1
|
Gąssowska-Dobrowolska M, Olech-Kochańczyk G, Culmsee C, Adamczyk A. Novel Insights into Parkin-Mediated Mitochondrial Dysfunction and "Mito-Inflammation" in α-Synuclein Toxicity. The Role of the cGAS-STING Signalling Pathway. J Inflamm Res 2024; 17:4549-4574. [PMID: 39011416 PMCID: PMC11249072 DOI: 10.2147/jir.s468609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/22/2024] [Indexed: 07/17/2024] Open
Abstract
The prevalence of age-related neurodegenerative diseases, such as Parkinson's disease (PD) and related disorders continues to grow worldwide. Increasing evidence links intracellular inclusions of misfolded alpha-synuclein (α-syn) aggregates, so-called Lewy bodies (LB) and Lewy neuritis, to the progressive pathology of PD and other synucleinopathies. Our previous findings established that α-syn oligomers induce S-nitrosylation and deregulation of the E3-ubiquitin ligase Parkin, leading to mitochondrial disturbances in neuronal cells. The accumulation of damaged mitochondria as a consequence, together with the release of mitochondrial-derived damage-associated molecular patterns (mtDAMPs) could activate the innate immune response and induce neuroinflammation ("mito-inflammation"), eventually accelerating neurodegeneration. However, the molecular pathways that transmit pro-inflammatory signals from damaged mitochondria are not well understood. One of the proposed pathways could be the cyclic GMP-AMP synthase (cGAS) - stimulator of interferon genes (STING) (cGAS-STING) pathway, which plays a pivotal role in modulating the innate immune response. It has recently been suggested that cGAS-STING deregulation may contribute to the development of various pathological conditions. Especially, its excessive engagement may lead to neuroinflammation and appear to be essential for the development of neurodegenerative brain diseases, including PD. However, the precise molecular mechanisms underlying cGAS-STING pathway activation in PD and other synucleinopathies are not fully understood. This review focuses on linking mitochondrial dysfunction to neuroinflammation in these disorders, particularly emphasizing the role of the cGAS-STING signaling. We propose the cGAS-STING pathway as a critical driver of inflammation in α-syn-dependent neurodegeneration and hypothesize that cGAS-STING-driven "mito-inflammation" may be one of the key mechanisms promoting the neurodegeneration in PD. Understanding the molecular mechanisms of α-syn-induced cGAS-STING-associated "mito-inflammation" in PD and related synucleinopathies may contribute to the identification of new targets for the treatment of these disorders.
Collapse
Affiliation(s)
| | - Gabriela Olech-Kochańczyk
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany
- Center for Mind Brain and Behavior - CMBB, University of Marburg, Marburg, Germany
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
2
|
Morse J, Wang D, Mei S, Whitham D, Hladun C, Darie CC, Sintim HO, Wang M, Leung K. Chloride Homeostasis Regulates cGAS-STING Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588475. [PMID: 38645072 PMCID: PMC11030317 DOI: 10.1101/2024.04.08.588475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The cGAS-STING signaling pathway has emerged as a key mediator of inflammation. However, the roles of chloride homeostasis on this pathway are unclear. Here, we uncovered a correlation between chloride homeostasis and cGAS-STING signaling. We found that dysregulation of chloride homeostasis attenuates cGAS-STING signaling in a lysosome-independent manner. Treating immune cells with chloride channel inhibitors attenuated 2'3'-cGAMP production by cGAS and also suppressed STING polymerization, leading to reduced cytokine production. We also demonstrate that non-selective chloride channel blockers can suppress the NPC1 deficiency-induced, hyper-activated STING signaling in skin fibroblasts derived from Niemann Pick disease type C (NPC) patients. Our findings reveal that chloride homeostasis majorly affects cGAS-STING pathway and suggest a provocative strategy to dampen STING-mediated inflammation via targeting chloride channels.
Collapse
Affiliation(s)
- Jared Morse
- Department of Chemistry & Biomolecular Science, Clarkson University, NY, 13676, United States
| | - Danna Wang
- Department of Chemistry & Biomolecular Science, Clarkson University, NY, 13676, United States
| | - Serena Mei
- Department of Chemistry & Biomolecular Science, Clarkson University, NY, 13676, United States
| | - Danielle Whitham
- Department of Chemistry & Biomolecular Science, Clarkson University, NY, 13676, United States
| | - Colby Hladun
- Department of Chemistry & Biomolecular Science, Clarkson University, NY, 13676, United States
| | - Costel C. Darie
- Department of Chemistry & Biomolecular Science, Clarkson University, NY, 13676, United States
| | - Herman O. Sintim
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Modi Wang
- Department of Chemistry & Biomolecular Science, Clarkson University, NY, 13676, United States
| | - KaHo Leung
- Department of Chemistry & Biomolecular Science, Clarkson University, NY, 13676, United States
| |
Collapse
|
3
|
Wang X, Lin M, Zhu L, Ye Z. GAS-STING: a classical DNA recognition pathways to tumor therapy. Front Immunol 2023; 14:1200245. [PMID: 37920470 PMCID: PMC10618366 DOI: 10.3389/fimmu.2023.1200245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/28/2023] [Indexed: 11/04/2023] Open
Abstract
Cyclic GMP-AMP synthetase (cGAS), recognized as the primary DNA sensor within cells, possesses the capability to identify foreign DNA molecules along with free DNA fragments. This identification process facilitates the production of type I IFNs through the activator of the interferon gene (STING) which induces the phosphorylation of downstream transcription factors. This action characterizes the most archetypal biological functionality of the cGAS-STING pathway. When treated with anti-tumor agents, cells experience DNA damage that triggers activation of the cGAS-STING pathway, culminating in the expression of type I IFNs and associated downstream interferon-stimulated genes. cGAS-STING is one of the important innate immune pathways,the role of type I IFNs in the articulation between innate immunity and T-cell antitumour immunity.type I IFNs promote the recruitment and activation of inflammatory cells (including NK cells) at the tumor site.Type I IFNs also can promote the activation and maturation of dendritic cel(DC), improve the antigen presentation of CD4+T lymphocytes, and enhance the cross-presentation of CD8+T lymphocytes to upregulating anti-tumor responses. This review discussed the cGAS-STING signaling and its mechanism and biological function in traditional tumor therapy and immunotherapy.
Collapse
Affiliation(s)
- Xinrui Wang
- National Health Commission (NHC), Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Meijia Lin
- National Health Commission (NHC), Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Liping Zhu
- National Health Commission (NHC), Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Zhoujie Ye
- National Health Commission (NHC), Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| |
Collapse
|
4
|
Reece AS, Hulse GK. Perturbation of 3D nuclear architecture, epigenomic aging and dysregulation, and cannabinoid synaptopathy reconfigures conceptualization of cannabinoid pathophysiology: part 2-Metabolome, immunome, synaptome. Front Psychiatry 2023; 14:1182536. [PMID: 37854446 PMCID: PMC10579598 DOI: 10.3389/fpsyt.2023.1182536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/11/2023] [Indexed: 10/20/2023] Open
Abstract
The second part of this paper builds upon and expands the epigenomic-aging perspective presented in Part 1 to describe the metabolomic and immunomic bases of the epigenomic-aging changes and then considers in some detail the application of these insights to neurotoxicity, neuronal epigenotoxicity, and synaptopathy. Cannabinoids are well-known to have bidirectional immunomodulatory activities on numerous parts of the immune system. Immune perturbations are well-known to impact the aging process, the epigenome, and intermediate metabolism. Cannabinoids also impact metabolism via many pathways. Metabolism directly impacts immune, genetic, and epigenetic processes. Synaptic activity, synaptic pruning, and, thus, the sculpting of neural circuits are based upon metabolic, immune, and epigenomic networks at the synapse, around the synapse, and in the cell body. Many neuropsychiatric disorders including depression, anxiety, schizophrenia, bipolar affective disorder, and autistic spectrum disorder have been linked with cannabis. Therefore, it is important to consider these features and their complex interrelationships in reaching a comprehensive understanding of cannabinoid dependence. Together these findings indicate that cannabinoid perturbations of the immunome and metabolome are important to consider alongside the well-recognized genomic and epigenomic perturbations and it is important to understand their interdependence and interconnectedness in reaching a comprehensive appreciation of the true nature of cannabinoid pathophysiology. For these reasons, a comprehensive appreciation of cannabinoid pathophysiology necessitates a coordinated multiomics investigation of cannabinoid genome-epigenome-transcriptome-metabolome-immunome, chromatin conformation, and 3D nuclear architecture which therefore form the proper mechanistic underpinning for major new and concerning epidemiological findings relating to cannabis exposure.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
5
|
Zhang Z, Zhao H, Chu C, Fu X, Liu Y, Wang L, Wei R, Xu K, Li L, Li X. The emerging roles of TLR and cGAS signaling in tumorigenesis and progression of ovarian cancer. Front Pharmacol 2022; 13:1072670. [PMID: 36588690 PMCID: PMC9800838 DOI: 10.3389/fphar.2022.1072670] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Ovarian cancer is fatal to women and has a high mortality rate. Although on-going efforts are never stopped in identifying diagnostic and intervention strategies, the disease is so far unable to be well managed. The most important reason for this is the complexity of pathogenesis for OC, and therefore, uncovering the essential molecular biomarkers accompanied with OC progression takes the privilege for OC remission. Inflammation has been reported to participate in the initiation and progression of OC. Both microenvironmental and tumor cell intrinsic inflammatory signals contribute to the malignancy of OC. Inflammation responses can be triggered by various kinds of stimulus, including endogenous damages and exogenous pathogens, which are initially recognized and orchestrated by a series of innate immune system related receptors, especially Toll like receptors, and cyclic GMP-AMP synthase. In this review, we will discuss the roles of innate immune system related receptors, including TLRs and cGAS, and responses both intrinsic and exogenetic in the development and treatment of OC.
Collapse
Affiliation(s)
- Zhen Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China,School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China,*Correspondence: Zhen Zhang, ; Xia Li,
| | - Hong Zhao
- Department of Systems Medicine and Bioengineering, Houston Methodist Cancer Center, Houston, TX, United States
| | - Chu Chu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiaoxiao Fu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yonglin Liu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Li Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Ran Wei
- School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ke Xu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China,School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Lihua Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China,School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xia Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China,*Correspondence: Zhen Zhang, ; Xia Li,
| |
Collapse
|
6
|
Reece AS, Hulse GK. Geotemporospatial and causal inferential epidemiological overview and survey of USA cannabis, cannabidiol and cannabinoid genotoxicity expressed in cancer incidence 2003-2017: part 1 - continuous bivariate analysis. Arch Public Health 2022; 80:99. [PMID: 35354487 PMCID: PMC8966217 DOI: 10.1186/s13690-022-00811-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 01/29/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The genotoxic and cancerogenic impacts of population-wide cannabinoid exposure remains an open but highly salient question. The present report examines these issues from a continuous bivariate perspective with subsequent reports continuing categorical and detailed analyses. METHODS Age-standardized state census incidence of 28 cancer types (including "All (non-skin) Cancer") was sourced using SEER*Stat software from Centres for Disease Control and National Cancer Institute across US states 2001-2017. It was joined with drug exposure data from the nationally representative National Survey of Drug Use and Health conducted annually by the Substance Abuse and Mental Health Services Administration 2003-2017, response rate 74.1%. Cannabinoid data was from Federal seizure data. Income and ethnicity data sourced from the US Census Bureau. Data was processed in R. RESULTS Nineteen thousand eight hundred seventy-seven age-standardized cancer rates were returned. Based on these rates and state populations this equated to 51,623,922 cancer cases over an aggregated population 2003-2017 of 124,896,418,350. Regression lines were charted for cancer-substance exposures for cigarettes, alcohol use disorder (AUD), cannabis, THC, cannabidiol, cannabichromene, cannabinol and cannabigerol. In this substance series positive trends were found for 14, 9, 6, 9, 12, 6, 9 and 7 cancers; with largest minimum E-Values (mEV) of 1.76 × 109, 4.67 × 108, 2.74 × 104, 4.72, 2.34 × 1018, 2.74 × 1017, 1.90 × 107, 5.05 × 109; and total sum of exponents of mEV of 34, 32, 13, 0, 103, 58, 25, 31 indicating that cannabidiol followed by cannabichromene are the most strongly implicated in environmental carcinogenesis. Breast cancer was associated with tobacco and all cannabinoids (from mEV = 3.53 × 109); "All Cancer" (non-skin) linked with cannabidiol (mEV = 1.43 × 1011); pediatric AML linked with cannabis (mEV = 19.61); testicular cancer linked with THC (mEV = 1.33). Cancers demonstrating elevated mEV in association with THC were: thyroid, liver, pancreas, AML, breast, oropharynx, CML, testis and kidney. Cancers demonstrating elevated mEV in relation to cannabidiol: prostate, bladder, ovary, all cancers, colorectum, Hodgkins, brain, Non-Hodgkins lymphoma, esophagus, breast and stomach. CONCLUSION Data suggest that cannabinoids including THC and cannabidiol are important community carcinogens exceeding the effects of tobacco or alcohol. Testicular, (prostatic) and ovarian tumours indicate mutagenic corruption of the germline in both sexes; pediatric tumourigenesis confirms transgenerational oncogenesis; quantitative criteria implying causality are fulfilled.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA, 6009, Australia.
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, 6027, Australia.
- , Brisbane, Australia.
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA, 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, 6027, Australia
| |
Collapse
|
7
|
Reece AS, Hulse GK. Cannabinoid exposure as a major driver of pediatric acute lymphoid Leukaemia rates across the USA: combined geospatial, multiple imputation and causal inference study. BMC Cancer 2021; 21:984. [PMID: 34479489 PMCID: PMC8414697 DOI: 10.1186/s12885-021-08598-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 07/07/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Acute lymphoid leukaemia (ALL) is the commonest childhood cancer whose incidence is rising in many nations. In the USA, between 1975 and 2016, ALL rates (ALLRs) rose 93.51% from 1.91 to 3.70/100,000 < 20 years. ALL is more common in Caucasian-Americans than amongst minorities. The cause of both the rise and the ethnic differential is unclear, however, prenatal cannabis exposure was previously linked with elevated childhood leukaemia rates. We investigated epidemiologically if cannabis use impacted nationally on ALLRs, its ethnic effects, and if the relationship was causal. METHODS State data on overall, and ethnic ALLR from the Surveillance Epidemiology and End Results databank of the Centre for Disease Control (CDC) and National Cancer Institute (NCI) were combined with drug (cigarettes, alcoholism, cannabis, analgesics, cocaine) use data from the National Survey of Drug Use and Health; 74.1% response rate. Income and ethnicity data was from the US Census bureau. Cannabinoid concentration was from the Drug Enforcement Agency Data. Data was analyzed in R by robust and spatiotemporal regression. RESULTS In bivariate analyses a dose-response relationship was demonstrated between ALLR and Alcohol Use Disorder (AUD), cocaine and cannabis exposure, with the effect of cannabis being strongest (β-estimate = 3.33(95%C.I. 1.97, 4.68), P = 1.92 × 10- 6). A strong effect of cannabis use quintile on ALLR was noted (Chi.Sq. = 613.79, P = 3.04 × 10- 70). In inverse probability weighted robust regression adjusted for other substances, income and ethnicity, cannabis was independently significant (β-estimate = 4.75(0.48, 9.02), P = 0.0389). In a spatiotemporal model adjusted for all drugs, income, and ethnicity, cannabigerol exposure was significant (β-estimate = 0.26(0.01, 0.52), P = 0.0444), an effect increased by spatial lagging (THC: β-estimate = 0.47(0.12, 0.82), P = 0.0083). After missing data imputation ethnic cannabis exposure was significant (β-estimate = 0.64(0.55, 0.72), P = 3.1 × 10- 40). 33/35 minimum e-Values ranged from 1.25 to 3.94 × 1036 indicative of a causal relationship. Relaxation of cannabis legal paradigms had higher ALLR (Chi.Squ.Trend = 775.12, P = 2.14 × 10- 112). Cannabis legal states had higher ALLR (2.395 ± 0.039 v. 2.127 ± 0.008 / 100,000, P = 5.05 × 10- 10). CONCLUSIONS Data show that ALLR is associated with cannabis consumption across space-time, is associated with the cannabinoids, THC, cannabigerol, cannabinol, cannabichromene, and cannabidiol, contributes to ethnic differentials, demonstrates prominent quintile effects, satisfies criteria for causality and is exacerbated by cannabis legalization.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, Western Australia, 6009, Australia. .,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, 6027, Australia.
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, Western Australia, 6009, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, 6027, Australia
| |
Collapse
|
8
|
Abstract
OBJECTIVES Cannabis is a known teratogen. Data availability addressing both major congenital anomalies and cannabis use allowed us to explore their geospatial relationships. METHODS Data for the years 1998 to 2009 from Canada Health and Statistics Canada was analyzed in R. Maps have been drawn and odds ratios, principal component analysis, correlation matrices, least squares regression and geospatial regression analyses have been conducted using the R packages base, dplyr, epiR, psych, ggplot2, colorplaner and the spml and spreml functions from package splm. RESULTS Mapping showed cannabis use was more common in the northern Territories of Canada in the Second National Survey of Cannabis Use 2018. Total congenital anomalies, all cardiovascular defects, orofacial clefts, Downs syndrome and gastroschisis were all found to be more common in these same regions and rose as a function of cannabis exposure. When Canada was dichotomized into high and low cannabis use zones by Provinces v Territories the Territories had a higher rate of total congenital anomalies 450.026 v 390.413 (O.R. = 1.16 95%C.I. 1.08-1.25, P = 0.000058; attributable fraction in exposed 13.25%, 95%C.I. 7.04-19.04%). In geospatial analysis in a spreml spatial error model cannabis was significant both alone as a main effect (P < 2.0 × 10) and in all its first and second order interactions with both tobacco and opioids from P < 2.0 × 10. CONCLUSION These results show that the northern Territories of Canada share a higher rate of cannabis use together with elevated rates of total congenital anomalies, all cardiovascular defects, Down's syndrome and gastroschisis. This is the second report of a significant association between cannabis use and both total defects and all cardiovascular anomalies and the fourth published report of a link with Downs syndrome and thereby direct major genotoxicity. The correlative relationships described in this paper are confounded by many features of social disadvantage in Canada's northern territories. However, in the context of a similar broad spectrum of defects described both in animals and in epidemiological reports from Hawaii, Colorado, USA and Australia they are cause for particular concern and indicate further research.
Collapse
|
9
|
Chen JH, Feng DD, Chen YF, Yang CX, Juan CX, Cao Q, Chen X, Liu S, Zhou GP. Long non-coding RNA MALAT1 targeting STING transcription promotes bronchopulmonary dysplasia through regulation of CREB. J Cell Mol Med 2020; 24:10478-10492. [PMID: 32812343 PMCID: PMC7521324 DOI: 10.1111/jcmm.15661] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/22/2020] [Accepted: 07/02/2020] [Indexed: 12/22/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a severe complication of preterm infants characterized by increased alveolarization and inflammation. Premature exposure to hyperoxia is believed to be a key contributor to the pathogenesis of BPD. No effective preventive or therapeutic agents have been created. Stimulator of interferon gene (STING) is associated with inflammation and apoptosis in various lung diseases. Long non-coding RNA MALAT1 has been reported to be involved in BPD. However, how MALAT1 regulates STING expression remains unknown. In this study, we assessed that STING and MALAT1 were up-regulated in the lung tissue from BPD neonates, hyperoxia-based rat models and lung epithelial cell lines. Then, using the flow cytometry and cell proliferation assay, we found that down-regulating of STING or MALAT1 inhibited the apoptosis and promoted the proliferation of hyperoxia-treated cells. Subsequently, qRT-PCR, Western blotting and dual-luciferase reporter assays showed that suppressing MALAT1 decreased the expression and promoter activity of STING. Moreover, transcription factor CREB showed its regulatory role in the transcription of STING via a chromatin immunoprecipitation. In conclusion, MALAT1 interacts with CREB to regulate STING transcription in BPD neonates. STING, CREB and MALAT1 may be promising therapeutic targets in the prevention and treatment of BPD.
Collapse
Affiliation(s)
- Jia-He Chen
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dan-Dan Feng
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu-Fei Chen
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cai-Xia Yang
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chen-Xia Juan
- Child Mental Health Research Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Qian Cao
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xi Chen
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shuang Liu
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guo-Ping Zhou
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Bader V, Winklhofer KF. Mitochondria at the interface between neurodegeneration and neuroinflammation. Semin Cell Dev Biol 2020; 99:163-171. [DOI: 10.1016/j.semcdb.2019.05.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/15/2022]
|