1
|
Sacco G, Arosio D, Paolillo M, Gloger A, Scheuermann J, Pignataro L, Belvisi L, Dal Corso A, Gennari C. RGD Cyclopeptide Equipped with a Lysine-Engaging Salicylaldehyde Showing Enhanced Integrin Affinity and Cell Detachment Potency. Chemistry 2023; 29:e202203768. [PMID: 36594507 DOI: 10.1002/chem.202203768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/04/2023]
Abstract
Salicylaldehyde (SA) derivatives are emerging as useful fragments to obtain reversible-covalent inhibitors interacting with the lysine residues of the target protein. Here the SA installation at the C terminus of an integrin-binding cyclopeptide, leading to enhanced ligand affinity for the receptor as well as stronger biological activity in cultured glioblastoma cells is reported.
Collapse
Affiliation(s)
- Giovanni Sacco
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi, 19, I-20133, Milan, Italy
| | - Daniela Arosio
- Istituto di Scienze e Tecnologie Chimiche (SCITEC) "Giulio Natta", Consiglio Nazionale delle Ricerche, Via Golgi 19, I-20133, Milan, Italy
| | - Mayra Paolillo
- Dipartimento di Scienze del Farmaco, Università degli Studi di Pavia, Viale Taramelli 6, 27100, Pavia, Italy
| | - Andreas Gloger
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Luca Pignataro
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi, 19, I-20133, Milan, Italy
| | - Laura Belvisi
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi, 19, I-20133, Milan, Italy
| | - Alberto Dal Corso
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi, 19, I-20133, Milan, Italy
| | - Cesare Gennari
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi, 19, I-20133, Milan, Italy
| |
Collapse
|
2
|
Pathobiology and Therapeutic Relevance of GSK-3 in Chronic Hematological Malignancies. Cells 2022; 11:cells11111812. [PMID: 35681507 PMCID: PMC9180032 DOI: 10.3390/cells11111812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 12/10/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) is an evolutionarily conserved, ubiquitously expressed, multifunctional serine/threonine protein kinase involved in the regulation of a variety of physiological processes. GSK-3 comprises two isoforms (α and β) which were originally discovered in 1980 as enzymes involved in glucose metabolism via inhibitory phosphorylation of glycogen synthase. Differently from other proteins kinases, GSK-3 isoforms are constitutively active in resting cells, and their modulation mainly involves inhibition through upstream regulatory networks. In the early 1990s, GSK-3 isoforms were implicated as key players in cancer cell pathobiology. Active GSK-3 facilitates the destruction of multiple oncogenic proteins which include β-catenin and Master regulator of cell cycle entry and proliferative metabolism (c-Myc). Therefore, GSK-3 was initially considered to be a tumor suppressor. Consistently, GSK-3 is often inactivated in cancer cells through dysregulated upstream signaling pathways. However, over the past 10–15 years, a growing number of studies highlighted that in some cancer settings GSK-3 isoforms inhibit tumor suppressing pathways and therefore act as tumor promoters. In this article, we will discuss the multiple and often enigmatic roles played by GSK-3 isoforms in some chronic hematological malignancies (chronic myelogenous leukemia, chronic lymphocytic leukemia, multiple myeloma, and B-cell non-Hodgkin’s lymphomas) which are among the most common blood cancer cell types. We will also summarize possible novel strategies targeting GSK-3 for innovative therapies of these disorders.
Collapse
|