1
|
Gottschalk I, Kölsch U, Wagner DL, Kath J, Martini S, Krüger R, Puel A, Casanova JL, Jezela-Stanek A, Rossi R, Chehadeh SE, Van Esch H, von Bernuth H. IRAK1 Duplication in MECP2 Duplication Syndrome Does Not Increase Canonical NF-κB-Induced Inflammation. J Clin Immunol 2023; 43:421-439. [PMID: 36319802 PMCID: PMC9628328 DOI: 10.1007/s10875-022-01390-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE Besides their developmental and neurological phenotype, most patients with MECP2/IRAK1 duplication syndrome present with recurrent and severe infections, accompanied by strong inflammation. Respiratory infections are the most common cause of death. Standardized pneumological diagnostics, targeted anti-infectious treatment, and knowledge of the underlying pathomechanism that triggers strong inflammation are unmet clinical needs. We investigated the influence of IRAK1 overexpression on the canonical NF-κB signaling as a possible cause for excessive inflammation in these patients. METHODS NF-κB signaling was examined by measuring the production of proinflammatory cytokines and evaluating the IRAK1 phosphorylation and degradation as well as the IκBα degradation upon stimulation with IL-1β and TLR agonists in SV40-immortalized fibroblasts, PBMCs, and whole blood of 9 patients with MECP2/IRAK1 duplication syndrome, respectively. RESULTS Both, MECP2/IRAK1-duplicated patients and healthy controls, showed similar production of IL-6 and IL-8 upon activation with IL-1β and TLR2/6 agonists in immortalized fibroblasts. In PBMCs and whole blood, both patients and controls had a similar response of cytokine production after stimulation with IL-1β and TLR4/2/6 agonists. Patients and controls had equivalent patterns of IRAK1 phosphorylation and degradation as well as IκBα degradation upon stimulation with IL-1β. CONCLUSION Patients with MECP2/IRAK1 duplication syndrome do not show increased canonical NF-κB signaling in immortalized fibroblasts, PBMCs, and whole blood. Therefore, we assume that these patients do not benefit from a therapeutic suppression of this pathway.
Collapse
Affiliation(s)
- Ilona Gottschalk
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Uwe Kölsch
- Labor Berlin GmbH, Department of Immunology, Berlin, Germany
| | - Dimitrios L Wagner
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
- Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Campus Virchow-Klinikum, Berlin, Germany
| | - Jonas Kath
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Stefania Martini
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Renate Krüger
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Pediatric Hematology and Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Aleksandra Jezela-Stanek
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Rainer Rossi
- Childrens' Hospital Neukölln, Vivantes GmbH, Berlin, Germany
| | | | - Hilde Van Esch
- Center for Human Genetics, University Hospitals Leuven, Louvain, Belgium
| | - Horst von Bernuth
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
- Labor Berlin GmbH, Department of Immunology, Berlin, Germany.
- Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
2
|
Fabio RA, Chiarini L, Canegallo V. Pain in Rett syndrome: a pilot study and a single case study on the assessment of pain and the construction of a suitable measuring scale. Orphanet J Rare Dis 2022; 17:356. [PMID: 36104823 PMCID: PMC9476284 DOI: 10.1186/s13023-022-02519-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Rett Syndrome (RTT) is a severe, neurodevelopmental disorder mainly caused by mutations in the MECP2 gene, affecting around 1 in 10,000 female births. Severe physical, language, and social impairments impose a wide range of limitations in the quality of life of the patients with RTT. Comorbidities of patients with RTT are varied and cause a lot of pain, but communicating this suffering is difficult for these patients due to their problems, such as apraxia that does not allow them to express pain in a timely manner, and their difficulties with expressive language that also do not permit them to communicate. Two studies, a pilot study and a single case study, investigate the manifestation of pain of patients with RTT and propose a suitable scale to measure it. AIMS OF THIS STUDY The first aim was to describe pain situations of RTT by collecting information by parents; the second aim was to test and compare existing questionnaires for non-communicating disorders on pain such as Pain assessment in advanced demenzia (PAINAD), the Critical care pain observation tool (CPOT) and the Non-communicating Children's Pain Checklist-Revised (NCCPC-R) to assess which of them is best related to the pain behavior of patients with RTT. The third aim was to identify the specific verbal and non-verbal behaviors that characterize pain in girls with Rett syndrome, discriminating them from non-pain behaviors. METHOD Nineteen participants, eighteen girls with RTT and one girl with RTT with 27 manifestations of pain were video-recorded both in pain and base-line conditions. Two independent observers codified the 90 video-recording (36 and 54) to describe their behavioral characteristics. RESULTS The two studies showed that the most significant pain behaviors expressed by girls with respect to the baseline condition, at the facial level were a wrinkled forehead, wide eyes, grinding, banging teeth, complaining, making sounds, crying and screaming, and the most common manifestations of the body were tremors, forward and backward movement of the torso, tension in the upper limbs, increased movement of the lower limbs and a sprawling movement affecting the whole body. CONCLUSION The results of the two studies helped to create an easy-to-apply scale that healthcare professionals can use to assess pain in patients with Rett's syndrome. This scale used PAINAD as its basic structure, with some changes in the items related to the behavior of patients with RTT.
Collapse
Affiliation(s)
- Rosa Angela Fabio
- Department of Economy, University of Messina, via Dei Verdi, 75, 98123 Messina, Italy
| | - Liliana Chiarini
- Department of Economy, University of Messina, via Dei Verdi, 75, 98123 Messina, Italy
- CARI, (Airett Center Innovation and Research), Vicolo Volto S. Luca, 16, 37100 Verona, Italy
| | - Virginia Canegallo
- Vita-Salute San Raffaele University, Via Olgettina, 58, 20132 Milano, MI Italy
| |
Collapse
|
3
|
Medical Comorbidities in MECP2 Duplication Syndrome: Results from the International MECP2 Duplication Database. CHILDREN 2022; 9:children9050633. [PMID: 35626810 PMCID: PMC9139587 DOI: 10.3390/children9050633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/14/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022]
Abstract
Since the discovery of MECP2 duplication syndrome (MDS) in 1999, efforts to characterise this disorder have been limited by a lack of large datasets, with small case series often favouring the reporting of certain conditions over others. This study is the largest to date, featuring 134 males and 20 females, ascertained from the international MECP2 Duplication Database (MDBase). We report a higher frequency of pneumonia, bronchitis, bronchiolitis, gastroesophageal reflux and slow gut motility in males compared to females. We further examine the prevalence of other medical comorbidities such as epilepsy, gastrointestinal problems, feeding difficulties, scoliosis, bone fractures, sleep apnoea, autonomic disturbance and decreased pain sensitivity. A novel feature of urinary retention is reported and requires further investigation. Further research is required to understand the developmental trajectory of this disorder and to examine the context of these medical comorbidities in a quality of life framework.
Collapse
|
4
|
A brief history of MECP2 duplication syndrome: 20-years of clinical understanding. Orphanet J Rare Dis 2022; 17:131. [PMID: 35313898 PMCID: PMC8939085 DOI: 10.1186/s13023-022-02278-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/07/2022] [Indexed: 11/10/2022] Open
Abstract
MECP2 duplication syndrome (MDS) is a rare, X-linked, neurodevelopmental disorder caused by a duplication of the methyl-CpG-binding protein 2 (MECP2) gene-a gene in which loss-of-function mutations lead to Rett syndrome (RTT). MDS has an estimated live birth prevalence in males of 1/150,000. The key features of MDS include intellectual disability, developmental delay, hypotonia, seizures, recurrent respiratory infections, gastrointestinal problems, behavioural features of autism and dysmorphic features-although these comorbidities are not yet understood with sufficient granularity. This review has covered the past two decades of MDS case studies and series since the discovery of the disorder in 1999. After comprehensively reviewing the reported characteristics, this review has identified areas of limited knowledge that we recommend may be addressed by better phenotyping this disorder through an international data collection. This endeavour would also serve to delineate the clinical overlap between MDS and RTT.
Collapse
|
5
|
Abdala BB, Gonçalves AP, Dos Santos JM, Boy R, de Carvalho CMB, Grochowski CM, Krepischi ACV, Rosenberg C, Gusmão L, Pehlivan D, Pimentel MMG, Santos-Rebouças CB. Molecular and clinical insights into complex genomic rearrangements related to MECP2 duplication syndrome. Eur J Med Genet 2021; 64:104367. [PMID: 34678473 DOI: 10.1016/j.ejmg.2021.104367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 10/04/2021] [Accepted: 10/16/2021] [Indexed: 10/20/2022]
Abstract
MECP2 duplication syndrome (MDS) is caused by copy number variation (CNV) spanning the MECP2 gene at Xq28 and is a major cause of intellectual disability (ID) in males. Herein, we describe two unrelated males harboring non-recurrent complex Xq28 rearrangements associated with MDS. Copy number gains were initially detected by quantitative real-time polymerase chain reaction and further delineated by high-resolution array comparative genomic hybridization, familial segregation, expression analysis and X-chromosome inactivation (XCI) evaluation in a carrier mother. SNVs within the rearrangements and/or fluorescent in situ hybridization (FISH) were used to assess the parental origin of the rearrangements. Patient 1 exhibited an intrachromosomal rearrangement, whose structure is consistent with a triplicated segment presumably embedded in an inverted orientation between two duplicated sequences (DUP-TRP/INV-DUP). The rearrangement was inherited from the carrier mother, who exhibits extreme XCI skewing and subtle psychiatric symptoms. Patient 2 presented a de novo (X;Y) unbalanced translocation resulting in duplication of Xq28 and deletion of Yp, originated in the paternal gametogenesis. Neurodevelopmental trajectory and non-neurological symptoms were consistent with previous reports, with the exception of cerebellar vermis hypoplasia in patient 2. Although both patients share the core MDS phenotype, patient 1 showed MECP2 transcript levels in blood similar to controls. Understanding the molecular mechanisms related to MDS is essential for designing targeted therapeutic strategies.
Collapse
Affiliation(s)
- Bianca Barbosa Abdala
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andressa Pereira Gonçalves
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jussara Mendonça Dos Santos
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel Boy
- Pedro Ernesto University Hospital, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | - Carla Rosenberg
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Leonor Gusmão
- DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Texas, USA; Section of Neurology, Department of Pediatrics, Baylor College of Medicine, Texas, USA
| | - Márcia Mattos Gonçalves Pimentel
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cíntia Barros Santos-Rebouças
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
6
|
Pascual-Alonso A, Martínez-Monseny AF, Xiol C, Armstrong J. MECP2-Related Disorders in Males. Int J Mol Sci 2021; 22:9610. [PMID: 34502518 PMCID: PMC8431762 DOI: 10.3390/ijms22179610] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 12/23/2022] Open
Abstract
Methyl CpG binding protein 2 (MECP2) is located at Xq28 and is a multifunctional gene with ubiquitous expression. Loss-of-function mutations in MECP2 are associated with Rett syndrome (RTT), which is a well-characterized disorder that affects mainly females. In boys, however, mutations in MECP2 can generate a wide spectrum of clinical presentations that range from mild intellectual impairment to severe neonatal encephalopathy and premature death. Thus, males can be more difficult to classify and diagnose than classical RTT females. In addition, there are some variants of unknown significance in MECP2, which further complicate the diagnosis of these children. Conversely, the entire duplication of the MECP2 gene is related to MECP2 duplication syndrome (MDS). Unlike in RTT, in MDS, males are predominantly affected. Usually, the duplication is inherited from an apparently asymptomatic carrier mother. Both syndromes share some characteristics, but also differ in some aspects regarding the clinical picture and evolution. In the following review, we present a thorough description of the different types of MECP2 variants and alterations that can be found in males, and explore several genotype-phenotype correlations, although there is still a lot to understand.
Collapse
Affiliation(s)
- Ainhoa Pascual-Alonso
- Fundació Per la Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain; (A.P.-A.); (C.X.)
- Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain;
| | - Antonio F. Martínez-Monseny
- Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain;
- Clinical Genetics, Molecular and Genetic Medicine Section, Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
| | - Clara Xiol
- Fundació Per la Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain; (A.P.-A.); (C.X.)
- Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain;
| | - Judith Armstrong
- Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain;
- Clinical Genetics, Molecular and Genetic Medicine Section, Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
- CIBER-ER (Biomedical Network Research Center for Rare Diseases), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
7
|
Pettersson M, Grochowski CM, Wincent J, Eisfeldt J, Breman AM, Cheung SW, Krepischi ACV, Rosenberg C, Lupski JR, Ottosson J, Lovmar L, Gacic J, Lundberg ES, Nilsson D, Carvalho CMB, Lindstrand A. Cytogenetically visible inversions are formed by multiple molecular mechanisms. Hum Mutat 2020; 41:1979-1998. [PMID: 32906200 PMCID: PMC7702065 DOI: 10.1002/humu.24106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 08/10/2020] [Accepted: 08/28/2020] [Indexed: 01/25/2023]
Abstract
Cytogenetically detected inversions are generally assumed to be copy number and phenotypically neutral events. While nonallelic homologous recombination is thought to play a major role, recent data suggest the involvement of other molecular mechanisms in inversion formation. Using a combination of short-read whole-genome sequencing (WGS), 10X Genomics Chromium WGS, droplet digital polymerase chain reaction and array comparative genomic hybridization we investigated the genomic structure of 18 large unique cytogenetically detected chromosomal inversions and achieved nucleotide resolution of at least one chromosomal inversion junction for 13/18 (72%). Surprisingly, we observed that seemingly copy number neutral inversions can be accompanied by a copy-number gain of up to 350 kb and local genomic complexities (3/18, 17%). In the resolved inversions, the mutational signatures are consistent with nonhomologous end-joining (8/13, 62%) or microhomology-mediated break-induced replication (5/13, 38%). Our study indicates that short-read 30x coverage WGS can detect a substantial fraction of chromosomal inversions. Moreover, replication-based mechanisms are responsible for approximately 38% of those events leading to a significant proportion of inversions that are actually accompanied by additional copy-number variation potentially contributing to the overall phenotypic presentation of those patients.
Collapse
Affiliation(s)
- Maria Pettersson
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | | | - Josephine Wincent
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Jesper Eisfeldt
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Science for Life Laboratory, Karolinska Institutet, Solna, Sweden
| | - Amy M Breman
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sau W Cheung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Ana C V Krepischi
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Carla Rosenberg
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA.,Department of Pediatrics, Texas Children's Hospital, Houston, Texas, USA
| | - Jesper Ottosson
- Department of Clinical Genetics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lovisa Lovmar
- Department of Clinical Genetics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jelena Gacic
- Department of Clinical Genetics, Linköping University Hospital, Linköping, Sweden
| | - Elisabeth S Lundberg
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Daniel Nilsson
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Science for Life Laboratory, Karolinska Institutet, Solna, Sweden
| | - Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Pacific Northwest Research Institute, Seattle, Washington, USA
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
8
|
Deshwar AR, Dupuis L, Bergmann C, Stavropoulos J, Mendoza-Londono R. Severe rhizomelic shortening in a child with a complex duplication/deletion rearrangement of chromosome X. Am J Med Genet A 2017; 176:450-454. [PMID: 29271572 DOI: 10.1002/ajmg.a.38570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 10/16/2017] [Accepted: 11/13/2017] [Indexed: 01/13/2023]
Abstract
Mesomelic and rhizo-mesomelic dysplasias are a group of disorders characterized by abnormal shortening of the limbs. One of the most common causes of mesomelic shortening is the loss of the transcription factor SHOX. In this clinical report, we present a patient who in addition to mesomelic shortening has severe rhizomelic shortening and developmental delay. Karyotyping revealed a recombinant X chromosome in which the region distal to Xp22.33 (where SHOX is found) was replaced with material from Xq28. Included in the region distal to Xq28 is the gene MECP2 and this patient presents with features of MECP2 duplication syndrome. We find that this patient has skeletal features not typical with the loss of SHOX that are likely explained by the rearrangement of the X chromosome. Further delineation of this rearrangement may allow for the identification of additional genetic mechanisms critical for the development of the limbs.
Collapse
Affiliation(s)
- Ashish R Deshwar
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children and University of Toronto, Toronto, Canada
| | - Lucie Dupuis
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children and University of Toronto, Toronto, Canada
| | - Carsten Bergmann
- Institute for Medical Diagnostics GmbH, Center for Human Genetics, Ingelheim, Germany
| | - James Stavropoulos
- Genome Diagnostics, The Hospital for Sick Children and University of Toronto, Toronto, Canada
| | - Roberto Mendoza-Londono
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children and University of Toronto, Toronto, Canada
| |
Collapse
|
9
|
Chen CP, Chen CY, Chern SR, Wu PS, Chen YN, Chen SW, Lee CC, Town DD, Lee MS, Yang CW, Wang W. Molecular cytogenetic characterization of Xp22.32→pter deletion and Xq26.3→qter duplication in a male fetus associated with 46,Y,rec(X)dup(Xq) inv(X)(p22.3q26.3), a hypoplastic left heart, short stature, and maternal X chromosome pericentric inversion. Taiwan J Obstet Gynecol 2017; 55:705-711. [PMID: 27751420 DOI: 10.1016/j.tjog.2016.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2016] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE We present molecular cytogenetic characterization of an Xp22.32→pter deletion and an Xq26.3→qter duplication in a male fetus with congenital malformations and maternal X chromosome pericentric inversion. MATERIALS AND METHODS A 22-year-old woman underwent amniocentesis at 17 weeks of gestation because of an abnormal maternal serum screening result. Prenatal ultrasound revealed a hypoplastic left heart and short limbs. Amniocentesis revealed a karyotype of 46,Y,der(X) t(X;?)(p22.31;?). The pregnancy was subsequently terminated, and a malformed fetus was delivered with short stature and facial dysmorphism. Repeat amniocentesis was performed before termination of the pregnancy. Array comparative genomic hybridization was performed on uncultured amniocytes and maternal blood. Conventional cytogenetic analysis was performed on cultured amniocytes, cord blood, and blood from both parents. Fluorescence in situ hybridization was performed on cultured amniocytes. RESULTS The maternal karyotype was 46,X,inv(X)(p22.3q26.3). The fetal karyotype was 46,Y, rec(X)dup(Xq)inv(X)(p22.3q26.3) or 46,Y, rec(X)(qter→q26.3::p22.3→qter). Array comparative genomic hybridization on uncultured amniocytes revealed a 4.56-Mb deletion of Xp22.33-p22.32 encompassing SHOX, CSF2RA, and ARSE, and a 19.22-Mb duplication of Xq26.3-q28 encompassing SOX3, FMR1, MECP2, RAB39B, and CLIC2 in the fetus. The mother did not have X chromosome imbalance. CONCLUSION Detection of X chromosome aberration in a male fetus should give suspicion of a recombinant X chromosome derived from maternal X chromosome pericentric inversion.
Collapse
Affiliation(s)
- Chih-Ping Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Institute of Clinical and Community Health Nursing, National Yang-Ming University, Taipei, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Chen-Yu Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, Taiwan; MacKay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Schu-Rern Chern
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | | | - Yen-Ni Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shin-Wen Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chen-Chi Lee
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Dai-Dyi Town
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Meng-Shan Lee
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chien-Wen Yang
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wayseen Wang
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; Department of Bioengineering, Tatung University, Taipei, Taiwan
| |
Collapse
|
10
|
Yin J, Schaaf CP. Autism genetics - an overview. Prenat Diagn 2016; 37:14-30. [DOI: 10.1002/pd.4942] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/04/2016] [Accepted: 10/11/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Jiani Yin
- Department of Molecular and Human Genetics; Baylor College of Medicine; Houston TX USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital; Houston TX USA
| | - Christian P. Schaaf
- Department of Molecular and Human Genetics; Baylor College of Medicine; Houston TX USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital; Houston TX USA
| |
Collapse
|
11
|
Ben-Reuven L, Reiner O. Modeling the autistic cell: iPSCs recapitulate developmental principles of syndromic and nonsyndromic ASD. Dev Growth Differ 2016; 58:481-91. [PMID: 27111774 DOI: 10.1111/dgd.12280] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 02/26/2016] [Accepted: 03/01/2016] [Indexed: 12/13/2022]
Abstract
The opportunity to model autism spectrum disorders (ASD) through generation of patient-derived induced pluripotent stem cells (iPSCs) is currently an emerging topic. Wide-scale research of altered brain circuits in syndromic ASD, including Rett Syndrome, Fragile X Syndrome, Angelman's Syndrome and sporadic Schizophrenia, was made possible through animal models. However, possibly due to species differences, and to the possible contribution of epigenetics in the pathophysiology of these diseases, animal models fail to recapitulate many aspects of ASD. With the advent of iPSCs technology, 3D cultures of patient-derived cells are being used to study complex neuronal phenotypes, including both syndromic and nonsyndromic ASD. Here, we review recent advances in using iPSCs to study various aspects of the ASD neuropathology, with emphasis on the efforts to create in vitro model systems for syndromic and nonsyndromic ASD. We summarize the main cellular activity phenotypes and aberrant genetic interaction networks that were found in iPSC-derived neurons of syndromic and nonsyndromic autistic patients.
Collapse
Affiliation(s)
- Lihi Ben-Reuven
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
12
|
Zhang Q, Zhao Y, Yang Y, Bao X. MECP2 duplication syndrome in a Chinese family. BMC MEDICAL GENETICS 2015; 16:112. [PMID: 26672597 PMCID: PMC4682232 DOI: 10.1186/s12881-015-0264-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 12/14/2015] [Indexed: 01/28/2023]
Abstract
Background Methyl-CpG-binding protein 2 (MeCP2) is a key transcriptional regulator of gene expression in the maintenance and development of the central nervous system. Loss- or gain-function of this gene may contribute to neurodevelopmental disorders. The aim of this study is to delineate the clinical characteristics of MECP2 duplication syndrome and the hereditary mechanism in a Chinese family. Case presentation We identified a Chinese family with three persons carry MECP2 gene duplication: a boy, his mother and his grandmother. The duplication segment which was detected by multiplex ligation-dependent probe amplification (MLPA) included gene MECP2, interleukin-1 receptor-associated kinase 1 (IRAK1), filamin A (FLNA), and L1 cell adhesion molecule (L1CAM). Furthermore, array comparative genomic hybridization (aCGH) was performed on the mother, showed that MECP2 containing duplication was 510 Kb (153,113,885-153,624,154), including 16 other genes except MECP2. The boy showed most symptoms of MECP2 duplication syndrome. His mother and maternal grandmother were asymptomatic. Both female carriers had a skewed X chromosome inactivation (XCI), which were 80:20 and 74:26 respectively. Conclusion To our knowledge, this is the second reported Chinese Han family with MECP2-containing duplications. And this patient had recurrent respiratory infections which was different from the first two Chinese-brother cases. MECP2 is the core gene responsible for MECP2 duplication syndrome. XCI may play an important role in modulating the clinical manifestation.
Collapse
Affiliation(s)
- Qingping Zhang
- Department of Pediatrics, Peking University First Hospital, No.1, Xi An Men Street, Xicheng District, Beijing, 100034, China.
| | - Ying Zhao
- Department of Pediatrics, Peking University First Hospital, No.1, Xi An Men Street, Xicheng District, Beijing, 100034, China.
| | - Yanling Yang
- Department of Pediatrics, Peking University First Hospital, No.1, Xi An Men Street, Xicheng District, Beijing, 100034, China.
| | - Xinhua Bao
- Department of Pediatrics, Peking University First Hospital, No.1, Xi An Men Street, Xicheng District, Beijing, 100034, China.
| |
Collapse
|
13
|
Magini P, Poscente M, Ferrari S, Vargiolu M, Bacchelli E, Graziano C, Wischmeijer A, Turchetti D, Malaspina E, Marchiani V, Cordelli DM, Franzoni E, Romeo G, Seri M. Cytogenetic and molecular characterization of a recombinant X chromosome in a family with a severe neurologic phenotype and macular degeneration. Mol Cytogenet 2015; 8:58. [PMID: 26236399 PMCID: PMC4522089 DOI: 10.1186/s13039-015-0164-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/15/2015] [Indexed: 11/13/2022] Open
Abstract
Background Duplications of MECP2 gene in males cause a syndrome characterized by distinctive clinical features, including severe to profound mental retardation, infantile hypotonia, mild dysmorphic features, poor speech development, autistic features, seizures, progressive spasticity and recurrent infections. Patients with complex chromosome rearrangements, leading to Xq28 duplication, share most of the clinical features of individuals with tandem duplications, in particular neurologic problems, suggesting a major pathogenetic role of MECP2 overexpression. Results We performed cytogenetic and molecular cytogenetic studies in a previously described family with affected males showing congenital ataxia, late-onset progressive myoclonic encephalopathy and selective macular degeneration. Microsatellite, FISH and array-CGH analyses identified a recombinant X chromosome with a deletion of the PAR1 region, encompassing SHOX, replaced by a duplicated segment of the Xq28 terminal portion, including MECP2. Conclusions Our report describes the identification of the actual genetic cause underlying a severe syndrome that previous preliminary analyses erroneously associated to a terminal Xp22.33 region. In the present family as well as in previously reported patients with similar rearrangements, the observed neurologic phenotype is ascribable to MECP2 duplication, with an undefined contribution of the other involved genes. Maculopathy, presented by affected males reported here, could be a novel clinical feature associated to Xq28 disomy due to recombinant X chromosomes, but at present the underlying pathogenetic mechanism is unknown and this potential clinical correlation should be confirmed through the collection of additional patients.
Collapse
Affiliation(s)
- Pamela Magini
- U.O. Genetica Medica, Policlinico Sant'Orsola-Malpighi, DIMEC, Università di Bologna, via Massarenti, 9, Bologna, 40138 Italy
| | - Monica Poscente
- S.S.V.D. Biologia Molecolare, Citogenetica, Citomorfologia Ematica e Vaginale, Ospedale Belcolle, Viterbo, Italy
| | - Simona Ferrari
- U.O. Genetica Medica, AOU di Bologna, Policlinico S. Orsola-Malpighi, Bologna, 40138 Italy
| | - Manuela Vargiolu
- Centro Interdipartimentale per la Ricerca Industriale Scienze della Vita e Tecnologie per la Salute, Università di Bologna, Bologna, Italy
| | - Elena Bacchelli
- Dipartimento di Farmacia e Biotecnologie, Università di Bologna, Bologna, Italy
| | - Claudio Graziano
- U.O. Genetica Medica, AOU di Bologna, Policlinico S. Orsola-Malpighi, Bologna, 40138 Italy
| | - Anita Wischmeijer
- U.O. Genetica Medica, AOU di Bologna, Policlinico S. Orsola-Malpighi, Bologna, 40138 Italy.,S.S.D. Genetica Clinica, Arcispedale S. Maria Nuova-Istituto di Ricovero e Cura a Carattere Scientifico, Reggio Emilia, Italy
| | - Daniela Turchetti
- U.O. Genetica Medica, Policlinico Sant'Orsola-Malpighi, DIMEC, Università di Bologna, via Massarenti, 9, Bologna, 40138 Italy
| | - Elisabetta Malaspina
- U.O. Neuropsichiatria Infantile, Policlinico Sant'Orsola-Malpighi, DIMEC, Università di Bologna, Bologna, Italy
| | - Valentina Marchiani
- U.O. Neuropsichiatria Infantile, Policlinico Sant'Orsola-Malpighi, DIMEC, Università di Bologna, Bologna, Italy
| | - Duccio Maria Cordelli
- U.O. Neuropsichiatria Infantile, Policlinico Sant'Orsola-Malpighi, DIMEC, Università di Bologna, Bologna, Italy
| | - Emilio Franzoni
- U.O. Neuropsichiatria Infantile, Policlinico Sant'Orsola-Malpighi, DIMEC, Università di Bologna, Bologna, Italy
| | - Giovanni Romeo
- U.O. Genetica Medica, Policlinico Sant'Orsola-Malpighi, DIMEC, Università di Bologna, via Massarenti, 9, Bologna, 40138 Italy
| | - Marco Seri
- U.O. Genetica Medica, Policlinico Sant'Orsola-Malpighi, DIMEC, Università di Bologna, via Massarenti, 9, Bologna, 40138 Italy
| |
Collapse
|
14
|
El-Hattab AW, Schaaf CP, Fang P, Roeder E, Kimonis VE, Church JA, Patel A, Cheung SW. Clinical characterization of int22h1/int22h2-mediated Xq28 duplication/deletion: new cases and literature review. BMC MEDICAL GENETICS 2015; 16:12. [PMID: 25927380 PMCID: PMC4422130 DOI: 10.1186/s12881-015-0157-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/18/2015] [Indexed: 12/21/2022]
Abstract
Background Int22h1/int22h2-mediated Xq28 duplication syndrome is caused by ~0.5 Mb chromosomal duplications mediated by nonallelic homologous recombination between intron 22 homologous region 1 (int22h1) and 2 (int22h2), which, in addition to int22h3, are also responsible for inversions disrupting the F8 gene in hemophilia A. This syndrome has recently been described in 9 males with cognitive impairment, behavioral problems, and distinctive facial features; and 6 females with milder phenotypes. The reciprocal deletion was previously reported in a mother and daughter. It was suggested that this deletion may not have phenotypic effects in females because of skewed chromosome X inactivation, but may be embryonic lethal in males. Methods Array comparative genomic hybridization analyses were performed using oligonucleotide-based chromosomal microarray. Chromosome X inactivation studies were performed at the AR (androgen receptor) and FMR1 (fragile X mental retardation 1) loci. Results We present here 5 males and 6 females with int22h1/int22h2-mediated Xq28 duplication syndrome. The males manifested cognitive impairment, behavioral problems, and distinctive facial features. Two of the six females manifested mild cognitive impairment. This duplication was maternally inherited, and skewed chromosome X inactivation was observed in the majority of females carrying the duplication. We also report the reciprocal deletion in a mother and daughter with overweight, but normal cognition. In addition, we present the first case of a prenatally diagnosed de novo int22h1/int22h2-mediated deletion in a healthy female infant. We reviewed individuals previously reported with similar or overlapping rearrangements and evaluated the potential roles of genes in the rearrangement region. Conclusions The similarity of clinical features among individuals with the int22h1/int22h2-mediated Xq28 duplication supports the notion that this duplication causes a recognizable syndrome that affects males with females exhibiting milder phenotypes. It is suggested that the observed cognitive impairment in this syndrome results from increased dosage of RAB39B gene located within the duplicated region. Increased dosage of CLIC2 may also contribute to the phenotype. The reciprocal deletion results in skewed chromosome X inactivation and no clinical phenotype in females. Review of overlapping deletions suggests that hemizygous loss of VBP1 may be the cause for the proposed male lethality associated with this deletion.
Collapse
Affiliation(s)
- Ayman W El-Hattab
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS NAB 2015, Houston, TX, 77030, U.S.A. .,Division of Clinical Genetics and Metabolic Disorders, Department of Pediatrics, Tawam Hospital, Al-Ain, United Arab Emirates.
| | - Christian P Schaaf
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS NAB 2015, Houston, TX, 77030, U.S.A. .,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
| | - Ping Fang
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS NAB 2015, Houston, TX, 77030, U.S.A.
| | - Elizabeth Roeder
- Section of Genetics, Department of Pediatrics, Baylor College of Medicine, Children's Hospital of San Antonio, San Antonio, TX, USA.
| | - Virginia E Kimonis
- Division of Genetics and Genomics, Department of Pediatrics, University of California, Irvine Medical Center, Orange, CA, USA.
| | - Joseph A Church
- Division of Clinical Immunology and Allergy, Children's Hospital Los Angeles, and Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Ankita Patel
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS NAB 2015, Houston, TX, 77030, U.S.A.
| | - Sau Wai Cheung
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS NAB 2015, Houston, TX, 77030, U.S.A.
| |
Collapse
|
15
|
Bauer M, Kölsch U, Krüger R, Unterwalder N, Hameister K, Kaiser FM, Vignoli A, Rossi R, Botella MP, Budisteanu M, Rosello M, Orellana C, Tejada MI, Papuc SM, Patat O, Julia S, Touraine R, Gomes T, Wenner K, Xu X, Afenjar A, Toutain A, Philip N, Jezela-Stanek A, Gortner L, Martinez F, Echenne B, Wahn V, Meisel C, Wieczorek D, El-Chehadeh S, Van Esch H, von Bernuth H. Infectious and immunologic phenotype of MECP2 duplication syndrome. J Clin Immunol 2015; 35:168-81. [PMID: 25721700 PMCID: PMC7101860 DOI: 10.1007/s10875-015-0129-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 01/12/2015] [Indexed: 12/02/2022]
Abstract
MECP2 (methyl CpG binding protein 2) duplication causes syndromic intellectual disability. Patients often suffer from life-threatening infections, suggesting an additional immunodeficiency. We describe for the first time the detailed infectious and immunological phenotype of MECP2 duplication syndrome. 17/27 analyzed patients suffered from pneumonia, 5/27 from at least one episode of sepsis. Encapsulated bacteria (S.pneumoniae, H.influenzae) were frequently isolated. T-cell immunity showed no gross abnormalities in 14/14 patients and IFNy-secretion upon ConA-stimulation was not decreased in 6/7 patients. In 6/21 patients IgG2-deficiency was detected – in 4/21 patients accompanied by IgA-deficiency, 10/21 patients showed low antibody titers against pneumococci. Supra-normal IgG1-levels were detected in 11/21 patients and supra-normal IgG3-levels were seen in 8/21 patients – in 6 of the patients as combined elevation of IgG1 and IgG3. Three of the four patients with IgA/IgG2-deficiency developed multiple severe infections. Upon infections pronounced acute-phase responses were common: 7/10 patients showed CRP values above 200 mg/l. Our data for the first time show systematically that increased susceptibility to infections in MECP2 duplication syndrome is associated with IgA/IgG2-deficiency, low antibody titers against pneumococci and elevated acute-phase responses. So patients with MECP2 duplication syndrome and low IgA/IgG2 may benefit from prophylactic substitution of sIgA and IgG.
Collapse
Affiliation(s)
- Michael Bauer
- Pediatric Pneumology and Immunology, Charité University Medicine, Berlin, Germany,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ramírez-Velasco A, Rivera H. A further rec(X)dup p and compilation of 23 cases. Comment on "molecular genetic and cytogenetic characterization of a partial Xp duplication and Xq deletion in a patient with premature ovarian failure" by Kim et al. Gene, 2014. http://dx.doi.org/10.1016/j.gene.2013.10.026. Gene 2014; 548:155-7. [PMID: 25014138 DOI: 10.1016/j.gene.2014.07.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 07/07/2014] [Indexed: 10/25/2022]
Affiliation(s)
- Azubel Ramírez-Velasco
- División de Genética, CIBO, Instituto Mexicano del Seguro Social, Guadalajara, Mexico; CUCS, Universidad de Guadalajara, Guadalajara, Mexico
| | - Horacio Rivera
- División de Genética, CIBO, Instituto Mexicano del Seguro Social, Guadalajara, Mexico; CUCS, Universidad de Guadalajara, Guadalajara, Mexico.
| |
Collapse
|
17
|
López-Carrasco A, Monfort S, Roselló M, Oltra S, Mayo S, Martínez F, Orellana C. [Chromosomal location of submicroscopic duplications in patients with neurodevelopmental disorders to identify cases with high risk of familial recurrence]. Med Clin (Barc) 2014; 142:531-7. [PMID: 23790573 DOI: 10.1016/j.medcli.2013.04.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/25/2013] [Accepted: 04/04/2013] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE An important proportion of neurodevelopmental disorders (NDDs) results from unbalanced genomic alterations (duplication or deletion). These chromosomal rearrangements may be considered as de novo, despite they arise as a result of a balanced rearrangement not detected in a phenotypically normal parent. Therefore, if the rearrangements are inherited, the recurrence risk and the genetic counseling of these cases change radically. Fluorescence in situ hybridization (FISH) is a technique that allows detecting both balanced and unbalanced rearrangements, identifying also the location of duplicated segments. We tried to locate in the genome the duplicated segments detected in patients with NDDs in order to identify those cases due to inherited rearrangements. PATIENTS AND METHOD The study was conducted in 13 patients with NDDs and genomic duplications detected by compared genomic hybridization-array (CGH-array). Two approaches of FISH technique were taken: hybridization with painting chromosome probes and with specific probes for each duplication. RESULTS In the studied series of 13 patients with duplication, 11 patients were found to carry tandem duplications, one with an intrachromosomal insertional translocation, and another with an interchromosomal insertional translocation. Therefore, 2 of the duplications considered de novo were actually an unbalanced rearrangement inherited from a parent who is a balanced carrier. CONCLUSION The results illustrate the need to characterize by FISH technique the rearrangements that are detected by CGH-array to identify those cases with a high risk of recurrence.
Collapse
Affiliation(s)
- Amparo López-Carrasco
- Unidad de Genética y Diagnóstico Prenatal, Hospital Universitario y Politécnico La Fe, Valencia, España
| | - Sandra Monfort
- Unidad de Genética y Diagnóstico Prenatal, Hospital Universitario y Politécnico La Fe, Valencia, España
| | - Mónica Roselló
- Unidad de Genética y Diagnóstico Prenatal, Hospital Universitario y Politécnico La Fe, Valencia, España
| | - Silvestre Oltra
- Unidad de Genética y Diagnóstico Prenatal, Hospital Universitario y Politécnico La Fe, Valencia, España
| | - Sonia Mayo
- Unidad de Genética y Diagnóstico Prenatal, Hospital Universitario y Politécnico La Fe, Valencia, España
| | - Francisco Martínez
- Unidad de Genética y Diagnóstico Prenatal, Hospital Universitario y Politécnico La Fe, Valencia, España
| | - Carmen Orellana
- Unidad de Genética y Diagnóstico Prenatal, Hospital Universitario y Politécnico La Fe, Valencia, España.
| |
Collapse
|
18
|
Novara F, Simonati A, Sicca F, Battini R, Fiori S, Contaldo A, Criscuolo L, Zuffardi O, Ciccone R. MECP2 duplication phenotype in symptomatic females: report of three further cases. Mol Cytogenet 2014; 7:10. [PMID: 24472397 PMCID: PMC3922903 DOI: 10.1186/1755-8166-7-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/17/2013] [Indexed: 01/10/2023] Open
Abstract
Background Xq28 duplications, including MECP2 (methyl CpG-binding protein 2; OMIM 300005), have been identified in approximately 140 male patients presenting with hypotonia, severe developmental delay/intellectual disability, limited or absent speech and ambulation, and recurrent respiratory infections. Female patients with Xq28 duplication have been rarely reported and are usually asymptomatic. Altogether, only fifteen symptomatic females with Xq28 duplications including MECP2 have been reported so far: six of them had interstitial duplications while the remaining had a duplication due to an unbalanced X;autosome translocation. Some of these females present with unspecific mild to moderate intellectual disability whereas a more complex phenotype is reported for females with unbalanced X;autosome translocations. Findings Here we report on the clinical features of three other adolescent to adult female patients with Xq28 interstitial duplications of variable size, all including MECP2 gene. Conclusions Mild to moderate cognitive impairment together with learning difficulties and speech delay were evident in each of our patients. Moreover, early inadequate behavioral patterns followed by persistent difficulties in the social and communication domains, as well as the occurrence of mild psychiatric disturbances, are common features of these three patients.
Collapse
Affiliation(s)
- Francesca Novara
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lin DS, Chuang TP, Chiang MF, Ho CS, Hsiao CD, Huang YW, Wu TY, Wu JY, Chen YT, Chen TC, Li LH. De novo MECP2 duplication derived from paternal germ line result in dysmorphism and developmental delay. Gene 2014; 533:78-85. [DOI: 10.1016/j.gene.2013.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 09/26/2013] [Accepted: 10/01/2013] [Indexed: 02/02/2023]
|
20
|
Clinical manifestations of Xq28 functional disomy involvingMECP2in one female and two male patients. Am J Med Genet A 2013; 161A:1779-85. [DOI: 10.1002/ajmg.a.35975] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 03/12/2013] [Indexed: 11/07/2022]
|
21
|
Xu X, Xu Q, Zhang Y, Zhang X, Cheng T, Wu B, Ding Y, Lu P, Zheng J, Zhang M, Qiu Z, Yu X. A case report of Chinese brothers with inherited MECP2-containing duplication: autism and intellectual disability, but not seizures or respiratory infections. BMC MEDICAL GENETICS 2012; 13:75. [PMID: 22909152 PMCID: PMC3506511 DOI: 10.1186/1471-2350-13-75] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 08/15/2012] [Indexed: 11/16/2022]
Abstract
Background Autistic spectrum disorders (ASDs) are a family of neurodevelopmental disorders with strong genetic components. Recent studies have shown that copy number variations in dosage sensitive genes can contribute significantly to these disorders. One such gene is the transcription factor MECP2, whose loss of function in females results in Rett syndrome, while its duplication in males results in developmental delay and autism. Case presentation Here, we identified a Chinese family with two brothers both inheriting a 2.2 Mb MECP2-containing duplication (151,369,305 – 153,589,577) from their mother. In addition, both brothers also had a 213.7 kb duplication on Chromosome 2, inherited from their father. The older brother also carried a 48.4 kb duplication on Chromosome 2 inherited from the mother, and a 8.2 kb deletion at 11q13.5 inherited from the father. Based on the published literature, MECP2 is the most autism-associated gene among the identified CNVs. Consistently, the boys displayed clinical features in common with other patients carrying MECP2 duplications, including intellectual disability, autism, lack of speech, slight hypotonia and unsteadiness of movement. They also had slight dysmorphic features including a depressed nose bridge, large ears and midface hypoplasia. Interestingly, they did not exhibit other clinical features commonly observed in American-European patients with MECP2 duplication, including recurrent respiratory infections and epilepsy. Conclusions To our knowledge, this is the first identification and characterization of Chinese Han patients with MECP2-containing duplications. Further cases are required to determine if the above described clinical differences are due to individual variations or related to the genetic background of the patients.
Collapse
Affiliation(s)
- Xiu Xu
- Department of Child Healthcare, Children's Hospital of Fudan University, Shanghai, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hanchard NA, Carvalho CMB, Bader P, Thome A, Omo-Griffith L, del Gaudio D, Pehlivan D, Fang P, Schaaf CP, Ramocki MB, Lupski JR, Cheung SW. A partial MECP2 duplication in a mildly affected adult male: a putative role for the 3' untranslated region in the MECP2 duplication phenotype. BMC MEDICAL GENETICS 2012; 13:71. [PMID: 22883432 PMCID: PMC3575261 DOI: 10.1186/1471-2350-13-71] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 07/23/2012] [Indexed: 11/17/2022]
Abstract
Background Duplications of the X-linked MECP2 gene are associated with moderate to severe intellectual disability, epilepsy, and neuropsychiatric illness in males, while triplications are associated with a more severe phenotype. Most carrier females show complete skewing of X-inactivation in peripheral blood and an apparent susceptibility to specific personality traits or neuropsychiatric symptoms. Methods We describe the clinical phenotype of a pedigree segregating a duplication of MECP2 found on clinical array comparative genomic hybridization. The position, size, and extent of the duplication were delineated in peripheral blood samples from affected individuals using multiplex ligation-dependent probe amplification and fluorescence in situ hybridization, as well as targeted high-resolution oligonucleotide microarray analysis and long-range PCR. The molecular consequences of the rearrangement were studied in lymphoblast cell lines using quantitative real-time PCR, reverse transcriptase PCR, and western blot analysis. Results We observed a partial MECP2 duplication in an adult male with epilepsy and mild neurocognitive impairment who was able to function independently; this phenotype has not previously been reported among males harboring gains in MECP2 copy number. The same duplication was inherited by this individual’s daughter who was also affected with neurocognitive impairment and epilepsy and carried an additional copy-number variant. The duplicated segment involved all four exons of MECP2, but excluded almost the entire 3' untranslated region (UTR), and the genomic rearrangement resulted in a MECP2-TEX28 fusion gene mRNA transcript. Increased expression of MECP2 and the resulting fusion gene were both confirmed; however, western blot analysis of lysates from lymphoblast cells demonstrated increased MeCP2 protein without evidence of a stable fusion gene protein product. Conclusion The observations of a mildly affected adult male with a MECP2 duplication and paternal transmission of this duplication are unique among reported cases with a duplication of MECP2. The clinical and molecular findings imply a minimal critical region for the full neurocognitive expression of the MECP2 duplication syndrome, and suggest a role for the 3′ UTR in mitigating the severity of the disease phenotype.
Collapse
Affiliation(s)
- Neil A Hanchard
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Chromosomal microarray analysis of functional Xq27-qter disomy and deletion 3p26.3 in a boy with Prader–Willi like features and hypotonia. Eur J Med Genet 2012; 55:461-5. [DOI: 10.1016/j.ejmg.2012.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 04/23/2012] [Accepted: 04/26/2012] [Indexed: 11/20/2022]
|
24
|
Vignoli A, Borgatti R, Peron A, Zucca C, Ballarati L, Bonaglia C, Bellini M, Giordano L, Romaniello R, Bedeschi MF, Epifanio R, Russo S, Caselli R, Giardino D, Darra F, La Briola F, Banderali G, Canevini MP. Electroclinical pattern in MECP2 duplication syndrome: eight new reported cases and review of literature. Epilepsia 2012; 53:1146-55. [PMID: 22578097 DOI: 10.1111/j.1528-1167.2012.03501.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE Duplications encompassing the MECP2 gene on the Xq28 region have been described in male patients with moderate to severe mental retardation, absent speech, neonatal hypotonia, progressive spasticity and/or ataxia, recurrent severe respiratory infections, gastrointestinal problems, mild facial dysmorphisms (midface hypoplasia, depressed nasal bridge, large ears) and epilepsy. Epilepsy can occur in >50% of cases, but the types of seizures and the electroclinical findings in affected male individuals have been poorly investigated up to the present. Herein we describe eight patients with MECP2 duplication syndrome and a specific clinical and electroencephalographic pattern. METHODS Array CGH of genomic DNA from the probands was performed, and an Xq28 duplication ranging from 209 kb to 6.36 Mb was found in each patient. Electroencephalography studies and clinical and seizure features of all the patients were analyzed. KEY FINDINGS We found that epilepsy tended to occur between late childhood and adolescence. Episodes of loss of tone of the head and/or the trunk were the most represented seizure types. Generalized tonic-clonic seizures were rarely observed. The typical interictal EEG pattern showed abnormal background activity, with generalized slow spike and wave asynchronous discharge with frontotemporal predominance. Sleep electroencephalography studies also demonstrated abnormal background activity; spindles and K complex were often abnormal in morphology and amplitude. Response to therapy was generally poor and drug resistance was a significant feature. SIGNIFICANCE Although these cases and a review of the literature indicate that epilepsy associated with MECP2 duplication syndrome cannot be considered a useful marker for early diagnosis, epilepsy is present in >90% of adolescent patients and shows a peculiar electroclinical pattern. Consequently, it should be considered a significant sign of the syndrome, and an EEG follow-up of these patients should be encouraged from early childhood. Moreover, the definition of a more specific epileptic phenotype could be useful in order to suspect MECP2 duplication syndrome in older undiagnosed patients.
Collapse
Affiliation(s)
- Aglaia Vignoli
- Epilepsy Center, San Paolo Hospital, Department of Medicine, Surgery and Dentistry, University of Milan, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Bijlsma EK, Collins A, Papa FT, Tejada MI, Wheeler P, Peeters EAJ, Gijsbers ACJ, van de Kamp JM, Kriek M, Losekoot M, Broekma AJ, Crolla JA, Pollazzon M, Mucciolo M, Katzaki E, Disciglio V, Ferreri MI, Marozza A, Mencarelli MA, Castagnini C, Dosa L, Ariani F, Mari F, Canitano R, Hayek G, Botella MP, Gener B, Mínguez M, Renieri A, Ruivenkamp CAL. Xq28 duplications including MECP2 in five females: Expanding the phenotype to severe mental retardation. Eur J Med Genet 2012; 55:404-13. [PMID: 22522176 PMCID: PMC3383992 DOI: 10.1016/j.ejmg.2012.02.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 02/20/2012] [Indexed: 01/05/2023]
Abstract
Duplications leading to functional disomy of chromosome Xq28, including MECP2 as the critical dosage-sensitive gene, are associated with a distinct clinical phenotype in males, characterized by severe mental retardation, infantile hypotonia, progressive neurologic impairment, recurrent infections, bladder dysfunction, and absent speech. Female patients with Xq duplications including MECP2 are rare. Only recently submicroscopic duplications of this region on Xq28 have been recognized in four females, and a triplication in a fifth, all in combination with random X-chromosome inactivation (XCI). Based on this small series, it was concluded that in females with MECP2 duplication and random XCI, the typical symptoms of affected boys are not present. We present clinical and molecular data on a series of five females with an Xq28 duplication including the MECP2 gene, both isolated and as the result of a translocation, and compare them with the previously reported cases of small duplications in females. The collected data indicate that the associated phenotype in females is distinct from males with similar duplications, but the clinical effects may be as severe as seen in males.
Collapse
Affiliation(s)
- E K Bijlsma
- Center for Human and Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|