.
Collapse
|
31
|
Nayak RR, Bernal WE, Lee JW, Kearns MJ, Cheung VG. Stress-induced changes in gene interactions in human cells. Nucleic Acids Res 2013; 42:1757-71. [PMID: 24170811 PMCID: PMC3919594 DOI: 10.1093/nar/gkt999] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cells respond to variable environments by changing gene expression and gene interactions. To study how human cells response to stress, we analyzed the expression of >5000 genes in cultured B cells from nearly 100 normal individuals following endoplasmic reticulum stress and exposure to ionizing radiation. We identified thousands of genes that are induced or repressed. Then, we constructed coexpression networks and inferred interactions among genes. We used coexpression and machine learning analyses to study how genes interact with each other in response to stress. The results showed that for most genes, their interactions with each other are the same at baseline and in response to different stresses; however, a small set of genes acquired new interacting partners to engage in stress-specific responses. These genes with altered interacting partners are associated with diseases in which endoplasmic reticulum stress response or sensitivity to radiation has been implicated. Thus, our findings showed that to understand disease-specific pathways, it is important to identify not only genes that change expression levels but also those that alter interactions with other genes.
Collapse
Affiliation(s)
- Renuka R Nayak
- Medical Scientist Training Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA, Division of Rheumatology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA, HHMI Medical Research Fellows Program, University of Pennsylvania, Philadelphia, PA 19104, USA, Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA 19104, USA, Department of Pediatrics, University of Pennsylvania, Philadelphia, PA 19104, USA, Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA and Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | | | | | | | | |
Collapse
|
32
|
Autophagy and genomic integrity. Cell Death Differ 2013; 20:1444-54. [PMID: 23933813 DOI: 10.1038/cdd.2013.103] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 06/07/2013] [Accepted: 07/02/2013] [Indexed: 01/25/2023] Open
Abstract
DNA lesions, constantly produced by endogenous and exogenous sources, activate the DNA damage response (DDR), which involves detection, signaling and repair of the damage. Autophagy, a lysosome-dependent degradation pathway that is activated by stressful situations such as starvation and oxidative stress, regulates cell fate after DNA damage and also has a pivotal role in the maintenance of nuclear and mitochondrial genomic integrity. Here, we review important evidence regarding the role played by autophagy in preventing genomic instability and tumorigenesis, as well as in micronuclei degradation. Several pathways governing autophagy activation after DNA injury and the influence of autophagy upon the processing of genomic lesions are also discussed herein. In this line, the mechanisms by which several proteins participate in both DDR and autophagy, and the importance of this crosstalk in cancer and neurodegeneration will be presented in an integrated fashion. At last, we present a hypothetical model of the role played by autophagy in dictating cell fate after genotoxic stress.
Collapse
|
33
|
Walker DM, Patrick O'Neill J, Tyson FL, Walker VE. The stress response resolution assay. I. Quantitative assessment of environmental agent/condition effects on cellular stress resolution outcomes in epithelium. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:268-280. [PMID: 23554083 DOI: 10.1002/em.21772] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 02/11/2013] [Accepted: 02/14/2013] [Indexed: 06/02/2023]
Abstract
The events or factors that lead from normal cell function to conditions and diseases such as aging or cancer reflect complex interactions between cells and their environment. Cellular stress responses, a group of processes involved in homeostasis and adaptation to environmental change, contribute to cell survival under stress and can be resolved with damage avoidance or damage tolerance outcomes. To investigate the impact of environmental agents/conditions upon cellular stress response outcomes in epithelium, a novel quantitative assay, the "stress response resolution" (SRR) assay, was developed. The SRR assay consists of pretreatment with a test agent or vehicle followed later by a calibrated stress conditions exposure step (here, using 6-thioguanine). Pilot studies conducted with a spontaneously-immortalized murine mammary epithelial cell line pretreated with vehicle or 20 µg N-ethyl-N-nitrososurea/ml medium for 1 hr, or two hTERT-immortalized human bronchial epithelial cell lines pretreated with vehicle or 100 µM zidovudine/lamivudine for 12 days, found minimal alterations in cell morphology, survival, or cell function through 2 weeks post-exposure. However, when these pretreatments were followed 2 weeks later by exposure to calibrated stress conditions of limited duration (for 4 days), significant alterations in stress resolution were observed in pretreated cells compared with vehicle-treated control cells, with decreased damage avoidance survival outcomes in all cell lines and increased damage tolerance outcomes in two of three cell lines. These pilot study results suggest that sub-cytotoxic pretreatments with chemical mutagens have long-term adverse impact upon the ability of cells to resolve subsequent exposure to environmental stressors.
Collapse
Affiliation(s)
- Dale M Walker
- Experimental Pathology Laboratories, Inc., Herndon, VA, USA
| | | | | | | |
Collapse
|
34
|
Abstract
The consequences of DNA damage depend on the cell type and the severity of the damage. Mild DNA damage can be repaired with or without cell-cycle arrest. More severe and irreparable DNA injury leads to the appearance of cells that carry mutations or causes a shift towards induction of the senescence or cell death programs. Although for many years it was argued that DNA damage kills cells via apoptosis or necrosis, technical and methodological progress during the last few years has helped to reveal that this injury might also activate death by autophagy or mitotic catastrophe, which may then be followed by apoptosis or necrosis. The molecular basis underlying the decision-making process is currently the subject of intense investigation. Here, we review current knowledge about the response to DNA damage and subsequent signaling, with particular attention to cell death induction and the molecular switches between different cell death modalities following damage.
Collapse
|
35
|
Zhavoronkov A, Smit-McBride Z, Guinan KJ, Litovchenko M, Moskalev A. Potential therapeutic approaches for modulating expression and accumulation of defective lamin A in laminopathies and age-related diseases. J Mol Med (Berl) 2012; 90:1361-89. [PMID: 23090008 PMCID: PMC3506837 DOI: 10.1007/s00109-012-0962-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 09/08/2012] [Accepted: 09/25/2012] [Indexed: 01/28/2023]
Abstract
Scientific understanding of the genetic components of aging has increased in recent years, with several genes being identified as playing roles in the aging process and, potentially, longevity. In particular, genes encoding components of the nuclear lamina in eukaryotes have been increasingly well characterized, owing in part to their clinical significance in age-related diseases. This review focuses on one such gene, which encodes lamin A, a key component of the nuclear lamina. Genetic variation in this gene can give rise to lethal, early-onset diseases known as laminopathies. Here, we analyze the literature and conduct computational analyses of lamin A signaling and intracellular interactions in order to examine potential mechanisms for altering or slowing down aberrant Lamin A expression and/or for restoring the ratio of normal to aberrant lamin A. The ultimate goal of such studies is to ameliorate or combat laminopathies and related diseases of aging, and we provide a discussion of current approaches in this review.
Collapse
Affiliation(s)
- Alex Zhavoronkov
- Bioinformatics and Medical Information Technology Laboratory, Center for Pediatric Hematology, Oncology and Immunology, Moscow, 119296 Russia
- The Biogerontology Research Foundation, Reading, UK
| | - Zeljka Smit-McBride
- Department of Ophthalmology and Vision Science, School of Medicine, University of California at Davis, Davis, CA 95616 USA
| | - Kieran J. Guinan
- The Biogerontology Research Foundation, Reading, UK
- BioAtlantis Ltd., Kerry Technology Park, Tralee, County Kerry Ireland
| | - Maria Litovchenko
- Bioinformatics and Medical Information Technology Laboratory, Center for Pediatric Hematology, Oncology and Immunology, Moscow, 119296 Russia
| | - Alexey Moskalev
- The Biogerontology Research Foundation, Reading, UK
- Laboratory of Molecular Radiobiology and Gerontology, Institute of Biology, Komi Science Center of Russian Academy of Sciences, Syktyvkar, 167982 Russia
| |
Collapse
|
36
|
Soto-Pantoja DR, Miller TW, Pendrak ML, DeGraff WG, Sullivan C, Ridnour LA, Abu-Asab M, Wink DA, Tsokos M, Roberts DD. CD47 deficiency confers cell and tissue radioprotection by activation of autophagy. Autophagy 2012; 8:1628-42. [PMID: 22874555 PMCID: PMC3494592 DOI: 10.4161/auto.21562] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Accidental or therapeutic exposure to ionizing radiation has severe physiological consequences and can result in cell death. We previously demonstrated that deficiency or blockade of the ubiquitously expressed receptor CD47 results in remarkable cell and tissue protection against ischemic and radiation stress. Antagonists of CD47 or its ligand THBS1/thrombospondin 1 enhance cell survival and preserve their proliferative capacity. However the signaling pathways that mediate this cell-autonomous radioprotection are unclear. We now report a marked increase in autophagy in irradiated T-cells and endothelial cells lacking CD47. Irradiated T cells lacking CD47 exhibit significant increases in formation of autophagosomes comprising double-membrane vesicles visualized by electron microscopy and numbers of MAP1LC3A/B(+) puncta. Moreover, we observed significant increases in BECN1, ATG5, ATG7 and a reduction in SQSTM1/p62 expression relative to irradiated wild-type T cells. We observed similar increases in autophagy gene expression in mice resulting from blockade of CD47 in combination with total body radiation. Pharmacological or siRNA-mediated inhibition of autophagy selectively sensitized CD47-deficient cells to radiation, indicating that enhanced autophagy is necessary for the prosurvival response to CD47 blockade. Moreover, re-expression of CD47 in CD47-deficient T cells sensitized these cells to death by ionizing radiation and reversed the increase in autophagic flux associated with survival. This study indicates that CD47 deficiency confers cell survival through the activation of autophagic flux and identifies CD47 blockade as a pharmacological route to modulate autophagy for protecting tissue from radiation injury.
Collapse
Affiliation(s)
- David R. Soto-Pantoja
- Laboratory of Pathology; Center for Cancer Research; National Cancer Institute; Bethesda, MD USA
| | - Thomas W. Miller
- Laboratory of Pathology; Center for Cancer Research; National Cancer Institute; Bethesda, MD USA
| | - Michael L. Pendrak
- Laboratory of Pathology; Center for Cancer Research; National Cancer Institute; Bethesda, MD USA
| | - William G. DeGraff
- Radiation Biology Branch; Center for Cancer Research; National Cancer Institute; Bethesda, MD USA
| | - Camille Sullivan
- Laboratory of Pathology; Center for Cancer Research; National Cancer Institute; Bethesda, MD USA
| | - Lisa A. Ridnour
- Radiation Biology Branch; Center for Cancer Research; National Cancer Institute; Bethesda, MD USA
| | - Mones Abu-Asab
- Laboratory of Pathology; Center for Cancer Research; National Cancer Institute; Bethesda, MD USA
- Section of Immunopathology; Laboratory of Immunology; National Eye Institute; National Institutes of Health; Bethesda, MD USA
| | - David A. Wink
- Radiation Biology Branch; Center for Cancer Research; National Cancer Institute; Bethesda, MD USA
| | - Maria Tsokos
- Laboratory of Pathology; Center for Cancer Research; National Cancer Institute; Bethesda, MD USA
| | - David D. Roberts
- Laboratory of Pathology; Center for Cancer Research; National Cancer Institute; Bethesda, MD USA
| |
Collapse
|
37
|
Guo XL, Li D, Hu F, Song JR, Zhang SS, Deng WJ, Sun K, Zhao QD, Xie XQ, Song YJ, Wu MC, Wei LX. Targeting autophagy potentiates chemotherapy-induced apoptosis and proliferation inhibition in hepatocarcinoma cells. Cancer Lett 2012; 320:171-9. [PMID: 22406827 DOI: 10.1016/j.canlet.2012.03.002] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 03/01/2012] [Accepted: 03/01/2012] [Indexed: 12/22/2022]
Abstract
Induction of cell death and inhibition of cell growth are the main targets of cancer therapy. Here we evaluated the role of autophagy on chemoresistance of human hepatocarcinoma (HCC) cell lines, focusing on its crosstalk with cell apoptosis and proliferation. In this study, a chemotherapeutic agent (cisplatin or 5FU) induced the formation of autophagosomes in three human HCC cell lines and upregulated the expression of autophagy protein LC3-II. Inhibition of autophagy by 3-methyladenine or si-beclin 1 increased chemotherapy-induced apoptosis in HCC cells. Meanwhile, increased damage of the mitochondrial membrane potential was also observed in HCC cells when autophagy was inhibited. Furthermore, inhibition of autophagy reduced clone formation and impaired cell growth of HCC cells when treated with chemotherapy. Co-administration of an autophagy inhibitor (chloroquine) and chemotherapy significantly inhibited tumor growth in a mouse xenograft tumor model, with greater extent of apoptosis and impaired proliferation of tumor cells. This study suggests that autophagy is a potential novel target to improve therapy efficiency of conventional chemotherapeutics towards HCC.
Collapse
Affiliation(s)
- Xian-Ling Guo
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
de la Cruz-Morcillo MA, Valero MLL, Callejas-Valera JL, Arias-González L, Melgar-Rojas P, Galán-Moya EM, García-Gil E, García-Cano J, Sánchez-Prieto R. P38MAPK is a major determinant of the balance between apoptosis and autophagy triggered by 5-fluorouracil: implication in resistance. Oncogene 2012; 31:1073-85. [PMID: 21841826 DOI: 10.1038/onc.2011.321] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 06/22/2011] [Accepted: 06/23/2011] [Indexed: 12/30/2022]
Abstract
5-Fluorouracil (5-FU), together with other drugs such as oxaliplatin, is one of the most important pharmacological agents in the treatment of colorectal cancer. Although mitogen-activated protein kinases (MAPKs) have been extensively connected with resistance to platinum compounds, no role has been established in 5-FU resistance. Here we demonstrate that p38MAPK activation is a key determinant in the cellular response to 5-FU. Thus, inhibition of p38MAPKα by SB203580 compound or by short-hairpin RNA interference-specific knockdown correlates with a decrease in the 5-FU-associated apoptosis and chemical resistance in both HaCaT and HCT116 cells. Activation of p38MAPK by 5-FU was dependent on canonical MAP2K, MAPK kinase (MKK)-3 and MKK6. In addition, ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3 related (ATR) showed a redundancy of function for the final activation of p38MAPK. Resistance associated with p38MAPK inhibition correlates with an autophagic response that was mediated by a decrease in p53-driven apoptosis, without effect onto p53-dependent autophagy. Moreover, the results with colorectal cancer-derived cell lines with different p53 status and patterns of resistance to 5-FU suggest that de novo and acquired resistance was controlled by similar mechanisms. In summary, our data demonstrate a critical role for the p38MAPK signaling pathway in the cellular response to 5-FU by controlling the balance between apoptosis and autophagy.
Collapse
Affiliation(s)
- M A de la Cruz-Morcillo
- Laboratorio de Oncología Molecular, Centro Regional de Investigaciones Biomédicas, CRIB/PCYTA, Universidad de Castilla-La Mancha, UCLM, Albacete, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Zeng X, Kinsella TJ. Impact of Autophagy on Chemotherapy and Radiotherapy Mediated Tumor Cytotoxicity: "To Live or not to Live". Front Oncol 2011; 1:30. [PMID: 22655239 PMCID: PMC3356061 DOI: 10.3389/fonc.2011.00030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 09/13/2011] [Indexed: 12/19/2022] Open
Abstract
Autophagy, a highly regulated cell “self-eating” pathway, is controlled by the action of over 34 autophagy-related proteins (collectively termed Atgs). Although they are fundamentally different processes, autophagy and apoptosis (type I programmed cell death), under certain circumstances, can be regulated by common signaling mediators. Current cancer therapies including chemotherapy and ionizing radiation are known to induce autophagy within tumor cells. However, autophagy plays a dual role of either pro-cell survival or pro-cell death in response to these cancer treatments, depending on the cellular context and the nature of the treatment. We review the current basic and translational cancer research literature on how autophagy impacts tumor cell survival (“to live”) and death (“not to live”) following treatment as well as the role of chemical mediators of autophagy.
Collapse
Affiliation(s)
- Xuehuo Zeng
- Department of Radiation Oncology, Case Integrative Cancer Biology Program, Case Western Reserve University Cleveland, OH, USA
| | | |
Collapse
|
40
|
Zong D, Hååg P, Yakymovych I, Lewensohn R, Viktorsson K. Chemosensitization by phenothiazines in human lung cancer cells: impaired resolution of γH2AX and increased oxidative stress elicit apoptosis associated with lysosomal expansion and intense vacuolation. Cell Death Dis 2011; 2:e181. [PMID: 21776019 PMCID: PMC3199719 DOI: 10.1038/cddis.2011.62] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chemotherapy resistance poses severe limitations on the efficacy of anti-cancer medications. Recently, the notion of using novel combinations of 'old' drugs for new indications has garnered significant interest. The potential of using phenothiazines as chemosensitizers has been suggested earlier but so far our understanding of their molecular targets remains scant. The current study was designed to better define phenothiazine-sensitive cellular processes in relation to chemosensitivity. We found that phenothiazines shared the ability to delay γH2AX resolution in DNA-damaged human lung cancer cells. Accordingly, cells co-treated with chemotherapy and phenothiazines underwent protracted cell-cycle arrest followed by checkpoint escape that led to abnormal mitoses, secondary arrest and/or a form of apoptosis associated with increased endogenous oxidative stress and intense vacuolation. We provide evidence implicating lysosomal dysfunction as a key component of cell death in phenothiazine co-treated cells, which also exhibited more typical hallmarks of apoptosis including the activation of both caspase-dependent and -independent pathways. Finally, we demonstrated that vacuolation in phenothiazine co-treated cells could be reduced by ROS scavengers or the vacuolar ATPase inhibitor bafilomycin, leading to increased cell viability. Our data highlight the potential benefit of using phenothiazines as chemosensitizers in tumors that acquire molecular alterations rendering them insensitive to caspase-mediated apoptosis.
Collapse
Affiliation(s)
- D Zong
- Department of Oncology and Pathology, Karolinska Biomics Center, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
41
|
Rodriguez-Rocha H, Aracely-Garcia-Garcia, Panayiotidis MI, Franco R. DNA damage and autophagy. Mutat Res 2011; 711:158-66. [PMID: 21419786 PMCID: PMC3105359 DOI: 10.1016/j.mrfmmm.2011.03.007] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 03/04/2011] [Accepted: 03/11/2011] [Indexed: 12/15/2022]
Abstract
Both exogenous and endogenous agents are a threat to DNA integrity. Exogenous environmental agents such as ultraviolet (UV) and ionizing radiation, genotoxic chemicals and endogenous byproducts of metabolism including reactive oxygen species can cause alterations in DNA structure (DNA damage). Unrepaired DNA damage has been linked to a variety of human disorders including cancer and neurodegenerative disease. Thus, efficient mechanisms to detect DNA lesions, signal their presence and promote their repair have been evolved in cells. If DNA is effectively repaired, DNA damage response is inactivated and normal cell functioning resumes. In contrast, when DNA lesions cannot be removed, chronic DNA damage triggers specific cell responses such as cell death and senescence. Recently, DNA damage has been shown to induce autophagy, a cellular catabolic process that maintains a balance between synthesis, degradation, and recycling of cellular components. But the exact mechanisms by which DNA damage triggers autophagy are unclear. More importantly, the role of autophagy in the DNA damage response and cellular fate is unknown. In this review we analyze evidence that supports a role for autophagy as an integral part of the DNA damage response.
Collapse
Affiliation(s)
- Humberto Rodriguez-Rocha
- Redox Biology Center and School of Veterinary Medicine and Biomedical Sciences. University of Nebraska-Lincoln. Lincoln, NE 68583
| | - Aracely-Garcia-Garcia
- Redox Biology Center and School of Veterinary Medicine and Biomedical Sciences. University of Nebraska-Lincoln. Lincoln, NE 68583
| | | | - Rodrigo Franco
- Redox Biology Center and School of Veterinary Medicine and Biomedical Sciences. University of Nebraska-Lincoln. Lincoln, NE 68583
| |
Collapse
|
42
|
Kinsella TJ, Gurkan-Cavusoglu E, Du W, Loparo KA. Integration of Principles of Systems Biology and Radiation Biology: Toward Development of in silico Models to Optimize IUdR-Mediated Radiosensitization of DNA Mismatch Repair Deficient (Damage Tolerant) Human Cancers. Front Oncol 2011; 1:20. [PMID: 22649757 PMCID: PMC3355906 DOI: 10.3389/fonc.2011.00020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 07/12/2011] [Indexed: 11/16/2022] Open
Abstract
Over the last 7 years, we have focused our experimental and computational research efforts on improving our understanding of the biochemical, molecular, and cellular processing of iododeoxyuridine (IUdR) and ionizing radiation (IR) induced DNA base damage by DNA mismatch repair (MMR). These coordinated research efforts, sponsored by the National Cancer Institute Integrative Cancer Biology Program (ICBP), brought together system scientists with expertise in engineering, mathematics, and complex systems theory and translational cancer researchers with expertise in radiation biology. Our overall goal was to begin to develop computational models of IUdR- and/or IR-induced base damage processing by MMR that may provide new clinical strategies to optimize IUdR-mediated radiosensitization in MMR deficient (MMR−) “damage tolerant” human cancers. Using multiple scales of experimental testing, ranging from purified protein systems to in vitro (cellular) and to in vivo (human tumor xenografts in athymic mice) models, we have begun to integrate and interpolate these experimental data with hybrid stochastic biochemical models of MMR damage processing and probabilistic cell cycle regulation models through a systems biology approach. In this article, we highlight the results and current status of our integration of radiation biology approaches and computational modeling to enhance IUdR-mediated radiosensitization in MMR− damage tolerant cancers.
Collapse
Affiliation(s)
- Timothy J Kinsella
- Department of Radiation Oncology, Warren Alpert Medical School of Brown University and Rhode Island Hospital Providence, RI, USA
| | | | | | | |
Collapse
|