1
|
Yagasaki H, Shimozawa K, Kanezawa K, Tamura T, Kamiyama M, Yamamoto T, Morioka I. Clonal Hematopoiesis Without Malignant Transformation Lasting Over 2 Years in a 9-Year-old Boy, Following Treatment for Acute Lymphocytic Leukemia. J Pediatr Hematol Oncol 2024; 46:e453-e456. [PMID: 39051639 DOI: 10.1097/mph.0000000000002915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 06/04/2024] [Indexed: 07/27/2024]
Abstract
Children with acute lymphocytic leukemia rarely develop secondary hematological neoplasms. A 5-year-old boy was diagnosed with standard-risk precursor B-cell acute lymphocytic leukemia. The patient exhibited aberrant chromosomal changes in the bone marrow at 6 months postchemotherapy: 46,XY,der(6) t(1;6)(q12;p22) dup(6)(p22p12)[15]. Clinically, the patient has sustained complete remission and has not developed myeloid malignancy over the subsequent period (27 mo). The cytogenetic aberration was observed in 11% of CD34+ cells isolated from the bone marrow. We infer that the abnormal clone acquires self-renewal potency, differentiation, and growth advantage. Further long-term observation is needed to determine the nature of this cytogenetic aberration.
Collapse
Affiliation(s)
| | | | - Koji Kanezawa
- Department of Pediatrics, Nihon University Itabashi Hospital
| | - Takeaki Tamura
- Department of Pediatrics, Nihon University Itabashi Hospital
| | | | - Toshiyuki Yamamoto
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Ichiro Morioka
- Department of Pediatrics, Nihon University Itabashi Hospital
| |
Collapse
|
2
|
Gallego Villarejo L, Gerding WM, Bachmann L, Hardt LHI, Bormann S, Nguyen HP, Müller T. Optical Genome Mapping Reveals Genomic Alterations upon Gene Editing in hiPSCs: Implications for Neural Tissue Differentiation and Brain Organoid Research. Cells 2024; 13:507. [PMID: 38534351 DOI: 10.3390/cells13060507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Genome editing, notably CRISPR (cluster regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9), has revolutionized genetic engineering allowing for precise targeted modifications. This technique's combination with human induced pluripotent stem cells (hiPSCs) is a particularly valuable tool in cerebral organoid (CO) research. In this study, CRISPR/Cas9-generated fluorescently labeled hiPSCs exhibited no significant morphological or growth rate differences compared with unedited controls. However, genomic aberrations during gene editing necessitate efficient genome integrity assessment methods. Optical genome mapping, a high-resolution genome-wide technique, revealed genomic alterations, including chromosomal copy number gain and losses affecting numerous genes. Despite these genomic alterations, hiPSCs retain their pluripotency and capacity to generate COs without major phenotypic changes but one edited cell line showed potential neuroectodermal differentiation impairment. Thus, this study highlights optical genome mapping in assessing genome integrity in CRISPR/Cas9-edited hiPSCs emphasizing the need for comprehensive integration of genomic and morphological analysis to ensure the robustness of hiPSC-based models in cerebral organoid research.
Collapse
Affiliation(s)
- Lucia Gallego Villarejo
- Department of Molecular Biochemistry, Ruhr-University Bochum, 44801 Bochum, Germany
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, 44801 Bochum, Germany
- International Graduate School of Neuroscience, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Wanda M Gerding
- Department of Human Genetics, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Lisa Bachmann
- Department of Molecular Biochemistry, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Luzie H I Hardt
- Department of Molecular Biochemistry, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Stefan Bormann
- Department of Molecular Biochemistry, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Huu Phuc Nguyen
- Department of Human Genetics, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Thorsten Müller
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, 80336 Munich, Germany
| |
Collapse
|
3
|
Cao X, Mircea M, Yakala GK, van den Hil FE, Brescia M, Mei H, Mummery CL, Semrau S, Orlova VV. ETV2 Upregulation Marks the Specification of Early Cardiomyocytes and Endothelial Cells During Co-differentiation. Stem Cells 2022; 41:140-152. [PMID: 36512477 PMCID: PMC9982073 DOI: 10.1093/stmcls/sxac086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022]
Abstract
The ability to differentiate human-induced pluripotent stem cells (hiPSCs) efficiently into defined cardiac lineages, such as cardiomyocytes and cardiac endothelial cells, is crucial to study human heart development and model cardiovascular diseases in vitro. The mechanisms underlying the specification of these cell types during human development are not well understood which limits fine-tuning and broader application of cardiac model systems. Here, we used the expression of ETV2, a master regulator of hematoendothelial specification in mice, to identify functionally distinct subpopulations during the co-differentiation of endothelial cells and cardiomyocytes from hiPSCs. Targeted analysis of single-cell RNA-sequencing data revealed differential ETV2 dynamics in the 2 lineages. A newly created fluorescent reporter line allowed us to identify early lineage-predisposed states and show that a transient ETV2-high-state initiates the specification of endothelial cells. We further demonstrated, unexpectedly, that functional cardiomyocytes can originate from progenitors expressing ETV2 at a low level. Our study thus sheds light on the in vitro differentiation dynamics of 2 important cardiac lineages.
Collapse
Affiliation(s)
- Xu Cao
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maria Mircea
- Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| | - Gopala Krishna Yakala
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Francijna E van den Hil
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marcella Brescia
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Leiden University Medical Center, Leiden, The Netherlands
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Stefan Semrau
- Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| | - Valeria V Orlova
- Corresponding author: Stefan Semrau, Ph.D., Leiden Institute of Physics, Leiden University, 2333 RA, Leiden, The Netherlands. ; or, Valeria V. Orlova, Ph.D., Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333ZC Leiden, The Netherlands.
| |
Collapse
|
4
|
Ho DLL, Lee S, Du J, Weiss JD, Tam T, Sinha S, Klinger D, Devine S, Hamfeldt A, Leng HT, Herrmann JE, He M, Fradkin LG, Tan TK, Standish D, Tomasello P, Traul D, Dianat N, Ladi R, Vicard Q, Katikireddy K, Skylar‐Scott MA. Large-Scale Production of Wholly Cellular Bioinks via the Optimization of Human Induced Pluripotent Stem Cell Aggregate Culture in Automated Bioreactors. Adv Healthc Mater 2022; 11:e2201138. [PMID: 36314397 PMCID: PMC10234214 DOI: 10.1002/adhm.202201138] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/10/2022] [Indexed: 01/28/2023]
Abstract
Combining the sustainable culture of billions of human cells and the bioprinting of wholly cellular bioinks offers a pathway toward organ-scale tissue engineering. Traditional 2D culture methods are not inherently scalable due to cost, space, and handling constraints. Here, the suspension culture of human induced pluripotent stem cell-derived aggregates (hAs) is optimized using an automated 250 mL stirred tank bioreactor system. Cell yield, aggregate morphology, and pluripotency marker expression are maintained over three serial passages in two distinct cell lines. Furthermore, it is demonstrated that the same optimized parameters can be scaled to an automated 1 L stirred tank bioreactor system. This 4-day culture results in a 16.6- to 20.4-fold expansion of cells, generating approximately 4 billion cells per vessel, while maintaining >94% expression of pluripotency markers. The pluripotent aggregates can be subsequently differentiated into derivatives of the three germ layers, including cardiac aggregates, and vascular, cortical and intestinal organoids. Finally, the aggregates are compacted into a wholly cellular bioink for rheological characterization and 3D bioprinting. The printed hAs are subsequently differentiated into neuronal and vascular tissue. This work demonstrates an optimized suspension culture-to-3D bioprinting pipeline that enables a sustainable approach to billion cell-scale organ engineering.
Collapse
Affiliation(s)
- Debbie L. L. Ho
- Department of BioengineeringStanford UniversityStanfordCA94305USA
| | - Stacey Lee
- Department of BioengineeringStanford UniversityStanfordCA94305USA
| | - Jianyi Du
- Department of BioengineeringStanford UniversityStanfordCA94305USA
| | | | - Tony Tam
- Department of BioengineeringStanford UniversityStanfordCA94305USA
| | - Soham Sinha
- Department of BioengineeringStanford UniversityStanfordCA94305USA
| | - Danielle Klinger
- Department of BioengineeringStanford UniversityStanfordCA94305USA
| | - Sean Devine
- Sartorius Stedim North America Inc565 Johnson AvenueBohemiaNY11716USA
| | - Art Hamfeldt
- Sartorius Stedim North America Inc565 Johnson AvenueBohemiaNY11716USA
| | - Hope T. Leng
- Department of BioengineeringStanford UniversityStanfordCA94305USA
| | - Jessica E. Herrmann
- Department of BioengineeringStanford UniversityStanfordCA94305USA
- School of MedicineStanford UniversityStanfordCA94305USA
| | - Mengdi He
- Materials Science and EngineeringStanford UniversityStanfordCA94305USA
| | - Lee G. Fradkin
- Department of BioengineeringStanford UniversityStanfordCA94305USA
| | - Tze Kai Tan
- Institute of Stem Cell Biology and Regenerative MedicineStanford University School of MedicineStanfordCA94305USA
- Department of GeneticsStanford University School of MedicineStanfordCA94305USA
- Department of PathologyStanford University School of MedicineStanfordCA94305USA
| | - David Standish
- Sartorius Stedim North America Inc565 Johnson AvenueBohemiaNY11716USA
| | - Peter Tomasello
- Sartorius Stedim North America Inc565 Johnson AvenueBohemiaNY11716USA
| | - Donald Traul
- Sartorius Stedim North America Inc565 Johnson AvenueBohemiaNY11716USA
| | - Noushin Dianat
- Sartorius Stedim France S.A.SZone Industrielle les PaludsAvenue de Jouques CS 71058Aubagne Cedex13781France
| | - Rukmini Ladi
- Sartorius Stedim North America Inc565 Johnson AvenueBohemiaNY11716USA
| | - Quentin Vicard
- Sartorius Stedim France S.A.SZone Industrielle les PaludsAvenue de Jouques CS 71058Aubagne Cedex13781France
| | | | - Mark A. Skylar‐Scott
- Department of BioengineeringStanford UniversityStanfordCA94305USA
- Basic Science and Engineering InitiativeChildren's Heart CenterStanford UniversityStanfordCA94305USA
- Chan Zuckerberg BiohubSan FranciscoCA94158USA
| |
Collapse
|
5
|
Deafness-in-a-dish: modeling hereditary deafness with inner ear organoids. Hum Genet 2021; 141:347-362. [PMID: 34342719 PMCID: PMC9035009 DOI: 10.1007/s00439-021-02325-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/24/2021] [Indexed: 12/27/2022]
Abstract
Sensorineural hearing loss (SNHL) is a major cause of functional disability in both the developed and developing world. While hearing aids and cochlear implants provide significant benefit to many with SNHL, neither targets the cellular and molecular dysfunction that ultimately underlies SNHL. The successful development of more targeted approaches, such as growth factor, stem cell, and gene therapies, will require a yet deeper understanding of the underlying molecular mechanisms of human hearing and deafness. Unfortunately, the human inner ear cannot be biopsied without causing significant, irreversible damage to the hearing or balance organ. Thus, much of our current understanding of the cellular and molecular biology of human deafness, and of the human auditory system more broadly, has been inferred from observational and experimental studies in animal models, each of which has its own advantages and limitations. In 2013, researchers described a protocol for the generation of inner ear organoids from pluripotent stem cells (PSCs), which could serve as scalable, high-fidelity alternatives to animal models. Here, we discuss the advantages and limitations of conventional models of the human auditory system, describe the generation and characteristics of PSC-derived inner ear organoids, and discuss several strategies and recent attempts to model hereditary deafness in vitro. Finally, we suggest and discuss several focus areas for the further, intensive characterization of inner ear organoids and discuss the translational applications of these novel models of the human inner ear.
Collapse
|
6
|
Mehmood A, Ali W, Din ZU, Song S, Sohail M, Shah W, Guo J, Guo RY, Ilahi I, Shah S, Al-Shaebi F, Zeb L, Asiamah EA, Al-Dhamin Z, Bilal H, Li B. Clustered regularly interspaced short palindromic repeats as an advanced treatment for Parkinson's disease. Brain Behav 2021; 11:e2280. [PMID: 34291612 PMCID: PMC8413717 DOI: 10.1002/brb3.2280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/26/2021] [Accepted: 06/27/2021] [Indexed: 12/04/2022] Open
Abstract
Recently, genome-editing technology like clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 has improved the translational gap in the treatments mediated through gene therapy. The advantages of the CRISPR system, such as, work in the living cells and tissues, candidate this technique for the employing in experiments and the therapy of central nervous system diseases. Parkinson's disease (PD) is a widespread, disabling, neurodegenerative disease induced by dopaminergic neuron loss and linked to progressive motor impairment. Pathophysiological basis knowledge of PD has modified the PD classification model and expresses in the sporadic and familial types. Analyses of the earliest genetic linkage have shown in PD the inclusion of synuclein alpha (SNCA) genomic duplication and SNCA mutations in the familial types of PD pathogenesis. This review analyzes the structure, development, and function in genome editing regulated through the CRISPR/Cas9. Also, it explains the genes associated with PD pathogenesis and the appropriate modifications to favor PD. This study follows the direction by understanding the PD linking analyses in which the CRISPR technique is applied. Finally, this study explains the limitations and future trends of CRISPR service in relation to the genome-editing process in PD patients' induced pluripotent stem cells.
Collapse
Affiliation(s)
- Arshad Mehmood
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, P. R. China.,Key Laboratory of Neurology of Hebei Province, Shijiazhuang, Hebei, 050000, P. R. China
| | - Wajid Ali
- Key Laboratory of Functional Inorganic Materials Chemistry, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Zaheer Ud Din
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Shuang Song
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, P. R. China.,Key Laboratory of Neurology of Hebei Province, Shijiazhuang, Hebei, 050000, P. R. China
| | - Muhammad Sohail
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Wahid Shah
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Jiangyuan Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, P. R. China.,Key Laboratory of Neurology of Hebei Province, Shijiazhuang, Hebei, 050000, P. R. China
| | - Ruo-Yi Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, P. R. China.,Key Laboratory of Neurology of Hebei Province, Shijiazhuang, Hebei, 050000, P. R. China
| | - Ikram Ilahi
- Department of Zoology, University of Malakand, Chakdara, Khyber Pakhtunkhwa, 18800, Pakistan
| | - Suleman Shah
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, Hebei, 050017, China
| | - Fadhl Al-Shaebi
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, 050017, China
| | - Liaqat Zeb
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, P. R. China
| | - Ernest Amponsah Asiamah
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei, 050017, China
| | - Zaid Al-Dhamin
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, China
| | - Hazrat Bilal
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, Guangxi, 541004, China
| | - Bin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, P. R. China.,Key Laboratory of Neurology of Hebei Province, Shijiazhuang, Hebei, 050000, P. R. China
| |
Collapse
|
7
|
Induced Pluripotent Stem Cells (iPSCs) Provide a Potentially Unlimited T Cell Source for CAR-T Cell Development and Off-the-Shelf Products. Pharm Res 2021; 38:931-945. [PMID: 34114161 DOI: 10.1007/s11095-021-03067-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/24/2021] [Indexed: 12/28/2022]
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy has been increasingly conducted for cancer patients in clinical settings. Progress in this therapeutic approach is hampered by the lack of a solid manufacturing process, T lymphocytes, and tumor-specific antigens. T cell source used in CAR-T cell therapy is derived predominantly from the patient's own T lymphocytes, which makes this approach impracticable to patients with progressive diseases and T leukemia. The generation of autologous CAR-T cells is time-consuming due to the lack of readily available T lymphocytes and is not applicable for third-party patients. Pluripotent stem cells, such as human induced pluripotent stem cells (hiPSCs), can provide an unlimited T cell source for CAR-T cell development with the potential of generating off-the-shelf T cell products. T-iPSCs (iPSC-derived T cells) are phenotypically defined, expandable, and as functional as physiological T cells. The combination of iPSC and CAR technologies provides an exciting opportunity to oncology and greatly facilitates cell-based therapy for cancer patients. However, T-iPSCs, in combination with CARs, are at the early stage of development and need further pre-clinical and clinical studies. This review will critically discuss the progress made in iPSC-derived T cells and provides a roadmap for the development of CAR iPSC-derived T cells and off-the-shelf T-iPSCs.
Collapse
|
8
|
Coccia E, Ahfeldt T. Towards physiologically relevant human pluripotent stem cell (hPSC) models of Parkinson's disease. Stem Cell Res Ther 2021; 12:253. [PMID: 33926571 PMCID: PMC8082939 DOI: 10.1186/s13287-021-02326-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/05/2021] [Indexed: 02/06/2023] Open
Abstract
The derivation of human embryonic stem cells followed by the discovery of induced pluripotent stem cells and leaps in genome editing approaches have continuously fueled enthusiasm for the development of new models of neurodegenerative diseases such as Parkinson's disease (PD). PD is characterized by the relative selective loss of dopaminergic neurons (DNs) in specific areas of substantia nigra pars compacta (SNpc). While degeneration in late stages can be widespread, there is stereotypic early degeneration of these uniquely vulnerable neurons. Various causes of selective vulnerability have been investigated but much remains unclear. Most studies have sought to identify cell autonomous properties of the most vulnerable neurons. However, recent findings from genetic studies and model systems have added to our understanding of non-cell autonomous contributions including regional-specific neuro-immune interactions with astrocytes, resident or damage-activated microglia, neuro-glia cell metabolic interactions, involvement of endothelial cells, and damage to the vascular system. All of these contribute to specific vulnerability and, along with aging and environmental factors, might be integrated in a complex stressor-threshold model of neurodegeneration. In this forward-looking review, we synthesize recent advances in the field of PD modeling using human pluripotent stem cells, with an emphasis on organoid and complex co-culture models of the nigrostriatal niche, with emerging CRISPR applications to edit or perturb expression of causal PD genes and associated risk factors, such as GBA, to understand the impact of these genes on relevant phenotypes.
Collapse
Affiliation(s)
- Elena Coccia
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, US
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, US
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, US
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, US
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, US
| | - Tim Ahfeldt
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, US.
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, US.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, US.
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, US.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, US.
| |
Collapse
|
9
|
Mehrjardi NZ, Molcanyi M, Hatay FF, Timmer M, Shahbazi E, Ackermann JP, Herms S, Heilmann-Heimbach S, Wunderlich TF, Prochnow N, Haghikia A, Lampert A, Hescheler J, Neugebauer EAM, Baharvand H, Šarić T. Acquisition of chromosome 1q duplication in parental and genome-edited human-induced pluripotent stem cell-derived neural stem cells results in their higher proliferation rate in vitro and in vivo. Cell Prolif 2020; 53:e12892. [PMID: 32918782 PMCID: PMC7574866 DOI: 10.1111/cpr.12892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 02/06/2023] Open
Abstract
Objectives Genetic engineering of human‐induced pluripotent stem cell‐derived neural stem cells (hiPSC‐NSC) may increase the risk of genomic aberrations. Therefore, we asked whether genetic modification of hiPSC‐NSCs exacerbates chromosomal abnormalities that may occur during passaging and whether they may cause any functional perturbations in NSCs in vitro and in vivo. Materials and Methods The transgenic cassette was inserted into the AAVS1 locus, and the genetic integrity of zinc‐finger nuclease (ZFN)‐modified hiPSC‐NSCs was assessed by the SNP‐based karyotyping. The hiPSC‐NSC proliferation was assessed in vitro by the EdU incorporation assay and in vivo by staining of brain slices with Ki‐67 antibody at 2 and 8 weeks after transplantation of ZFN‐NSCs with and without chromosomal aberration into the striatum of immunodeficient rats. Results During early passages, no chromosomal abnormalities were detected in unmodified or ZFN‐modified hiPSC‐NSCs. However, at higher passages both cell populations acquired duplication of the entire long arm of chromosome 1, dup(1)q. ZNF‐NSCs carrying dup(1)q exhibited higher proliferation rate than karyotypically intact cells, which was partly mediated by increased expression of AKT3 located on Chr1q. Compared to karyotypically normal ZNF‐NSCs, cells with dup(1)q also exhibited increased proliferation in vivo 2 weeks, but not 2 months, after transplantation. Conclusions These results demonstrate that, independently of ZFN‐editing, hiPSC‐NSCs have a propensity for acquiring dup(1)q and this aberration results in increased proliferation which might compromise downstream hiPSC‐NSC applications.
Collapse
Affiliation(s)
- Narges Zare Mehrjardi
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marek Molcanyi
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Firuze Fulya Hatay
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Marco Timmer
- Department of Neurosurgery, University Hospital Cologne, Cologne, Germany
| | - Ebrahim Shahbazi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Justus P Ackermann
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Stefan Herms
- Department of Genomics, Life & Brain Center, Institute for Human Genetics, University of Bonn, Bonn, Germany.,Department of Biomedicine, Medical Genetics, Research Group Genomics, University Hospital Basel, Basel, Switzerland
| | - Stefanie Heilmann-Heimbach
- Department of Genomics, Life & Brain Center, Institute for Human Genetics, University of Bonn, Bonn, Germany
| | - Thomas F Wunderlich
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Max Planck Institute for Metabolism Research and Institute for Genetics, University of Cologne, Cologne, Germany.,Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Nora Prochnow
- Clinic for Neurology, St. Josef-Hospital, Clinic of the Ruhr-University Bochum, Bochum, Germany
| | - Aiden Haghikia
- Clinic for Neurology, St. Josef-Hospital, Clinic of the Ruhr-University Bochum, Bochum, Germany
| | - Angelika Lampert
- Institute of Physiology, Uniklinik, RWTH Aachen University, Aachen, Germany
| | - Jürgen Hescheler
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Edmund A M Neugebauer
- Medizinische Hochschule Brandenburg Theodor Fontane, Campus Neuruppin, Neuruppin, Germany
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Tomo Šarić
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|
10
|
Safari F, Hatam G, Behbahani AB, Rezaei V, Barekati-Mowahed M, Petramfar P, Khademi F. CRISPR System: A High-throughput Toolbox for Research and Treatment of Parkinson's Disease. Cell Mol Neurobiol 2020; 40:477-493. [PMID: 31773362 DOI: 10.1007/s10571-019-00761-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/14/2019] [Indexed: 12/13/2022]
Abstract
In recent years, the innovation of gene-editing tools such as the CRISPR/Cas9 system improves the translational gap of treatments mediated by gene therapy. The privileges of CRISPR/Cas9 such as working in living cells and organs candidate this technology for using in research and treatment of the central nervous system (CNS) disorders. Parkinson's disease (PD) is a common, debilitating, neurodegenerative disorder which occurs due to loss of dopaminergic neurons and is associated with progressive motor dysfunction. Knowledge about the pathophysiological basis of PD has altered the classification system of PD, which manifests in familial and sporadic forms. The first genetic linkage studies in PD demonstrated the involvement of Synuclein alpha (SNCA) mutations and SNCA genomic duplications in the pathogenesis of PD familial forms. Subsequent studies have also insinuated mutations in leucine repeat kinase-2 (LRRK2), Parkin, PTEN-induced putative kinase 1 (PINK1), as well as DJ-1 causing familial forms of PD. This review will attempt to discuss the structure, function, and development in genome editing mediated by CRISP/Cas9 system. Further, it describes the genes involved in the pathogenesis of PD and the pertinent alterations to them. We will pursue this line by delineating the PD linkage studies in which CRISPR system was employed. Finally, we will discuss the pros and cons of CRISPR employment vis-à-vis the process of genome editing in PD patients' iPSCs.
Collapse
Affiliation(s)
- Fatemeh Safari
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Hatam
- Basic Sciences in Infectious Diseases Research Center, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Behzad Behbahani
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Rezaei
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mazyar Barekati-Mowahed
- Department of Physiology & Biophysics, School of Medicine, Case Western Reserve University, Ohio, USA
| | - Peyman Petramfar
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Khademi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
11
|
Nikitina TV, Kashevarova AA, Lebedev IN. Chromosomal Instability and Karyotype Correction in Human Induced Pluripotent Stem Cells. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419100090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Tweats D, Eastmond DA, Lynch AM, Elhajouji A, Froetschl R, Kirsch-Volders M, Marchetti F, Masumura K, Pacchierotti F, Schuler M. Role of aneuploidy in the carcinogenic process: Part 3 of the report of the 2017 IWGT workgroup on assessing the risk of aneugens for carcinogenesis and hereditary diseases. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 847:403032. [PMID: 31699349 DOI: 10.1016/j.mrgentox.2019.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/10/2019] [Accepted: 03/13/2019] [Indexed: 12/13/2022]
Abstract
Aneuploidy is regarded as a hallmark of cancer, however, its role is complex with both pro- and anti-carcinogenic effects evident. In this IWGT review, we consider the role of aneuploidy in cancer biology; cancer risk associated with constitutive aneuploidy; rodent carcinogenesis with known chemical aneugens; and chemotherapy-related malignant neoplasms. Aneuploidy is seen at various stages in carcinogenesis. However, the relationship between induced aneuploidy occurring after exposure and clonal aneuploidy present in tumours is not clear. Recent evidence indicates that the induction of chromosomal instability (CIN), may be more important than aneuploidy per se, in the carcinogenic process. Down Syndrome, trisomy 21, is associated with altered hematopoiesis in utero which, in combination with subsequent mutations, results in an increased risk for acute megakaryoblastic and lymphoblastic leukemias. In contrast, there is reduced cancer risk for most solid tumours in Down Syndrome. Mouse models with high levels of aneuploidy are also associated with increased cancer risk for particular tumours with long latencies, but paradoxically other types of tumour often show decreased incidence. The aneugens reviewed that induce cancer in humans and animals all possess other carcinogenic properties, such as mutagenicity, clastogenicity, cytotoxicity, organ toxicities, hormonal and epigenetic changes which likely account for, or interact with aneuploidy, to cause carcinogenesis. Although the role that aneuploidy plays in carcinogenesis has not been fully established, in many cases, it may not play a primary causative role. Tubulin-disrupting aneugens that do not possess other properties linked to carcinogenesis, were not carcinogenic in rodents. Similarly, in humans, for the tubulin-disrupting aneugens colchicine and albendazole, there is no reported association with increased cancer risk. There is a need for further mechanistic studies on agents that induce aneuploidy, particularly by mechanisms other than tubulin disruption and to determine the role of aneuploidy in pre-neoplastic events and in early and late stage neoplasia.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Kenichi Masumura
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kanagawa, Japan
| | - Francesca Pacchierotti
- Health Protection Technology Division, Laboratory of Biosafety and Risk Assessment, ENEA, CR Casaccia, Rome, Italy
| | | |
Collapse
|
13
|
Hayashi Y, Ohnuma K, Furue MK. Pluripotent Stem Cell Heterogeneity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1123:71-94. [DOI: 10.1007/978-3-030-11096-3_6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Simonova VV, Vetchinova AS, Novosadova EV, Khaspekov LG, Illarioshkin SN. Genome Editing and the Problem of Tetraploidy in Cell Modeling of the Genetic Form of Parkinsonism. BIOCHEMISTRY (MOSCOW) 2018; 83:1040-1045. [PMID: 30472942 DOI: 10.1134/s0006297918090055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The prevalent form of familial parkinsonism is caused by mutations in the LRRK2 gene encoding for the mitochondrial protein kinase. In the review, we discuss possible causes of appearance of tetraploid cells in neuronal precursors obtained from induced pluripotent stem cells from patients with the LRRK2-associated form of parkinsonism after genome editing procedure. As LRRK2 protein participates in cell proliferation and maintenance of the nuclear envelope, spindle fibers, and cytoskeleton, mutations in the LRRK2 gene can affect protein functions and lead, via various mechanisms, to the mitotic machinery disintegration and chromosomal aberration. These abnormalities can appear at different stages of fibroblast reprogramming; therefore, editing of the LRRK2 nucleotide sequence should be done during or before the reprogramming stage.
Collapse
Affiliation(s)
- V V Simonova
- Research Center of Neurology, Moscow, 125367, Russia
| | | | - E V Novosadova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| | - L G Khaspekov
- Research Center of Neurology, Moscow, 125367, Russia.
| | | |
Collapse
|
15
|
Cytogenetic Analysis of the Results of Genome Editing on the Cell Model of Parkinson’s Disease. Bull Exp Biol Med 2018; 165:378-381. [DOI: 10.1007/s10517-018-4174-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Indexed: 12/13/2022]
|
16
|
Keller A, Dziedzicka D, Zambelli F, Markouli C, Sermon K, Spits C, Geens M. Genetic and epigenetic factors which modulate differentiation propensity in human pluripotent stem cells. Hum Reprod Update 2018; 24:162-175. [PMID: 29377992 DOI: 10.1093/humupd/dmx042] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/23/2017] [Accepted: 12/22/2017] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Human pluripotent stem cell (hPSC) lines are known to have a bias in their differentiation. This gives individual cell lines a propensity to preferentially differentiate towards one germ layer or cell type over others. Chromosomal aberrations, mitochondrial mutations, genetic diversity and epigenetic variance are the main drivers of this phenomenon, and can lead to a wide range of phenotypes. OBJECTIVE AND RATIONALE Our aim is to provide a comprehensive overview of the different factors which influence differentiation propensity. Specifically, we sought to highlight known genetic variances and their mechanisms, in addition to more general observations from larger abnormalities. Furthermore, we wanted to provide an up-to-date list of a growing number of predictive indicators which are able to identify differentiation propensity before the initiation of differentiation. As differentiation propensity can lead to difficulties in both research as well as clinical translation, our thorough overview could be a useful tool. SEARCH METHODS Combinations of the following key words were applied as search criteria in the PubMed database: embryonic stem cells, induced pluripotent stem cells, differentiation propensity (also: potential, efficiency, capacity, bias, variability), epigenetics, chromosomal abnormalities, genetic aberrations, X chromosome inactivation, mitochondrial function, mitochondrial metabolism, genetic diversity, reprogramming, predictive marker, residual stem cell, clinic. Only studies in English were included, ranging from 2000 to 2017, with a majority ranging from 2010 to 1017. Further manuscripts were added from cross-references. OUTCOMES Differentiation propensity is affected by a wide variety of (epi)genetic factors. These factors clearly lead to a loss of differentiation capacity, preference towards certain cell types and oftentimes, phenotypes which begin to resemble cancer. Broad changes in (epi)genetics, such as aneuploidies or wide-ranging modifications to the epigenetic landscape tend to lead to extensive, less definite changes in differentiation capacity, whereas more specific abnormalities often have precise ramifications in which certain cell types become more preferential. Furthermore, there appears to be a greater, though often less considered, contribution to differentiation propensity by factors such as mitochondria and inherent genetic diversity. Varied differentiation capacity can also lead to potential consequences in the clinical translation of hPSC, including the occurrence of residual undifferentiated stem cells, and the transplantation of potentially transformed cells. WIDER IMPLICATIONS As hPSC continue to advance towards the clinic, our understanding of them progresses as well. As a result, the challenges faced become more numerous, but also more clear. If the transition to the clinic is to be achieved with a minimum number of potential setbacks, thorough evaluation of the cells will be an absolute necessity. Altered differentiation propensity represents at least one such hurdle, for which researchers and eventually clinicians will need to find solutions. Already, steps are being taken to tackle the issue, though further research will be required to evaluate any long-term risks it poses.
Collapse
Affiliation(s)
- Alexander Keller
- Research group Reproduction and Genetics (REGE), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Jette, Belgium
| | - Dominika Dziedzicka
- Research group Reproduction and Genetics (REGE), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Jette, Belgium
| | - Filippo Zambelli
- Research group Reproduction and Genetics (REGE), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Jette, Belgium
| | - Christina Markouli
- Research group Reproduction and Genetics (REGE), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Jette, Belgium
| | - Karen Sermon
- Research group Reproduction and Genetics (REGE), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Jette, Belgium
| | - Claudia Spits
- Research group Reproduction and Genetics (REGE), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Jette, Belgium
| | - Mieke Geens
- Research group Reproduction and Genetics (REGE), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Jette, Belgium
| |
Collapse
|
17
|
Schukken KM, Foijer F. CIN and Aneuploidy: Different Concepts, Different Consequences. Bioessays 2017; 40. [PMID: 29160563 DOI: 10.1002/bies.201700147] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/10/2017] [Indexed: 12/19/2022]
Abstract
Chromosomal instability (CIN) and aneuploidy are similar concepts but not synonymous. CIN is the process that leads to chromosome copy number alterations, and aneuploidy is the result. While CIN and resulting aneuploidy often cause growth defects, they are also selected for in cancer cells. Although such contradicting fates may seem paradoxical at first, they can be better understood when CIN and aneuploidy are assessed separately, taking into account the in vitro or in vivo context, the rate of CIN, and severity of the aneuploid karyotype. As CIN can only be measured in living cells, which proves to be technically challenging in vivo, aneuploidy is more frequently quantified. However, CIN rates might be more predictive for tumor outcome than assessing aneuploidy rates alone. In reviewing the literature, we therefore conclude that there is an urgent need for new models in which we can monitor chromosome mis-segregation and its consequences in vivo. Also see the video abstract here: https://youtu.be/fL3LxZduchg.
Collapse
Affiliation(s)
- Klaske M Schukken
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, 9713 AV, Groningen, The Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
18
|
iPSCs and fibroblast subclones from the same fibroblast population contain comparable levels of sequence variations. Proc Natl Acad Sci U S A 2017; 114:1964-1969. [PMID: 28167771 DOI: 10.1073/pnas.1616035114] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Genome integrity of induced pluripotent stem cells (iPSCs) has been extensively studied in recent years, but it is still unclear whether iPSCs contain more genomic variations than cultured somatic cells. One important question is the origin of genomic variations detected in iPSCs-whether iPSC reprogramming induces such variations. Here, we undertook a unique approach by deriving fibroblast subclones and clonal iPSC lines from the same fibroblast population and applied next-generation sequencing to compare genomic variations in these lines. Targeted deep sequencing of parental fibroblasts revealed that most variants detected in clonal iPSCs and fibroblast subclones were rare variants inherited from the parental fibroblasts. Only a small number of variants remained undetectable in the parental fibroblasts, which were thus likely to be de novo. Importantly, the clonal iPSCs and fibroblast subclones contained comparable numbers of de novo variants. Collectively, our data suggest that iPSC reprogramming is not mutagenic.
Collapse
|
19
|
Jacobs K, Zambelli F, Mertzanidou A, Smolders I, Geens M, Nguyen HT, Barbé L, Sermon K, Spits C. Higher-Density Culture in Human Embryonic Stem Cells Results in DNA Damage and Genome Instability. Stem Cell Reports 2016; 6:330-41. [PMID: 26923824 PMCID: PMC4788786 DOI: 10.1016/j.stemcr.2016.01.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/24/2016] [Accepted: 01/25/2016] [Indexed: 12/01/2022] Open
Abstract
Human embryonic stem cells (hESC) show great promise for clinical and research applications, but their well-known proneness to genomic instability hampers the development to their full potential. Here, we demonstrate that medium acidification linked to culture density is the main cause of DNA damage and genomic alterations in hESC grown on feeder layers, and this even in the short time span of a single passage. In line with this, we show that increasing the frequency of the medium refreshments minimizes the levels of DNA damage and genetic instability. Also, we show that cells cultured on laminin-521 do not present this increase in DNA damage when grown at high density, although the (long-term) impact on their genomic stability remains to be elucidated. Our results explain the high levels of genome instability observed over the years by many laboratories worldwide, and show that the development of optimal culture conditions is key to solving this problem. Increased culture density induces DNA damage and genomic alterations in hESC Medium acidification due to lactic acid accumulation is the main driver More frequent medium refreshments rescues genomic integrity in high-density culture Laminin-521 reduces DNA damage but has no clear effect on genomic instability
Collapse
Affiliation(s)
- Kurt Jacobs
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium; Institute of Molecular Cancer Research, University of Zurich (UZH), Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Filippo Zambelli
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Afroditi Mertzanidou
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Ilse Smolders
- Research Group Experimental Neuropharmacology, Center for Neurosciences C4N, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Mieke Geens
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Ha Thi Nguyen
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium; Center for Molecular Biology, Institute of Research and Development, Duy Tan University, K7/25 Quang Trung, Danang 550000, Vietnam
| | - Lise Barbé
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Karen Sermon
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Claudia Spits
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
20
|
Young CS, Hicks MR, Ermolova NV, Nakano H, Jan M, Younesi S, Karumbayaram S, Kumagai-Cresse C, Wang D, Zack JA, Kohn DB, Nakano A, Nelson SF, Miceli MC, Spencer MJ, Pyle AD. A Single CRISPR-Cas9 Deletion Strategy that Targets the Majority of DMD Patients Restores Dystrophin Function in hiPSC-Derived Muscle Cells. Cell Stem Cell 2016; 18:533-40. [PMID: 26877224 DOI: 10.1016/j.stem.2016.01.021] [Citation(s) in RCA: 272] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/18/2015] [Accepted: 01/22/2016] [Indexed: 12/28/2022]
Abstract
Mutations in DMD disrupt the reading frame, prevent dystrophin translation, and cause Duchenne muscular dystrophy (DMD). Here we describe a CRISPR/Cas9 platform applicable to 60% of DMD patient mutations. We applied the platform to DMD-derived hiPSCs where successful deletion and non-homologous end joining of up to 725 kb reframed the DMD gene. This is the largest CRISPR/Cas9-mediated deletion shown to date in DMD. Use of hiPSCs allowed evaluation of dystrophin in disease-relevant cell types. Cardiomyocytes and skeletal muscle myotubes derived from reframed hiPSC clonal lines had restored dystrophin protein. The internally deleted dystrophin was functional as demonstrated by improved membrane integrity and restoration of the dystrophin glycoprotein complex in vitro and in vivo. Furthermore, miR31 was reduced upon reframing, similar to observations in Becker muscular dystrophy. This work demonstrates the feasibility of using a single CRISPR pair to correct the reading frame for the majority of DMD patients.
Collapse
Affiliation(s)
- Courtney S Young
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA; Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA; Department of Neurology, University of California, Los Angeles, CA 90095, USA
| | - Michael R Hicks
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Natalia V Ermolova
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA; Department of Neurology, University of California, Los Angeles, CA 90095, USA
| | - Haruko Nakano
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA; Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Majib Jan
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA; CIRM Bridges Program, California State University, Northridge, CA 91330, USA
| | - Shahab Younesi
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA; CIRM Bridges Program, California State University, Northridge, CA 91330, USA
| | - Saravanan Karumbayaram
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Chino Kumagai-Cresse
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA; Department of Neurology, University of California, Los Angeles, CA 90095, USA
| | - Derek Wang
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Jerome A Zack
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Donald B Kohn
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA; Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Atsushi Nakano
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA; Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA; Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Stanley F Nelson
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA; Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA; Department of Human Genetics, University of California, Los Angeles, CA 90095, USA
| | - M Carrie Miceli
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA; Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Melissa J Spencer
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA; Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA; Department of Neurology, University of California, Los Angeles, CA 90095, USA.
| | - April D Pyle
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA; Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
21
|
Turner EC, Huang CL, Sawhney N, Govindarajan K, Clover AJP, Martin K, Browne TC, Whelan D, Kumar AHS, Mackrill JJ, Wang S, Schmeckpeper J, Stocca A, Pierce WG, Leblond AL, Cai L, O'Sullivan DM, Buneker CK, Choi J, MacSharry J, Ikeda Y, Russell SJ, Caplice NM. A Novel Selectable Islet 1 Positive Progenitor Cell Reprogrammed to Expandable and Functional Smooth Muscle Cells. Stem Cells 2016; 34:1354-68. [PMID: 26840832 DOI: 10.1002/stem.2319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 12/17/2015] [Indexed: 11/08/2022]
Abstract
Disorders affecting smooth muscle structure/function may require technologies that can generate large scale, differentiated and contractile smooth muscle cells (SMC) suitable for cell therapy. To date no clonal precursor population that provides large numbers of differentiated SMC in culture has been identified in a rodent. Identification of such cells may also enhance insight into progenitor cell fate decisions and the relationship between smooth muscle precursors and disease states that implicate differentiated SMC. In this study, we used classic clonal expansion techniques to identify novel self-renewing Islet 1 (Isl-1) positive primitive progenitor cells (PPC) within rat bone marrow that exhibited canonical stem cell markers and preferential differentiation towards a smooth muscle-like fate. We subsequently used molecular tagging to select Isl-1 positive clonal populations from expanded and de novo marrow cell populations. We refer to these previously undescribed cells as the PPC given its stem cell marker profile, and robust self-renewal capacity. PPC could be directly converted into induced smooth muscle cells (iSMC) using single transcription factor (Kruppel-like factor 4) knockdown or transactivator (myocardin) overexpression in contrast to three control cells (HEK 293, endothelial cells and mesenchymal stem cells) where such induction was not possible. iSMC exhibited immuno- and cytoskeletal-phenotype, calcium signaling profile and contractile responses similar to bona fide SMC. Passaged iSMC could be expanded to a scale sufficient for large scale tissue replacement. PPC and reprogramed iSMC so derived may offer future opportunities to investigate molecular, structure/function and cell-based replacement therapy approaches to diverse cardiovascular, respiratory, gastrointestinal, and genitourinary diseases that have as their basis smooth muscle cell functional aberrancy or numerical loss. Stem Cells 2016;34:1354-1368.
Collapse
Affiliation(s)
- Elizabeth C Turner
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Chien-Ling Huang
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Neha Sawhney
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Kalaimathi Govindarajan
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Anthony J P Clover
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Kenneth Martin
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Tara C Browne
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Derek Whelan
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Arun H S Kumar
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - John J Mackrill
- Department of Physiology, University College Cork, Biosciences Institute, College Road, Cork, Ireland
| | - Shaohua Wang
- Molecular Medicine Program, Mayo Clinic and Foundation, 200 First St, Rochester, Minnesota, 55905
| | - Jeffrey Schmeckpeper
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Alessia Stocca
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - William G Pierce
- Department of Physiology, University College Cork, Biosciences Institute, College Road, Cork, Ireland
| | - Anne-Laure Leblond
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Liquan Cai
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Donnchadh M O'Sullivan
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Chirlei K Buneker
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Janet Choi
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - John MacSharry
- Alimentary Pharmabiotic Centre (APC), Biosciences Institute, University College Cork, Cork, Ireland
| | - Yasuhiro Ikeda
- Molecular Medicine Program, Mayo Clinic and Foundation, 200 First St, Rochester, Minnesota, 55905
| | - Stephen J Russell
- Molecular Medicine Program, Mayo Clinic and Foundation, 200 First St, Rochester, Minnesota, 55905
| | - Noel M Caplice
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| |
Collapse
|
22
|
Kim SY, Im K, Park SN, Kwon J, Kim JA, Choi Q, Hwang SM, Han SH, Kwon S, Oh IH, Lee DS. Asymmetric aneuploidy in mesenchymal stromal cells detected by in situ karyotyping and fluorescence in situ hybridization: suggestions for reference values for stem cells. Stem Cells Dev 2015; 24:77-92. [PMID: 25019198 DOI: 10.1089/scd.2014.0137] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cytogenetic testing is important to ensure patient safety before therapeutic application of mesenchymal stromal cells (MSCs). However, the standardized methods and criteria for the screening of chromosomal abnormalities of MSCs have not yet been determined. We investigated the frequency of cytogenetic aberrations in MSCs using G-banding and fluorescence in situ hybridization (FISH) and suggest reference values for aneuploidy in MSCs. Cytogenetic analysis was performed on 103 consecutive cultures from 68 MSCs (25 adipose-origin, 20 bone marrow-origin, 18 cord blood-origin, and 5 neural stem cells; 8 from adipose tissue of patients with breast cancer and 60 from healthy donors). We compared the MSC aneuploidy patterns with those of hematological malignancies and benign hematological diseases. Interphase FISH showed variable aneuploid clone proportions (1%-20%) in 68 MSCs. The aneuploidy patterns were asymmetric, and aneuploidy of chromosomes 16, 17, 18, and X occurred most frequently. Clones with polysomy were significantly more abundant than those with monosomy. The cutoff value of maximum polysomy rates (upper 95th percentile value) was 13.0%. By G-banding, 5 of the 61 MSCs presented clonal chromosomal aberrations. Aneuploidy was asymmetric in the malignant hematological diseases, while it was symmetric in the benign hematological diseases. We suggest an aneuploidy cutoff value of 13%, and FISH for aneuploidy of chromosomes 16, 17, 18, and X would be informative to evaluate the genetic stability of MSCs. Although it is unclear whether the aneuploid clones might represent the senescent cell population or transformed cells, more attention should be focused on the safety of MSCs, and G-banding combined with FISH should be performed.
Collapse
Affiliation(s)
- Seon Young Kim
- 1 Department of Laboratory Medicine, Seoul National University College of Medicine , Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Sypecka J, Sarnowska A. Mesenchymal cells of umbilical cord and umbilical cord blood as a source of human oligodendrocyte progenitors. Life Sci 2015; 139:24-9. [PMID: 26285174 DOI: 10.1016/j.lfs.2015.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/06/2015] [Accepted: 08/11/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Joanna Sypecka
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5, Pawinskiego str., 02-106 Warsaw, Poland.
| | - Anna Sarnowska
- Translative Platform for Regenerative Medicine, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland; Stem Cell Bioengineering Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland
| |
Collapse
|
24
|
Conti V, Pantaleo M, Barba C, Baroni G, Mei D, Buccoliero AM, Giglio S, Giordano F, Baek ST, Gleeson JG, Guerrini R. Focal dysplasia of the cerebral cortex and infantile spasms associated with somatic 1q21.1-q44 duplication including the AKT3 gene. Clin Genet 2014; 88:241-7. [PMID: 25091978 DOI: 10.1111/cge.12476] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/15/2014] [Accepted: 07/30/2014] [Indexed: 02/01/2023]
Abstract
Somatic and germline duplications or activating mutations of AKT3 have been reported in patients with hemimegalencephaly and megalencephaly. We performed array comparative genomic hybridization on brain tissue and blood in 16 consecutive patients with symptomatic epilepsy due to focal or multilobar malformations of cortical development who underwent surgical treatment of epilepsy. One patient with infantile spasms and a dysplastic left frontal lobe harboured a somatic trisomy of the 1q21.1-q44 chromosomal region, encompassing the AKT3 gene, in the dysplastic brain tissue but not in blood and saliva. Histopathology revealed severe cortical dyslamination, a thin cortex in the premotor area with microgyri and microsulci, immature neurons with disoriented dendrites and areas of cortical heterotopia in the sub-cortical white matter. These cytoarchitectural changes are close to those defining type Ib focal cortical dysplasia. Immunohistochemistry in brain specimens showed hyperactivation of the PI3K/AKT/mTOR pathway. These findings indicate that AKT3 upregulation may cause focal malformations of cortical development. There appears to be an etiologic continuum between hemimegalencephaly and focal cortical dysplastic lesions. The extent of brain malformations due to AKT3 upregulation may be related to the embryonic stage when the post-zygotic gene alteration occurs.
Collapse
Affiliation(s)
- V Conti
- Pediatric Neurology and Neurogenetics Unit and Laboratories, A. Meyer Children's Hospital - University of Florence, Florence, Italy
| | - M Pantaleo
- Medical Genetics Unit, A. Meyer Children's Hospital - University of Florence, Florence, Italy
| | - C Barba
- Pediatric Neurology and Neurogenetics Unit and Laboratories, A. Meyer Children's Hospital - University of Florence, Florence, Italy
| | - G Baroni
- Department of Critical Care Medicine and Surgery, University of Florence, Florence, Italy
| | - D Mei
- Pediatric Neurology and Neurogenetics Unit and Laboratories, A. Meyer Children's Hospital - University of Florence, Florence, Italy
| | - A M Buccoliero
- Pathology Unit, A. Meyer Children's Hospital, Florence, Italy
| | - S Giglio
- Medical Genetics Unit, A. Meyer Children's Hospital - University of Florence, Florence, Italy
| | - F Giordano
- Division of Neurosurgery, A. Meyer Children's Hospital, Florence, Italy
| | - S T Baek
- Department of Neurosciences, Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA, USA
| | - J G Gleeson
- Department of Neurosciences, Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA, USA
| | - R Guerrini
- Pediatric Neurology and Neurogenetics Unit and Laboratories, A. Meyer Children's Hospital - University of Florence, Florence, Italy.,Epilepsy and Clinical Neurophysiology Laboratory, IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| |
Collapse
|
25
|
McCole RB, Fonseka CY, Koren A, Wu CT. Abnormal dosage of ultraconserved elements is highly disfavored in healthy cells but not cancer cells. PLoS Genet 2014; 10:e1004646. [PMID: 25340765 PMCID: PMC4207606 DOI: 10.1371/journal.pgen.1004646] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 08/04/2014] [Indexed: 12/17/2022] Open
Abstract
Ultraconserved elements (UCEs) are strongly depleted from segmental duplications and copy number variations (CNVs) in the human genome, suggesting that deletion or duplication of a UCE can be deleterious to the mammalian cell. Here we address the process by which CNVs become depleted of UCEs. We begin by showing that depletion for UCEs characterizes the most recent large-scale human CNV datasets and then find that even newly formed de novo CNVs, which have passed through meiosis at most once, are significantly depleted for UCEs. In striking contrast, CNVs arising specifically in cancer cells are, as a rule, not depleted for UCEs and can even become significantly enriched. This observation raises the possibility that CNVs that arise somatically and are relatively newly formed are less likely to have established a CNV profile that is depleted for UCEs. Alternatively, lack of depletion for UCEs from cancer CNVs may reflect the diseased state. In support of this latter explanation, somatic CNVs that are not associated with disease are depleted for UCEs. Finally, we show that it is possible to observe the CNVs of induced pluripotent stem (iPS) cells become depleted of UCEs over time, suggesting that depletion may be established through selection against UCE-disrupting CNVs without the requirement for meiotic divisions.
Collapse
Affiliation(s)
- Ruth B. McCole
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Chamith Y. Fonseka
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Biological and Biomedical Sciences PhD program, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Amnon Koren
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - C.-ting Wu
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
26
|
Nguyen HT, Markouli C, Geens M, Barbe L, Sermon K, Spits C. Human embryonic stem cells show low-grade microsatellite instability. Mol Hum Reprod 2014; 20:981-9. [DOI: 10.1093/molehr/gau059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
27
|
Jacobs K, Mertzanidou A, Geens M, Thi Nguyen H, Staessen C, Spits C. Low-grade chromosomal mosaicism in human somatic and embryonic stem cell populations. Nat Commun 2014; 5:4227. [DOI: 10.1038/ncomms5227] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 05/23/2014] [Indexed: 12/14/2022] Open
|
28
|
Abstract
Chromosome (cytogenetic) analysis is widely used for the detection of chromosome instability. When followed by G-banding and molecular techniques such as fluorescence in situ hybridization (FISH), this assay has the powerful ability to analyze individual cells for aberrations that involve gains or losses of portions of the genome and rearrangements involving one or more chromosomes. In humans, chromosome abnormalities occur in approximately 1 per 160 live births(1,2), 60-80% of all miscarriages(3,4), 10% of stillbirths(2,5), 13% of individuals with congenital heart disease(6), 3-6% of infertility cases(2), and in many patients with developmental delay and birth defects(7). Cytogenetic analysis of malignancy is routinely used by researchers and clinicians, as observations of clonal chromosomal abnormalities have been shown to have both diagnostic and prognostic significance(8,9). Chromosome isolation is invaluable for gene therapy and stem cell research of organisms including nonhuman primates and rodents(10-13). Chromosomes can be isolated from cells of live tissues, including blood lymphocytes, skin fibroblasts, amniocytes, placenta, bone marrow, and tumor specimens. Chromosomes are analyzed at the metaphase stage of mitosis, when they are most condensed and therefore more clearly visible. The first step of the chromosome isolation technique involves the disruption of the spindle fibers by incubation with Colcemid, to prevent the cells from proceeding to the subsequent anaphase stage. The cells are then treated with a hypotonic solution and preserved in their swollen state with Carnoy's fixative. The cells are then dropped on to slides and can then be utilized for a variety of procedures. G-banding involves trypsin treatment followed by staining with Giemsa to create characteristic light and dark bands. The same procedure to isolate chromosomes can be used for the preparation of cells for procedures such as fluorescence in situ hybridization (FISH), comparative genomic hybridization (CGH), and spectral karyotyping (SKY)(14,15).
Collapse
Affiliation(s)
- Bradley Howe
- Department of Genetics, Louisiana State University Health Science Center
| | | | | |
Collapse
|
29
|
Abstract
Chromosome (cytogenetic) analysis is widely used for the detection of chromosome instability. When followed by G-banding and molecular techniques such as fluorescence in situ hybridization (FISH), this assay has the powerful ability to analyze individual cells for aberrations that involve gains or losses of portions of the genome and rearrangements involving one or more chromosomes. In humans, chromosome abnormalities occur in approximately 1 per 160 live births(1,2), 60-80% of all miscarriages(3,4), 10% of stillbirths(2,5), 13% of individuals with congenital heart disease(6), 3-6% of infertility cases(2), and in many patients with developmental delay and birth defects(7). Cytogenetic analysis of malignancy is routinely used by researchers and clinicians, as observations of clonal chromosomal abnormalities have been shown to have both diagnostic and prognostic significance(8,9). Chromosome isolation is invaluable for gene therapy and stem cell research of organisms including nonhuman primates and rodents(10-13). Chromosomes can be isolated from cells of live tissues, including blood lymphocytes, skin fibroblasts, amniocytes, placenta, bone marrow, and tumor specimens. Chromosomes are analyzed at the metaphase stage of mitosis, when they are most condensed and therefore more clearly visible. The first step of the chromosome isolation technique involves the disruption of the spindle fibers by incubation with Colcemid, to prevent the cells from proceeding to the subsequent anaphase stage. The cells are then treated with a hypotonic solution and preserved in their swollen state with Carnoy's fixative. The cells are then dropped on to slides and can then be utilized for a variety of procedures. G-banding involves trypsin treatment followed by staining with Giemsa to create characteristic light and dark bands. The same procedure to isolate chromosomes can be used for the preparation of cells for procedures such as fluorescence in situ hybridization (FISH), comparative genomic hybridization (CGH), and spectral karyotyping (SKY)(14,15).
Collapse
Affiliation(s)
- Bradley Howe
- Department of Genetics, Louisiana State University Health Science Center
| | | | | |
Collapse
|
30
|
Steinemann D, Göhring G, Schlegelberger B. Genetic instability of modified stem cells - a first step towards malignant transformation? AMERICAN JOURNAL OF STEM CELLS 2013; 2:39-51. [PMID: 23671815 PMCID: PMC3636728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/08/2013] [Indexed: 06/02/2023]
Abstract
Induced pluripotent stem cells (iPSC) are important tools in regenerative medicine. Yet, it is becoming increasingly clear that the reprogramming process, including retroviral transduction with potent oncogenes like c-Myc and long-term cultivation, may induce genetic instability. Genetically altered iPS cells can grow out and dominate the cell culture. This review intends to comprehensively summarize the current knowledge on genetic instability of embryonic and iPSCs, with an emphasis on cytogenetic alterations, and compares these data with what is known from tumorigenesis.
Collapse
Affiliation(s)
- Doris Steinemann
- Institute of Cell and Molecular Pathology, Hannover Medical School Hannover, Germany
| | | | | |
Collapse
|
31
|
Hussein SMI, Elbaz J, Nagy AA. Genome damage in induced pluripotent stem cells: Assessing the mechanisms and their consequences. Bioessays 2012; 35:152-62. [DOI: 10.1002/bies.201200114] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|