1
|
Hussain A, Ray MK. Functional activity of E. coli RNase R in the Antarctic Pseudomonas syringae Lz4W. J Genet Eng Biotechnol 2023; 21:101. [PMID: 37843651 PMCID: PMC10579198 DOI: 10.1186/s43141-023-00553-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 09/20/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND In Antarctic P. syringae RNase R play an essential role in the processing of 16S and 5S rRNA, thereby playing an important role in cold-adapted growth of the bacterium. This study is focused on deciphering the in vivo functional activity of mesophilic exoribonuclease R and its catalytic domain (RNB) in an evolutionary distant psychrophilic bacterium Pseudomonas syringae Lz4W. RESULTS Our results confirm that E. coli RNase R complemented the physiological functions of the psychrophilic bacterium P. syringae RNase R and rescued the cold-sensitive phenotype of Pseudomonas syringae ∆rnr mutant. More importantly, the catalytic domain (RNB) of the E. coli RNase R is also capable of alleviating the cold-sensitive growth defects of ∆rnr mutant as seen with the catalytic domain (RNB) of the P. syringae enzyme. The Catalytic domain of E. coli RNase R was less efficient than the Catalytic domain of P. syringae RNase R in rescuing the cold-sensitive growth of ∆rnr mutant at 4°C, as the ∆rnr expressing the RNBEc (catalytic domain of E. coli RNase R) displayed longer lag phase than the RNBPs (Catalytic domain of P. syringae RNase R) complemented ∆rnr mutant at 4°C. Altogether it appears that the E. coli RNase R and P. syringae RNase R are functionally exchangeable for the growth requirements of P. syringae at low temperature (4°C). Our results also confirm that in P. syringae the requirement of RNase R for supporting the growth at 4°C is independent of the degradosomal complex. CONCLUSION E. coli RNase R (RNase REc) rescues the cold-sensitive phenotype of the P. syringae Δrnr mutant. Similarly, the catalytic domain of E. coli RNase R (RNBEc) is also capable of supporting the growth of Δrnr mutant at low temperatures. These findings have a vast scope in the design and development of low-temperature-based expression systems.
Collapse
Affiliation(s)
- Ashaq Hussain
- Centre for Cellular and Molecular Biology, Hyderabad, India.
| | | |
Collapse
|
2
|
Collins T, Feller G. Psychrophilic enzymes: strategies for cold-adaptation. Essays Biochem 2023; 67:701-713. [PMID: 37021674 DOI: 10.1042/ebc20220193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023]
Abstract
Psychrophilic organisms thriving at near-zero temperatures synthesize cold-adapted enzymes to sustain cell metabolism. These enzymes have overcome the reduced molecular kinetic energy and increased viscosity inherent to their environment and maintained high catalytic rates by development of a diverse range of structural solutions. Most commonly, they are characterized by a high flexibility coupled with an intrinsic structural instability and reduced substrate affinity. However, this paradigm for cold-adaptation is not universal as some cold-active enzymes with high stability and/or high substrate affinity and/or even an unaltered flexibility have been reported, pointing to alternative adaptation strategies. Indeed, cold-adaptation can involve any of a number of a diverse range of structural modifications, or combinations of modifications, depending on the enzyme involved, its function, structure, stability, and evolutionary history. This paper presents the challenges, properties, and adaptation strategies of these enzymes.
Collapse
Affiliation(s)
- Tony Collins
- Department of Biology, Center of Molecular and Environmental Biology (CBMA), University of Minho, 4710-057 Braga, Portugal
| | - Georges Feller
- Department of Life Sciences, Laboratory of Biochemistry, Center for Protein Engineering-InBioS, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
3
|
Liu N, Li SB, Zheng YZ, Xu SY, Shen JS. Minimalistic Artificial Catalysts with Esterase-Like Activity from Multivalent Nanofibers Formed by the Self-Assembly of Dipeptides. ACS OMEGA 2023; 8:2491-2500. [PMID: 36687071 PMCID: PMC9851029 DOI: 10.1021/acsomega.2c06972] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Imitating and incorporating the multiple key structural features observed in natural enzymes into a minimalistic molecule to develop an artificial catalyst with outstanding catalytic efficiency is an attractive topic for chemists. Herein, we designed and synthesized one class of minimalistic dipeptide molecules containing a terminal -SH group and a terminal His-Phe dipeptide head linked by a hydrophobic alkyl chain with different lengths, marked as HS-C n+1-His-Phe (n = 4, 7, 11, 15, and 17; n + 1 represents the carbon atom number of the alkyl chain). The His (-imidazole), Phe (-CO2 -) moieties, the terminal -SH group, and a long hydrophobic alkyl chain were found to have important contributions to achieve high binding ability leading to outstanding absolute catalytic efficiency (k cat/K M) toward the hydrolysis reactions of carboxylic ester substrates.
Collapse
Affiliation(s)
- Ning Liu
- Xiamen
Key Laboratory of Optoelectronic Materials and Advanced Manufacturing,
College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Shuai-Bing Li
- Xiamen
Key Laboratory of Optoelectronic Materials and Advanced Manufacturing,
College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Yan-Zhen Zheng
- College
of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Su-Ying Xu
- State
Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory
of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiang-Shan Shen
- Xiamen
Key Laboratory of Optoelectronic Materials and Advanced Manufacturing,
College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
4
|
Silva AMM, Ige T, Goonasekara CL, Heeley DH. Threonine-77 Is a Determinant of the Low-Temperature Conditioning of the Most Abundant Isoform of Tropomyosin in Atlantic Salmon. Biochemistry 2020; 59:2859-2869. [PMID: 32686411 DOI: 10.1021/acs.biochem.0c00416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Atlantic salmon Salmo salar survives below 10 °C. The main skeletal muscle is composed of a single isoform of tropomyosin (classified as Tpm1 α-fast) that is >92% identical to the mammalian homologue. How salmon Tpm1 maintains flexibility is investigated by reversing the only full charge substitution; threonine-77(g) in salmon and lysine in other vertebrates. The mutation (Thr-77 to Lys), which falls within a known destabilizing alanine cluster, (i) yields a useful electrophoretic shift in the absence and presence of an anionic detergent, (ii) increases the Tms of both cooperative transitions (calorimetry, 0.1 M salt, pH 7) [35 °C (minor) and 44 °C (major); ΔTm1 = 5 °C, ΔTm2 = 3.5 °C], (iii) increases the Tm of CN1A (residues 11-127) to 53 °C (ΔTm = 13 °C), a value similar to that of mammalian CN1A, (iv) markedly reduces the rate of proteolysis at Leu-169, and (v) weakens the affinity of salmon Tpm1 for troponin-Sepharose. Glu-82(e), the interstrand ionic partner of Lys-77(g), is conserved. The change in ionic interactions at this locus is postulated to be "sensed" in actin period 5 (residues 166-207) and likely beyond. Wild type (acetylated) salmon Tmp1 binds more tightly to F-actin at 4 °C than at 22 °C, which is the opposite of the long-known relationship displayed by the mammalian homologue. All of the evidence indicates that the presence of a neutral 77th amino acid destabilizes a sizable portion of salmon Tpm1 that includes the midregion. Threonine-77 is a key factor in rescuing the thin filament from the peril of cold-induced rigidity.
Collapse
Affiliation(s)
| | - Tolulope Ige
- Department of Biochemistry, Memorial University, St. John's, NL, Canada A1B 3X9
| | - Charitha L Goonasekara
- Department of Biochemistry, Faculty of Medicine, Kotelawala University, Colombo 10390, Sri Lanka
| | - David H Heeley
- Department of Biochemistry, Memorial University, St. John's, NL, Canada A1B 3X9
| |
Collapse
|
5
|
Subramanian K, Mitusińska K, Raedts J, Almourfi F, Joosten HJ, Hendriks S, Sedelnikova SE, Kengen SWM, Hagen WR, Góra A, Martins Dos Santos VAP, Baker PJ, van der Oost J, Schaap PJ. Distant Non-Obvious Mutations Influence the Activity of a Hyperthermophilic Pyrococcus furiosus Phosphoglucose Isomerase. Biomolecules 2019; 9:biom9060212. [PMID: 31159273 PMCID: PMC6627849 DOI: 10.3390/biom9060212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/20/2019] [Accepted: 05/28/2019] [Indexed: 01/06/2023] Open
Abstract
The cupin-type phosphoglucose isomerase (PfPGI) from the hyperthermophilic archaeon Pyrococcus furiosus catalyzes the reversible isomerization of glucose-6-phosphate to fructose-6-phosphate. We investigated PfPGI using protein-engineering bioinformatics tools to select functionally-important residues based on correlated mutation analyses. A pair of amino acids in the periphery of PfPGI was found to be the dominant co-evolving mutation. The position of these selected residues was found to be non-obvious to conventional protein engineering methods. We designed a small smart library of variants by substituting the co-evolved pair and screened their biochemical activity, which revealed their functional relevance. Four mutants were further selected from the library for purification, measurement of their specific activity, crystal structure determination, and metal cofactor coordination analysis. Though the mutant structures and metal cofactor coordination were strikingly similar, variations in their activity correlated with their fine-tuned dynamics and solvent access regulation. Alternative, small smart libraries for enzyme optimization are suggested by our approach, which is able to identify non-obvious yet beneficial mutations.
Collapse
Affiliation(s)
- Kalyanasundaram Subramanian
- Laboratory of Systems and Synthetic Biology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Karolina Mitusińska
- Biotechnology Center, Silesian University of Technology, ul. Krzywoustego 8, 44-100 Gliwice, Poland.
- Faculty of Chemistry, Silesian University of Technology, ul. Strzody 9, 44-100 Gliwice, Poland.
| | - John Raedts
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Feras Almourfi
- Saudi Human Genome Project, National Center of Genome Technology, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia.
| | - Henk-Jan Joosten
- Bio-Prodict, Nieuwe Marktstraat 54E, 6511 AA Nijmegen, The Netherlands.
| | - Sjon Hendriks
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Svetlana E Sedelnikova
- The Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK.
| | - Servé W M Kengen
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Wilfred R Hagen
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Artur Góra
- Biotechnology Center, Silesian University of Technology, ul. Krzywoustego 8, 44-100 Gliwice, Poland.
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Patrick J Baker
- The Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK.
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| |
Collapse
|