1
|
Yu Z, Song M, Chouchane L, Ma X. Functional Genomic Analysis of Breast Cancer Metastasis: Implications for Diagnosis and Therapy. Cancers (Basel) 2021; 13:cancers13133276. [PMID: 34208889 PMCID: PMC8268362 DOI: 10.3390/cancers13133276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Metastasis remains the greatest cause of fatalities in breast cancer patients world-wide. The process of metastases is highly complex, and the current research efforts in this area are still rather fragmented. The revolution of genomic profiling methods to analyze samples from human and animal models dramatically improved our understanding of breast cancer metastasis. This article summarizes the recent breakthroughs in genomic analyses of breast cancer metastasis and discusses their implications for prognostic and therapeutic applications. Abstract Breast cancer (BC) is one of the most diagnosed cancers worldwide and is the second cause of cancer related death in women. The most frequent cause of BC-related deaths, like many cancers, is metastasis. However, metastasis is a complicated and poorly understood process for which there is a shortage of accurate prognostic indicators and effective treatments. With the rapid and ever-evolving development and application of genomic sequencing technologies, many novel molecules were identified that play previously unappreciated and important roles in the various stages of metastasis. In this review, we summarize current advancements in the functional genomic analysis of BC metastasis and discuss about the potential prognostic and therapeutic implications from the recent genomic findings.
Collapse
Affiliation(s)
- Ziqi Yu
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA;
- Correspondence: (Z.Y.); (X.M.)
| | - Mei Song
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA;
| | - Lotfi Chouchane
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha P.O. Box 24144, Qatar;
| | - Xiaojing Ma
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA;
- Correspondence: (Z.Y.); (X.M.)
| |
Collapse
|
2
|
Luo KJ, Chen CX, Yang JP, Huang YC, Cardenas ER, Jiang JX. Connexins in Lung Cancer and Brain Metastasis. Front Oncol 2020; 10:599383. [PMID: 33425756 PMCID: PMC7786366 DOI: 10.3389/fonc.2020.599383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/11/2020] [Indexed: 01/20/2023] Open
Abstract
Connexins (Cxs) are involved in the brain metastasis of lung cancer cells. Thus, it is necessary to determine whether gap junction-forming Cxs are involved in the communication between lung cancer cells and the host cells, such as endothelial cells, forming the brain-blood-barrier, and cells in the central nervous system. Data from multiple studies support that Cxs function as tumor suppressors during lung cancer occurrence. However, recent evidence suggests that during metastasis to the brain, cancer cells establish communication with the host. This review discusses junctional or non-junctional hemichannel studies in lung cancer development and brain metastasis, highlighting important unanswered questions and controversies.
Collapse
Affiliation(s)
- Kai-Jun Luo
- School of Life Sciences, Yunnan University, Kunming, China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Chang-Xu Chen
- School of Life Sciences, Yunnan University, Kunming, China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Jia-Peng Yang
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
- Joint International Research Laboratory of Regional Tumor in High Altitude Area, Kunming, China
| | - Yun-Chao Huang
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
- Joint International Research Laboratory of Regional Tumor in High Altitude Area, Kunming, China
| | - Eduardo R. Cardenas
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
| |
Collapse
|
3
|
Kanchan RK, Siddiqui JA, Mahapatra S, Batra SK, Nasser MW. microRNAs Orchestrate Pathophysiology of Breast Cancer Brain Metastasis: Advances in Therapy. Mol Cancer 2020; 19:29. [PMID: 32059676 PMCID: PMC7023699 DOI: 10.1186/s12943-020-1140-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/16/2020] [Indexed: 02/06/2023] Open
Abstract
Brain metastasis (BM) predominantly occurs in triple-negative (TN) and epidermal growth factor 2 (HER2)-positive breast cancer (BC) patients, and currently, there is an unmet need for the treatment of these patients. BM is a complex process that is regulated by the formation of a metastatic niche. A better understanding of the brain metastatic processes and the crosstalk between cancer cells and brain microenvironment is essential for designing a novel therapeutic approach. In this context, the aberrant expression of miRNA has been shown to be associated with BM. These non-coding RNAs/miRNAs regulate metastasis through modulating the formation of a metastatic niche and metabolic reprogramming via regulation of their target genes. However, the role of miRNA in breast cancer brain metastasis (BCBM) is poorly explored. Thus, identification and understanding of miRNAs in the pathobiology of BCBM may identify a novel candidate miRNA for the early diagnosis and prevention of this devastating process. In this review, we focus on understanding the role of candidate miRNAs in the regulation of BC brain metastatic processes as well as designing novel miRNA-based therapeutic strategies for BCBM.
Collapse
Affiliation(s)
- Ranjana K Kanchan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jawed A Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sidharth Mahapatra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mohd W Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA. .,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
4
|
Zhou Y, Shurin GV, Zhong H, Bunimovich YL, Han B, Shurin MR. Schwann Cells Augment Cell Spreading and Metastasis of Lung Cancer. Cancer Res 2018; 78:5927-5939. [PMID: 30135194 DOI: 10.1158/0008-5472.can-18-1702] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/12/2018] [Accepted: 08/17/2018] [Indexed: 11/16/2022]
Abstract
Although lungs are densely innervated by the peripheral nervous system (PNS), the role of the PNS in the progression of lung cancer is unknown. In this study, we report that mouse adult Schwann cells (SC), the principal glial cells of the PNS, can regulate the motility of lung cancer cells in vitro and the formation of metastases in vivo SCs promoted epithelial-to-mesenchymal transition (EMT) and the motility of two lung cancer cell lines by increasing expression of Snail and Twist in tumor cells; blocking of Snail and Twist expression abolished SC-induced motility of tumor cells. SC-derived CXCL5 was responsible for EMT in lung cancer cells, as the inhibition of CXCL5 or its receptor CXCR2 reduced SC-induced expression of Snail and Twist and reduced motility in tumor cells. CXCL5/CXCR2 binding activated the PI3K/AKT/GSK-3β/Snail-Twist signaling pathway in lung cancer cells, and the PI3K inhibitor blocked CXCL5-dependent phosphorylation of AKT and GSK-3β, reduced expression of Snail/Twist, and limited tumor cell invasiveness. SC conditioning of tumor cells prior to their injection into mice significantly increased the formation of metastases in the regional lymph nodes. In summary, SCs can regulate the CXCL5/CXCR2/PI3K/AKT/GSK-3β/Snail-Twist pathway to promote EMT, invasiveness, and metastatic potential of lung cancer cells. Our results reveal a new role of the PNS in the functional organization of the tumor microenvironment and tumor progression.Significance: This study increases our understanding of how nerves and, in particular, specific glial cells, Schwann cells, in the peripheral nervous system, may help promote tumor growth and metastasis. Cancer Res; 78(20); 5927-39. ©2018 AACR.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Pulmonary Disease, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Galina V Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Hua Zhong
- Department of Pulmonary Disease, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yuri L Bunimovich
- Department of Dermatology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Baohui Han
- Department of Pulmonary Disease, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Michael R Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania. .,Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
5
|
Dai W, Zhu H, Chen G, Gu H, Gu Y, Sun X, Zeng X. Orchestration of the crosstalk between astrocytes and cancer cells affects the treatment and prognosis of lung cancer sufferers with brain metastasis. J Thorac Dis 2016; 8:E1450-E1454. [PMID: 28066629 DOI: 10.21037/jtd.2016.11.11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Brain metastasis is an inauspicious consequence of lung cancer. However, the majority of cancer cells that seep into the brain died of unknown causes, only a few survived and developed into metastatic brain tumor. Communication between cancer cells and host tissue is viewed as an essential event during metastasis, but little is known about the accurate control of this processes. Within the lesion of brain metastasis, abundant activated astrocytes are observed with lung cancer cells. Previous studies have demonstrated that the astrocyte network served a protective role in the central nervous system (CNS) and most malignant cells that seep into the brain perish were rejected by astrocytes. Reactive astrocytes generated protease plasmin and cytotoxic cytokines as a defense against metastatic invasion. But recently, other investigators argued that tumor cells interactions with astrocytes promote the progression of brain metastases and protect them from the cytotoxic effects of chemotherapy. In this article, we review the architecture between astrocytes and infiltrated cancer cells, and raise a future perspective on therapeutic potential of targeting crosstalk modulators against brain metastasis.
Collapse
Affiliation(s)
- Wangshu Dai
- Department of Respiratory & Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China;; Department of Radiation Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hongcheng Zhu
- Department of Radiation Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Guangzong Chen
- Department of Respiratory & Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China;; Department of Radiation Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hao Gu
- Department of Respiratory & Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yihang Gu
- Department of Geratology, Jiangsu Jiangyin People's Hospital, Jiangyin 214400, China
| | - Xinchen Sun
- Department of Radiation Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiaoning Zeng
- Department of Respiratory & Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|