1
|
Han YH, Cui XW, Wang HY, Lai XB, Zhu Y, Li JB, Xie RR, Zhang Y, Zhang H, Chen Z. Recruitment of copiotrophic and autotrophic bacteria by hyperaccumulators enhances nutrient cycling to reclaim degraded soils at abandoned rare earth elements mining sites. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137351. [PMID: 39874764 DOI: 10.1016/j.jhazmat.2025.137351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/16/2025] [Accepted: 01/22/2025] [Indexed: 01/30/2025]
Abstract
Hyperaccumulators harbor potentials for remediating rare earth elements (REEs)-contaminated soils. However, how they thrive in low-nutrient abandoned REEs mining sites is poorly understood. Three ferns (REEs-hyperaccumulators Dicranopteris pedata and Blechnum orientale, and non-hyperaccumulator Pteris vittata) along with their rhizosphere soils were collected to answer this question by comparing differences in soil nutrient levels, soil and plant REEs concentrations, and bacterial diversity, composition, and functions. Results observed lower soil pH (4.67-4.95 vs. 7.96), total carbon (TC) (0.35-0.62 vs. 2.84 g kg-1), total nitrogen (TN) (20-23 vs. 133 mg kg-1), and total phosphorus (TP) (81-91 vs. 133 mg kg-1) at sites Dp and Bo than site Pv. Hyperaccumulators efficiently extracted soil REEs and translocated them to fronds (up to 6897-7759 mg kg-1). Bacterial α diversity in three soils did not significantly vary. In contrast, bacterial composition at sites Dp and Bo was dominant by higher abundances of copiotrophic bacteria (18 % vs. 12 %, p_Actinomycetota; 3.3-8.3 % vs. 1.9 %, p_Bacteroidota; 8.3-14 % vs. 6.9 %, c_Gammaproteobacteria) and autotrophic bacteria (18 % vs. 13 %, p_Chloroflexota; 13 % vs. 8.6 %, p_Cyanobacteriota) when compared to site Pv. These bacteria likely acted as nutrient cyclers that promoted the growth of hyperaccumulators, based on functional predictions from DiTing analyses. This study provides new insights into nutrient recovery in abandoned REEs mining sites, offering strategies to reclaim degraded soils using phyto-microbial technology.
Collapse
Affiliation(s)
- Yong-He Han
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China.
| | - Xi-Wen Cui
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Hai-Yan Wang
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Xiao-Bin Lai
- Changting Branch of Zhongxi (Fujian) Rare Earth Mining Co., LTD., China Rare Earth Group, Longyan, Fujian 364000, China
| | - Ying Zhu
- Fujian Center for Disease Control & Prevention, Fuzhou, Fujian 350012, China
| | - Jia-Bing Li
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Rong-Rong Xie
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Yong Zhang
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Hong Zhang
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Zhibiao Chen
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, Fujian 350117, China.
| |
Collapse
|
2
|
Zhang Y, Wang L, Liu X, Cao C, Yao J, Ma Z, Shen Q, Chen Q, Liu J, Li R, Jiang J. Enhancing La(III) biosorption and biomineralization with Micromonospora saelicesensis: Involvement of phosphorus and formation of monazite nano-minerals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169851. [PMID: 38185165 DOI: 10.1016/j.scitotenv.2023.169851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/15/2023] [Accepted: 12/30/2023] [Indexed: 01/09/2024]
Abstract
The release of rare earth elements (REEs) from mining wastes and their applications has significant environmental implications, necessitating the development of effective prevention and reclamation strategies. The mobility of REEs in groundwater due to microorganisms has garnered considerable attention. In this study, a La(III) resistant actinobacterium, Micromonospora saelicesensis KLBMP 9669, was isolated from REE enrichment soil in GuiZhou, China, and evaluated for its ability to adsorb and biomineralize La(III). The findings demonstrated that M. saelicesensis KLBMP 9669 immobilized La(III) through the physical and chemical interactions, with immobilization being influenced by the initial La(III) concentration, biomass, and pH. The adsorption kinetics followed a pseudo-second-order rate model, and the adsorption isotherm conformed to the Langmuir model. La(III) adsorption capacity of this strain was 90 mg/g, and removal rate was 94 %. Scanning electron microscope (SEM) coupled with energy dispersive X-ray spectrometer (EDS) analysis revealed the coexistence of La(III) with C, N, O, and P. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) investigations further indicated that carboxyl, amino, carbonyl, and phosphate groups on the mycelial surface may participate in lanthanum adsorption. Transmission electron microscopy (TEM) revealed that La(III) accumulation throughout the M. saelicesensis KLBMP 9669, with some granular deposits on the mycelial surface. Selected area electron diffraction (SAED) confirmed the presence of LaPO4 crystals on the M. saelicesensis KLBMP 9669 biomass after a prolonged period of La(III) accumulation. This post-sorption nano-crystallization on the M. saelicesensis KLBMP 9669 mycelial surface is expected to play a crucial role in limiting the bioimmobilization of REEs in geological repositories.
Collapse
Affiliation(s)
- Ya Zhang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Lili Wang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China; The Key Laboratory of Microbial Resources of Xuzhou City, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Xiuming Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou 550002, PR China
| | - Chengliang Cao
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China; The Key Laboratory of Microbial Resources of Xuzhou City, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China.
| | - Jiaqi Yao
- The Key Laboratory of Microbial Resources of Xuzhou City, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Zhouai Ma
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China; The Key Laboratory of Microbial Resources of Xuzhou City, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Qi Shen
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China; The Key Laboratory of Microbial Resources of Xuzhou City, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Qiuyu Chen
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China; The Key Laboratory of Microbial Resources of Xuzhou City, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Jinjuan Liu
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China.
| | - Rongpeng Li
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China; The Key Laboratory of Microbial Resources of Xuzhou City, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Jihong Jiang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China; The Key Laboratory of Microbial Resources of Xuzhou City, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| |
Collapse
|
3
|
Liu R, Wei Z, Dong W, Wang R, Adams JM, Yang L, Krause SMB. Unraveling the impact of lanthanum on methane consuming microbial communities in rice field soils. Front Microbiol 2024; 15:1298154. [PMID: 38322316 PMCID: PMC10844099 DOI: 10.3389/fmicb.2024.1298154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/03/2024] [Indexed: 02/08/2024] Open
Abstract
The discovery of the lanthanide requiring enzymes in microbes was a significant scientific discovery that opened a whole new avenue of biotechnological research of this important group of metals. However, the ecological impact of lanthanides on microbial communities utilizing methane (CH4) remains largely unexplored. In this study, a laboratory microcosm model experiment was performed using rice field soils with different pH origins (5.76, 7.2, and 8.36) and different concentrations of La3+ in the form of lanthanum chloride (LaCl3). Results clearly showed that CH4 consumption was inhibited by the addition of La3+ but that the response depended on the soil origin and pH. 16S rRNA gene sequencing revealed the genus Methylobacter, Methylosarcina, and Methylocystis as key players in CH4 consumption under La3+ addition. We suggest that the soil microbiome involved in CH4 consumption can generally tolerate addition of high concentrations of La3+, and adjustments in community composition ensured ecosystem functionality over time. As La3+ concentrations increase, the way that the soil microbiome reacts may not only differ within the same environment but also vary when comparing different environments, underscoring the need for further research into this subject.
Collapse
Affiliation(s)
- Ruyan Liu
- School of Ecology and Environmental Sciences, East China Normal University, Shanghai, China
| | - Ziting Wei
- School of Ecology and Environmental Sciences, East China Normal University, Shanghai, China
| | - Wanying Dong
- School of Ecology and Environmental Sciences, East China Normal University, Shanghai, China
| | - Rui Wang
- School of Ecology and Environmental Sciences, East China Normal University, Shanghai, China
| | - Jonathan M. Adams
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, China
| | - Lin Yang
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, China
| | - Sascha M. B. Krause
- School of Ecology and Environmental Sciences, East China Normal University, Shanghai, China
| |
Collapse
|