1
|
Tsukamoto Y, Okajima T. O-GlcNAc glycans in the mammalian extracellular environment. Carbohydr Res 2025; 549:109378. [PMID: 39813972 DOI: 10.1016/j.carres.2025.109378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/23/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
Extracellular O-GlcNAc is a unique post-translational modification that occurs in the epidermal growth factor-like (EGF) domain of the endoplasmic reticulum (ER) lumen. The EGF domain-specific O-GlcNAc transferase (EOGT), catalyzes the transfer of O-GlcNAc to serine/threonine residues of the C-terminal EGF domain. Thus, EOGT-dependent O-GlcNAc modifications are mainly found in selective proteins that are localized in the extracellular spaces or extracellular regions of membrane proteins. In mammals, O-GlcNAc glycans can be extended to oligosaccharide structures similar to other types of EGF domain-specific O-glycans. The in vivo importance of O-GlcNAc glycans in mammals has been demonstrated in a human congenital disease caused by EOGT mutations and is extensively supported by genetic deletion in mice. This article reviews the findings on the structure and biochemical mechanism of EOGT-catalyzed O-GlcNAc biosynthesis, modified proteins, and in vivo functions elucidated by recent research in mammals.
Collapse
Affiliation(s)
- Yohei Tsukamoto
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, Aichi, 464-8601, Japan
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, Aichi, 464-8601, Japan.
| |
Collapse
|
2
|
Chatham JC, Patel RP. Protein glycosylation in cardiovascular health and disease. Nat Rev Cardiol 2024; 21:525-544. [PMID: 38499867 DOI: 10.1038/s41569-024-00998-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 03/20/2024]
Abstract
Protein glycosylation, which involves the attachment of carbohydrates to proteins, is one of the most abundant protein co-translational and post-translational modifications. Advances in technology have substantially increased our knowledge of the biosynthetic pathways involved in protein glycosylation, as well as how changes in glycosylation can affect cell function. In addition, our understanding of the role of protein glycosylation in disease processes is growing, particularly in the context of immune system function, infectious diseases, neurodegeneration and cancer. Several decades ago, cell surface glycoproteins were found to have an important role in regulating ion transport across the cardiac sarcolemma. However, with very few exceptions, our understanding of how changes in protein glycosylation influence cardiovascular (patho)physiology remains remarkably limited. Therefore, in this Review, we aim to provide an overview of N-linked and O-linked protein glycosylation, including intracellular O-linked N-acetylglucosamine protein modification. We discuss our current understanding of how all forms of protein glycosylation contribute to normal cardiovascular function and their roles in cardiovascular disease. Finally, we highlight potential gaps in our knowledge about the effects of protein glycosylation on the heart and vascular system, highlighting areas for future research.
Collapse
Affiliation(s)
- John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Rakesh P Patel
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
3
|
LoPilato RK, Kroeger H, Mohan SK, Lauderdale JD, Grimsey N, Haltiwanger RS. Two NOTCH1 O-fucose sites have opposing functions in mouse retinal angiogenesis. Glycobiology 2023; 33:661-672. [PMID: 37329502 PMCID: PMC10560083 DOI: 10.1093/glycob/cwad048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/19/2023] Open
Abstract
Previous in vitro studies demonstrated that Fringe glycosylation of the NOTCH1 extracellular domain at O-fucose residues in Epidermal Growth Factor-like Repeats (EGFs) 6 and 8 is a significant contributor to suppression of NOTCH1 activation by JAG1 or enhancement of NOTCH1 activation by DLL1, respectively. In this study, we sought to evaluate the significance of these glycosylation sites in a mammalian model by generating 2 C57BL/6J mouse lines carrying NOTCH1 point mutations, which eliminate O-fucosylation and Fringe activity at EGFs 6 (T232V) or 8 (T311V). We assessed changes to morphology during retinal angiogenesis, a process in which expression of Notch1, Jag1, Dll4, Lfng, Mfng, and Rfng genes coordinate cell-fate decisions to grow vessel networks. In the EGF6 O-fucose mutant (6f/6f) retinas, we observed reduced vessel density and branching, suggesting that this mutant is a Notch1 hypermorph. This finding agrees with prior cell-based studies showing that the 6f mutation increased JAG1 activation of NOTCH1 during co-expression with inhibitory Fringes. Although we predicted that the EGF8 O-fucose mutant (8f/8f) would not complete embryonic development due to the direct involvement of the O-fucose in engaging ligand, the 8f/8f mice were viable and fertile. In the 8f/8f retina, we measured increased vessel density consistent with established Notch1 hypomorphs. Overall, our data support the importance of NOTCH1 O-fucose residues for pathway function and confirms that single O-glycan sites are rich in signaling instructions for mammalian development.
Collapse
Affiliation(s)
- Rachel K LoPilato
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, United States
| | - Heike Kroeger
- Department of Cellular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, United States
| | - Sneha K Mohan
- Neuroscience Division of Biomedical and Translational Sciences Institute, University of Georgia, Athens, GA 30602, United States
| | - James D Lauderdale
- Department of Cellular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, United States
- Neuroscience Division of Biomedical and Translational Sciences Institute, University of Georgia, Athens, GA 30602, United States
| | - Neil Grimsey
- Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, United States
| | - Robert S Haltiwanger
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, United States
| |
Collapse
|
4
|
Zhang H, Zhang J, Dong H, Kong Y, Guan Y. Emerging field: O-GlcNAcylation in ferroptosis. Front Mol Biosci 2023; 10:1203269. [PMID: 37251080 PMCID: PMC10213749 DOI: 10.3389/fmolb.2023.1203269] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
In 2012, researchers proposed a non-apoptotic, iron-dependent form of cell death caused by lipid peroxidation called ferroptosis. During the past decade, a comprehensive understanding of ferroptosis has emerged. Ferroptosis is closely associated with the tumor microenvironment, cancer, immunity, aging, and tissue damage. Its mechanism is precisely regulated at the epigenetic, transcriptional, and post-translational levels. O-GlcNAc modification (O-GlcNAcylation) is one of the post-translational modifications of proteins. Cells can modulate cell survival in response to stress stimuli, including apoptosis, necrosis, and autophagy, through adaptive regulation by O-GlcNAcylation. However, the function and mechanism of these modifications in regulating ferroptosis are only beginning to be understood. Here, we review the relevant literature within the last 5 years and present the current understanding of the regulatory function of O-GlcNAcylation in ferroptosis and the potential mechanisms that may be involved, including antioxidant defense system-controlled reactive oxygen species biology, iron metabolism, and membrane lipid peroxidation metabolism. In addition to these three areas of ferroptosis research, we examine how changes in the morphology and function of subcellular organelles (e.g., mitochondria and endoplasmic reticulum) involved in O-GlcNAcylation may trigger and amplify ferroptosis. We have dissected the role of O-GlcNAcylation in regulating ferroptosis and hope that our introduction will provide a general framework for those interested in this field.
Collapse
Affiliation(s)
- Hongshuo Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Juan Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Haojie Dong
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Ying Kong
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
5
|
Mesini N, Fiorcari S, Atene CG, Maffei R, Potenza L, Luppi M, Marasca R. Role of Notch2 pathway in mature B cell malignancies. Front Oncol 2023; 12:1073672. [PMID: 36686759 PMCID: PMC9846264 DOI: 10.3389/fonc.2022.1073672] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/13/2022] [Indexed: 01/05/2023] Open
Abstract
In recent decades, the Notch pathway has been characterized as a key regulatory signaling of cell-fate decisions evolutionarily conserved in many organisms and different tissues during lifespan. At the same time, many studies suggest a link between alterations of this signaling and tumor genesis or progression. In lymphopoiesis, the Notch pathway plays a fundamental role in the correct differentiation of T and B cells, but its deregulated activity leads to leukemic onset and evolution. Notch and its ligands Delta/Jagged exhibit a pivotal role in the crosstalk between leukemic cells and their environment. This review is focused in particular on Notch2 receptor activity. Members of Notch2 pathway have been reported to be mutated in Chronic Lymphocytic Leukemia (CLL), Splenic Marginal Zone Lymphoma (SMZL) and Nodal Marginal Zone Lymphoma (NMZL). CLL is a B cell malignancy in which leukemic clones establish supportive crosstalk with non-malignant cells of the tumor microenvironment to grow, survive, and resist even the new generation of drugs. SMZL and NMZL are indolent B cell neoplasms distinguished by a distinct pattern of dissemination. In SMZL leukemic cells affect mainly the spleen, bone marrow, and peripheral blood, while NMZL has a leading nodal distribution. Since Notch2 is involved in the commitment of leukemic cells to the marginal zone as a major regulator of B cell physiological differentiation, it is predominantly affected by the molecular lesions found in both SMZL and NMZL. In light of these findings, a better understanding of the Notch receptor family pathogenic role, in particular Notch2, is desirable because it is still incomplete, not only in the physiological development of B lymphocytes but also in leukemia progression and resistance. Several therapeutic strategies capable of interfering with Notch signaling, such as monoclonal antibodies, enzyme or complex inhibitors, are being analyzed. To avoid the unwanted multiple "on target" toxicity encountered during the systemic inhibition of Notch signaling, the study of an appropriate pharmaceutical formulation is a pressing need. This is why, to date, there are still no Notch-targeted therapies approved. An accurate analysis of the Notch pathway could be useful to drive the discovery of new therapeutic targets and the development of more effective therapies.
Collapse
Affiliation(s)
- Nicolò Mesini
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefania Fiorcari
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Modena, Italy
| | - Claudio Giacinto Atene
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Modena, Italy
| | - Rossana Maffei
- Hematology Unit, Department of Oncology and Hematology, Azienda-Ospedaliero Universitaria (AOU) of Modena, Modena, Italy
| | - Leonardo Potenza
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Modena, Italy,Hematology Unit, Department of Oncology and Hematology, Azienda-Ospedaliero Universitaria (AOU) of Modena, Modena, Italy
| | - Mario Luppi
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Modena, Italy,Hematology Unit, Department of Oncology and Hematology, Azienda-Ospedaliero Universitaria (AOU) of Modena, Modena, Italy
| | - Roberto Marasca
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Modena, Italy,Hematology Unit, Department of Oncology and Hematology, Azienda-Ospedaliero Universitaria (AOU) of Modena, Modena, Italy,*Correspondence: Roberto Marasca,
| |
Collapse
|
6
|
Gao Y, Fu Z, Guan J, Liu X, Zhang Q. The role of Notch signaling pathway in metabolic bone diseases. Biochem Pharmacol 2023; 207:115377. [PMID: 36513140 DOI: 10.1016/j.bcp.2022.115377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Metabolic bone diseases is the third most common endocrine diseases after diabetes and thyroid diseases. More than 500 million people worldwide suffer from metabolic bone diseases. The generation and development of bone metabolic diseases is a complex process regulated by multiple signaling pathways, among which the Notch signaling pathway is one of the most important pathways. The Notch signaling pathway regulates the differentiation and function of osteoblasts and osteoclasts, and affects the process of cartilage formation, bone formation and bone resorption. Genetic mutations in upstream and downstream of Notch signaling genes can lead to a series of metabolic bone diseases, such as Alagille syndrome, Adams-Oliver syndrome and spondylocostal dysostosis. In this review, we analyzed the mechanisms of Notch ligands, Notch receptors and signaling molecules in the process of signal transduction, and summarized the progress on the pathogenesis and clinical manifestations of bone metabolic diseases caused by Notch gene mutation. We hope to draw attention to the role of the Notch signaling pathway in metabolic bone diseases and provide new ideas and approaches for the diagnosis and treatment of metabolic bone diseases.
Collapse
Affiliation(s)
- Yongguang Gao
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China.
| | - Zhanda Fu
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China
| | - Junxia Guan
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China
| | - Xinhua Liu
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China
| | - Qing Zhang
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China.
| |
Collapse
|
7
|
Lukas M, Harald G, Sanz J, Trippel M, Sabina G, Jochen R. Cutaneous squamous cell carcinoma in an autosomal-recessive Adams-Oliver syndrome patient with a novel frameshift pathogenic variant in the EOGT gene. Am J Med Genet A 2022; 188:3318-3323. [PMID: 36059114 PMCID: PMC9826191 DOI: 10.1002/ajmg.a.62961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 06/20/2022] [Accepted: 07/16/2022] [Indexed: 01/31/2023]
Abstract
Aplasia cutis congenita (ACC) of the scalp and terminal transverse limb defects (TTLD) are the characteristic findings of Adams-Oliver syndrome (AOS). The variable clinical spectrum further includes cardiac, neurologic, renal, and ophthalmological findings. Associated genes in AOS are in the Notch and the CDC42/Rac1 signaling pathways. Both autosomal-dominant and autosomal-recessive inheritances have been reported, the latter with pathogenic variants in DOCK6 or EOGT. The EOGT-associated recessive type of AOS has been postulated to present a more favorable prognosis. We here report a 12-year-old girl from a refugee family of Iraq with consanguineous parents. She was born with a severe phenotype of AOS presenting a large ACC of the scalp with an underlying skull defect, which was often infected and inflamed. Afterward, additional ulceration developed. Furthermore, the girl showed microcephaly, TTLD on both hands and feet, and neurological findings: spastic paresis, epilepsy and suspicion of intellectual deficit. Molecular genetic analysis (next-generation sequencing) revealed a novel frameshift mutation in the EOGT gene in Exon 13 in homozygous constellation: c.1013dupA p.(Asn338Lysfs*24). A biopsy within an ulceration at the scalp ACC showed a cutaneous squamous cell carcinoma (cSCC) with local invasive growth into the dura, the meninges, and the cortex. Treatment including surgical resection and focal irradiation was not curative and the girl deceased 6 months after initial diagnosis. This report on a patient with AOS and an autosomal-recessive EOGT gene variant dying of a local aggressive cSCC at an ACC lesion shows that close monitoring of ACC is essential.
Collapse
Affiliation(s)
- Meyer‐Landolt Lukas
- Division of Pediatric Hematology & Oncology, Department of Pediatrics, InselspitalUniversity Hospital, University of BernBernSwitzerland
| | - Gaspar Harald
- Department of Human Genetics, InselspitalBern University Hospital, University of BernBernSwitzerland,Present address:
Medical Genetics MainzMainzGermany
| | - Javier Sanz
- Department of Human Genetics, InselspitalBern University Hospital, University of BernBernSwitzerland
| | | | - Gallati Sabina
- Department of Human Genetics, InselspitalBern University Hospital, University of BernBernSwitzerland
| | - Rössler Jochen
- Division of Pediatric Hematology & Oncology, Department of Pediatrics, InselspitalUniversity Hospital, University of BernBernSwitzerland
| |
Collapse
|
8
|
Brewitz L, Onisko BC, Schofield CJ. Combined proteomic and biochemical analyses redefine the consensus sequence requirement for epidermal growth factor-like domain hydroxylation. J Biol Chem 2022; 298:102129. [PMID: 35700824 PMCID: PMC9293771 DOI: 10.1016/j.jbc.2022.102129] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022] Open
Abstract
Epidermal growth factor-like domains (EGFDs) have important functions in cell-cell signaling. Both secreted and cell surface human EGFDs are subject to extensive modifications, including aspartate and asparagine residue C3-hydroxylations catalyzed by the 2-oxoglutarate oxygenase aspartate/asparagine-β-hydroxylase (AspH). Although genetic studies show AspH is important in human biology, studies on its physiological roles have been limited by incomplete knowledge of its substrates. Here, we redefine the consensus sequence requirements for AspH-catalyzed EGFD hydroxylation based on combined analysis of proteomic mass spectrometric data and mass spectrometry-based assays with isolated AspH and peptide substrates. We provide cellular and biochemical evidence that the preferred site of EGFD hydroxylation is embedded within a disulfide-bridged macrocycle formed of 10 amino acid residues. This definition enabled the identification of previously unassigned hydroxylation sites in three EGFDs of human fibulins as AspH substrates. A non-EGFD containing protein, lymphocyte antigen-6/plasminogen activator urokinase receptor domain containing protein 6B (LYPD6B) was shown to be a substrate for isolated AspH, but we did not observe evidence for LYPD6B hydroxylation in cells. AspH-catalyzed hydroxylation of fibulins is of particular interest given their important roles in extracellular matrix dynamics. In conclusion, these results lead to a revision of the consensus substrate requirements for AspH and expand the range of observed and potential AspH-catalyzed hydroxylation in cells, which will enable future study of the biological roles of AspH.
Collapse
Affiliation(s)
- Lennart Brewitz
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom.
| | | | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
9
|
Abstract
Notch signalling is an evolutionarily highly conserved signalling mechanism governing differentiation and regulating homeostasis in many tissues. In this review, we discuss recent advances in our understanding of the roles that Notch signalling plays in the vasculature. We describe how Notch signalling regulates different steps during the genesis and remodelling of blood vessels (vasculogenesis and angiogenesis), including critical roles in assigning arterial and venous identities to the emerging blood vessels and regulation of their branching. We then proceed to discuss how experimental perturbation of Notch signalling in the vasculature later in development affects vascular homeostasis. In this review, we also describe how dysregulated Notch signalling, as a consequence of direct mutations of genes in the Notch pathway or aberrant Notch signalling output, contributes to various types of vascular disease, including CADASIL, Snedden syndrome and pulmonary arterial hypertension. Finally, we point out some of the current knowledge gaps and identify remaining challenges in understanding the role of Notch in the vasculature, which need to be addressed to pave the way for Notch-based therapies to cure or ameliorate vascular disease.
Collapse
Affiliation(s)
- Francesca Del Gaudio
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Dongli Liu
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden,Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
10
|
Wang W, Okajima T, Takeuchi H. Significant Roles of Notch O-Glycosylation in Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061783. [PMID: 35335147 PMCID: PMC8950332 DOI: 10.3390/molecules27061783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 12/27/2022]
Abstract
Notch signaling, which was initially identified in Drosophila wing morphogenesis, plays pivotal roles in cell development and differentiation. Optimal Notch pathway activity is essential for normal development and dysregulation of Notch signaling leads to various human diseases, including many types of cancers. In hematopoietic cancers, such as T-cell acute lymphoblastic leukemia, Notch plays an oncogenic role, while in acute myeloid leukemia, it has a tumor-suppressive role. In solid tumors, such as hepatocellular carcinoma and medulloblastoma, Notch may have either an oncogenic or tumor-suppressive role, depending on the context. Aberrant expression of Notch receptors or ligands can alter the ligand-dependent Notch signaling and changes in trafficking can lead to ligand-independent signaling. Defects in any of the two signaling pathways can lead to tumorigenesis and tumor progression. Strikingly, O-glycosylation is one such process that modulates ligand–receptor binding and trafficking. Three types of O-linked modifications on the extracellular epidermal growth factor-like (EGF) repeats of Notch receptors are observed, namely O-glucosylation, O-fucosylation, and O-N-acetylglucosamine (GlcNAc) modifications. In addition, O-GalNAc mucin-type O-glycosylation outside the EGF repeats also appears to occur in Notch receptors. In this review, we first briefly summarize the basics of Notch signaling, describe the latest information on O-glycosylation of Notch receptors classified on a structural basis, and finally describe the regulation of Notch signaling by O-glycosylation in cancer.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Molecular Biochemistry, Nagoya University School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan; (W.W.); (T.O.)
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Nagoya University School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan; (W.W.); (T.O.)
- Institute for Glyco-Core Research (iGCORE), Integrated Glyco-Biomedical Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Hideyuki Takeuchi
- Department of Molecular Biochemistry, Nagoya University School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan; (W.W.); (T.O.)
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
- Correspondence:
| |
Collapse
|
11
|
Lo PW, Okajima T. Eogt-catalyzed O-GlcNAcylation. TRENDS GLYCOSCI GLYC 2022. [DOI: 10.4052/tigg.2033.1j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Pei-Wen Lo
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine
| | - Tetsuya Okajima
- Institute for Glyco-core Research (iGCORE), Nagoya University
| |
Collapse
|
12
|
Affiliation(s)
- Pei-Wen Lo
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine
| |
Collapse
|
13
|
OUP accepted manuscript. Glycobiology 2022; 32:616-628. [DOI: 10.1093/glycob/cwac015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/18/2022] [Accepted: 03/10/2022] [Indexed: 11/14/2022] Open
|
14
|
Barua R, Mizuno K, Tashima Y, Ogawa M, Takeuchi H, Taguchi A, Okajima T. Bioinformatics and Functional Analyses Implicate Potential Roles for EOGT and L-fringe in Pancreatic Cancers. Molecules 2021; 26:molecules26040882. [PMID: 33562410 PMCID: PMC7915272 DOI: 10.3390/molecules26040882] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Notch signaling receptors, ligands, and their downstream target genes are dysregulated in pancreatic ductal adenocarcinoma (PDAC), suggesting a role of Notch signaling in pancreatic tumor development and progression. However, dysregulation of Notch signaling by post-translational modification of Notch receptors remains poorly understood. Here, we analyzed the Notch-modifying glycosyltransferase involved in the regulation of the ligand-dependent Notch signaling pathway. Bioinformatic analysis revealed that the expression of epidermal growth factor (EGF) domain-specific O-linked N-acetylglucosamine (EOGT) and Lunatic fringe (LFNG) positively correlates with a subset of Notch signaling genes in PDAC. The lack of EOGT or LFNG expression inhibited the proliferation and migration of Panc-1 cells, as observed by the inhibition of Notch activation. EOGT expression is significantly increased in the basal subtype, and low expression of both EOGT and LFNG predicts better overall survival in PDAC patients. These results imply potential roles for EOGT- and LFNG-dependent Notch signaling in PDAC.
Collapse
Affiliation(s)
- Rashu Barua
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan; (R.B.); (Y.T.); (M.O.); (H.T.)
| | - Kazuyuki Mizuno
- Division of Molecular Diagnostics, Aichi Cancer Center, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi 464-8681, Japan; (K.M.); (A.T.)
| | - Yuko Tashima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan; (R.B.); (Y.T.); (M.O.); (H.T.)
- Institute for Glyco-core Research (iGCORE), Integrated Glyco-Biomedical Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 Nagoya, Japan
| | - Mitsutaka Ogawa
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan; (R.B.); (Y.T.); (M.O.); (H.T.)
- Institute for Glyco-core Research (iGCORE), Integrated Glyco-Biomedical Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 Nagoya, Japan
| | - Hideyuki Takeuchi
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan; (R.B.); (Y.T.); (M.O.); (H.T.)
- Institute for Glyco-core Research (iGCORE), Integrated Glyco-Biomedical Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 Nagoya, Japan
| | - Ayumu Taguchi
- Division of Molecular Diagnostics, Aichi Cancer Center, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi 464-8681, Japan; (K.M.); (A.T.)
- Division of Advanced Cancer Diagnostics, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan; (R.B.); (Y.T.); (M.O.); (H.T.)
- Institute for Glyco-core Research (iGCORE), Integrated Glyco-Biomedical Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 Nagoya, Japan
- Correspondence: ; Tel.: +81-52-744-2068; Fax: +81-52-744-2069
| |
Collapse
|
15
|
Matsumoto K, Luther KB, Haltiwanger RS. Diseases related to Notch glycosylation. Mol Aspects Med 2020; 79:100938. [PMID: 33341260 DOI: 10.1016/j.mam.2020.100938] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022]
Abstract
The Notch receptors are a family of transmembrane proteins that mediate direct cell-cell interactions and control numerous cell-fate specifications in humans. The extracellular domains of mammalian Notch proteins contain 29-36 tandem epidermal growth factor-like (EGF) repeats, most of which have O-linked glycan modifications: O-glucose added by POGLUT1, O-fucose added by POFUT1 and elongated by Fringe enzymes, and O-GlcNAc added by EOGT. The extracellular domain is also N-glycosylated. Mutations in the glycosyltransferases modifying Notch have been identified in several diseases, including Dowling-Degos Disease (haploinsufficiency of POFUT1 or POGLUT1), a form of limb-girdle muscular dystrophy (autosomal recessive mutations in POGLUT1), Spondylocostal Dysostosis 3 (autosomal recessive mutations in LFNG), Adams-Oliver syndrome (autosomal recessive mutations in EOGT), and some cancers (amplification, gain or loss-of-function of POFUT1, Fringe enzymes, POGLUT1, MGAT3). Here we review the characteristics of these diseases and potential molecular mechanisms.
Collapse
Affiliation(s)
- Kenjiroo Matsumoto
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Kelvin B Luther
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Robert S Haltiwanger
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA.
| |
Collapse
|
16
|
Pandey A, Niknejad N, Jafar-Nejad H. Multifaceted regulation of Notch signaling by glycosylation. Glycobiology 2020; 31:8-28. [PMID: 32472127 DOI: 10.1093/glycob/cwaa049] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/18/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
To build a complex body composed of various cell types and tissues and to maintain tissue homeostasis in the postembryonic period, animals use a small number of highly conserved intercellular communication pathways. Among these is the Notch signaling pathway, which is mediated via the interaction of transmembrane Notch receptors and ligands usually expressed by neighboring cells. Maintaining optimal Notch pathway activity is essential for normal development, as evidenced by various human diseases caused by decreased and increased Notch signaling. It is therefore not surprising that multiple mechanisms are used to control the activation of this pathway in time and space. Over the last 20 years, protein glycosylation has been recognized as a major regulatory mechanism for Notch signaling. In this review, we will provide a summary of the various types of glycan that have been shown to modulate Notch signaling. Building on recent advances in the biochemistry, structural biology, cell biology and genetics of Notch receptors and the glycosyltransferases that modify them, we will provide a detailed discussion on how various steps during Notch activation are regulated by glycans. Our hope is that the current review article will stimulate additional research in the field of Notch glycobiology and will potentially be of benefit to investigators examining the contribution of glycosylation to other developmental processes.
Collapse
Affiliation(s)
| | | | - Hamed Jafar-Nejad
- Department of Molecular and Human Genetics.,Development, Disease Models & Therapeutics Graduate Program.,Genetics & Genomics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
17
|
Alam SMD, Tsukamoto Y, Ogawa M, Senoo Y, Ikeda K, Tashima Y, Takeuchi H, Okajima T. N-Glycans on EGF domain-specific O-GlcNAc transferase (EOGT) facilitate EOGT maturation and peripheral endoplasmic reticulum localization. J Biol Chem 2020; 295:8560-8574. [PMID: 32376684 DOI: 10.1074/jbc.ra119.012280] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/30/2020] [Indexed: 02/03/2023] Open
Abstract
Epidermal growth factor (EGF) domain-specific O-GlcNAc transferase (EOGT) is an endoplasmic reticulum (ER)-resident protein that modifies EGF repeats of Notch receptors and thereby regulates Delta-like ligand-mediated Notch signaling. Several EOGT mutations that may affect putative N-glycosylation consensus sites are recorded in the cancer database, but the presence and function of N-glycans in EOGT have not yet been characterized. Here, we identified N-glycosylation sites in mouse EOGT and elucidated their molecular functions. Three predicted N-glycosylation consensus sequences on EOGT are highly conserved among mammalian species. Within these sites, we found that Asn-263 and Asn-354, but not Asn-493, are modified with N-glycans. Lectin blotting, endoglycosidase H digestion, and MS analysis revealed that both residues are modified with oligomannose N-glycans. Loss of an individual N-glycan on EOGT did not affect its endoplasmic reticulum (ER) localization, enzyme activity, and ability to O-GlcNAcylate Notch1 in HEK293T cells. However, simultaneous substitution of both N-glycosylation sites affected both EOGT maturation and expression levels without an apparent change in enzymatic activity, suggesting that N-glycosylation at a single site is sufficient for EOGT maturation and expression. Accordingly, a decrease in O-GlcNAc stoichiometry was observed in Notch1 co-expressed with an N263Q/N354Q variant compared with WT EOGT. Moreover, the N263Q/N354Q variant exhibited altered subcellular distribution within the ER in HEK293T cells, indicating that N-glycosylation of EOGT is required for its ER localization at the cell periphery. These results suggest critical roles of N-glycans in sustaining O-GlcNAc transferase function both by maintaining EOGT levels and by ensuring its proper subcellular localization in the ER.
Collapse
Affiliation(s)
- Sayad Md Didarul Alam
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yohei Tsukamoto
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mitsutaka Ogawa
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuya Senoo
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazutaka Ikeda
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,RIKEN, Center for Integrative Medical Sciences, Suehiro-cho, Tsurumi, Yokohama, Japan
| | - Yuko Tashima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideyuki Takeuchi
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
18
|
Ogawa M, Tashima Y, Sakaguchi Y, Takeuchi H, Okajima T. Contribution of extracellular O-GlcNAc to the stability of folded epidermal growth factor-like domains and Notch1 trafficking. Biochem Biophys Res Commun 2020; 526:184-190. [PMID: 32201074 DOI: 10.1016/j.bbrc.2020.03.066] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/10/2020] [Indexed: 01/05/2023]
Abstract
The Notch signaling pathway is highly conserved and essential in animal development and tissue homeostasis. Regulation of Notch signaling is a crucial process for human health. Ligands initiate a signal cascade by binding to Notch receptors expressed on the neighboring cell. Notch receptors interact with ligands through their epidermal growth factor-like repeats (EGF repeats). Most EGF repeats are modified by O-glycosylation with residues, such as O-linked N-acetylglucosamine (O-GlcNAc), O-fucose, and O-glucose. A recent study revealed the distinct roles of these O-glycans in ligand binding, processing, and trafficking of Notch receptors. In particular, O-GlcNAc glycans are essential for Delta-like (DLL) ligand-mediated Notch signaling. In this study, we showed that O-GlcNAc promotes Notch1 trafficking to the cell surfaces under the condition that O-fucose and O-glucose are removed from consecutive EGF repeats of Notch1. Through in vitro experiments, we showed that O-GlcNAc mediates the stability of EGF domains in the same manner as O-fucose and O-glucose. Thus, O-GlcNAc on EGF domains possesses a shared function in the stability of EGF domains and Notch1 trafficking.
Collapse
Affiliation(s)
- Mitsutaka Ogawa
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan
| | - Yuko Tashima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan
| | - Yamato Sakaguchi
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan
| | - Hideyuki Takeuchi
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan.
| |
Collapse
|
19
|
Urata Y, Takeuchi H. Effects of Notch glycosylation on health and diseases. Dev Growth Differ 2019; 62:35-48. [PMID: 31886522 DOI: 10.1111/dgd.12643] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022]
Abstract
Notch signaling is an evolutionarily conserved signaling pathway and is essential for cell-fate specification in metazoans. Dysregulation of Notch signaling results in various human diseases, including cardiovascular defects and cancer. In 2000, Fringe, a known regulator of Notch signaling, was discovered as a Notch-modifying glycosyltransferase. Since then, glycosylation-a post-translational modification involving literal sugars-on the Notch extracellular domain has been noted as a critical mechanism for the regulation of Notch signaling. Additionally, the presence of diverse O-glycans decorating Notch receptors has been revealed in the extracellular domain epidermal growth factor-like (EGF) repeats. Here, we concisely summarize the recent studies in the human diseases associated with aberrant Notch glycosylation.
Collapse
Affiliation(s)
- Yusuke Urata
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideyuki Takeuchi
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
20
|
Dudoignon B, Huber C, Michot C, Di Rocco F, Girard M, Lyonnet S, Rio M, Rabia SH, Daire VC, Baujat G. Expanding the phenotype in Adams-Oliver syndrome correlating with the genotype. Am J Med Genet A 2019; 182:29-37. [PMID: 31654484 DOI: 10.1002/ajmg.a.61364] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 12/17/2022]
Abstract
RATIONALE Adams-Oliver syndrome (AOS) is a genetic disorder characterized by the association of aplasia cutis congenita (ACC), terminal transverse limb defect (TTLD), congenital cardiac malformation (CCM), and minor features, such as cutaneous, neurological, and hepatic abnormalities (HAs). The aim of the study is to emphasize phenotype-genotype correlations in AOS. METHODS We studied 29 AOS patients. We recorded retrospectively detailed phenotype data, including clinical examination, biological analyses, and imaging. The molecular analysis was performed through whole exome sequencing (WES). RESULTS Twenty-nine patients (100%) presented with ACC, the principal inclusion criteria in the study. Seventeen of twenty-one (81%) had cutis marmorata telangiectasia congenita, 16/26 (62%) had TTLD, 14/23 (61%) had CCM, 7/20 (35%) had HAs, and 9/27 (33%) had neurological findings. WES was performed in 25 patients. Fourteen of twenty-five (56%) had alterations in the genes already described in AOS. CCM and HAs are particularly associated with the NOTCH1 genotype. TTLD is present in patients with DOCK6 and EOGT alterations. Neurological findings of variable degree were associated sometimes with DOCK6 and NOTCH1 rarely with EOGT. CONCLUSION AOS is characterized by a clinical and molecular variability. It appears that degrees of genotype-phenotype correlations exist for patients with identified pathogenic mutations, underlining the need to undertake a systematic but adjusted multidisciplinary assessment.
Collapse
Affiliation(s)
- Benjamin Dudoignon
- AP-HP, Service de Génétique Clinique, Necker-Enfants malades University Hospital, Paris, France
| | - Celine Huber
- INSERM, UMR1163, Iimagine Institute, Paris, France.,AP-HP, Reference Center for Skeletal Dysplasia, Paris, France
| | - Caroline Michot
- AP-HP, Service de Génétique Clinique, Necker-Enfants malades University Hospital, Paris, France.,INSERM, UMR1163, Iimagine Institute, Paris, France.,AP-HP, Reference Center for Skeletal Dysplasia, Paris, France
| | | | - Muriel Girard
- AP-HP, Liver Unit, National Reference Center for Biliary Atresia and Genetic Cholestasis, INSERM U1151/CNRS UMR 8253, Institut Necker-Enfants malades (INEM), Assistance Publique Hopitaux de Paris, Necker-Enfants malades Hospital, Paris, France
| | - Stanislas Lyonnet
- AP-HP, Service de Génétique Clinique, Necker-Enfants malades University Hospital, Paris, France
| | - Marlène Rio
- AP-HP, Service de Génétique Clinique, Necker-Enfants malades University Hospital, Paris, France
| | - Smail Hadj Rabia
- AP-HP, Department of Dermatology, Reference Center for Genodermatoses and Rare Skin Diseases (MAGEC), INSERM U1163, Descartes-Sorbonne Paris Cité University, Imagine Institute, Necker-Enfants malades University Hospital, Paris, France
| | - Valérie Cormier Daire
- AP-HP, Service de Génétique Clinique, Necker-Enfants malades University Hospital, Paris, France.,INSERM, UMR1163, Iimagine Institute, Paris, France.,AP-HP, Reference Center for Skeletal Dysplasia, Paris, France
| | - Geneviève Baujat
- AP-HP, Service de Génétique Clinique, Necker-Enfants malades University Hospital, Paris, France.,INSERM, UMR1163, Iimagine Institute, Paris, France.,AP-HP, Reference Center for Skeletal Dysplasia, Paris, France
| |
Collapse
|
21
|
Schröder KC, Duman D, Tekin M, Schanze D, Sukalo M, Meester J, Wuyts W, Zenker M. Adams–Oliver syndrome caused by mutations of the
EOGT
gene. Am J Med Genet A 2019; 179:2246-2251. [DOI: 10.1002/ajmg.a.61313] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Kim C. Schröder
- Institute of Human GeneticsUniversity Hospital Magdeburg Magdeburg Germany
| | - Duygu Duman
- Division of Pediatric Genetic Diseases, Department of PediatricsAnkara University Faculty of Medicine Ankara Turkey
- Department of AudiologyAnkara University Faculty of Health Sciences Ankara Turkey
| | - Mustafa Tekin
- Division of Pediatric Genetic Diseases, Department of PediatricsAnkara University Faculty of Medicine Ankara Turkey
- John P. Hussman Institute for Human Genomics and Dr. John T. Macdonald Foundation Department of Human Genetics, and Department of OtolaryngologyUniversity of Miami Miller School of Medicine Miami Florida
| | - Denny Schanze
- Institute of Human GeneticsUniversity Hospital Magdeburg Magdeburg Germany
| | - Maja Sukalo
- Institute of Human GeneticsUniversity Hospital Magdeburg Magdeburg Germany
| | - Josephina Meester
- Faculty of Medicine and Health Sciences, Center of Medical GeneticsUniversity of Antwerp and Antwerp University Hospital Antwerp Belgium
| | - Wim Wuyts
- Faculty of Medicine and Health Sciences, Center of Medical GeneticsUniversity of Antwerp and Antwerp University Hospital Antwerp Belgium
| | - Martin Zenker
- Institute of Human GeneticsUniversity Hospital Magdeburg Magdeburg Germany
| |
Collapse
|
22
|
Antfolk D, Antila C, Kemppainen K, Landor SKJ, Sahlgren C. Decoding the PTM-switchboard of Notch. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118507. [PMID: 31301363 PMCID: PMC7116576 DOI: 10.1016/j.bbamcr.2019.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/03/2019] [Accepted: 07/06/2019] [Indexed: 01/08/2023]
Abstract
The developmentally indispensable Notch pathway exhibits a high grade of pleiotropism in its biological output. Emerging evidence supports the notion of post-translational modifications (PTMs) as a modus operandi controlling dynamic fine-tuning of Notch activity. Although, the intricacy of Notch post-translational regulation, as well as how these modifications lead to multiples of divergent Notch phenotypes is still largely unknown, numerous studies show a correlation between the site of modification and the output. These include glycosylation of the extracellular domain of Notch modulating ligand binding, and phosphorylation of the PEST domain controlling half-life of the intracellular domain of Notch. Furthermore, several reports show that multiple PTMs can act in concert, or compete for the same sites to drive opposite outputs. However, further investigation of the complex PTM crosstalk is required for a complete understanding of the PTM-mediated Notch switchboard. In this review, we aim to provide a consistent and up-to-date summary of the currently known PTMs acting on the Notch signaling pathway, their functions in different contexts, as well as explore their implications in physiology and disease. Furthermore, we give an overview of the present state of PTM research methodology, and allude to a future with PTM-targeted Notch therapeutics.
Collapse
Affiliation(s)
- Daniel Antfolk
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | - Christian Antila
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | - Kati Kemppainen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | - Sebastian K-J Landor
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.
| | - Cecilia Sahlgren
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland; Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
23
|
Ogawa M, Okajima T. Structure and function of extracellular O-GlcNAc. Curr Opin Struct Biol 2019; 56:72-77. [PMID: 30669087 DOI: 10.1016/j.sbi.2018.12.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/05/2018] [Indexed: 11/27/2022]
Abstract
Extracellular O-GlcNAc is a unique modification restricted to the epidermal growth factor (EGF) domain-containing glycoproteins. This O-GlcNAcylation is catalyzed by the EGF-domain specific O-GlcNAc transferase (EOGT), which is localized in the lumen of endoplasmic reticulum. In humans, EOGT is one of the causative genes of a congenital disease, Adams-Oliver syndrome. EOGT is highly expressed in endothelial cells and regulates vascular development and integrity by potentiating Delta-like ligand-mediated Notch signaling. In Drosophila, Eogt modifies Dumpy, an apical extracellular matrix glycoprotein, and affects Dumpy-dependent cell-matrix interaction. In this review, we summarize the current findings of the structure and functions of extracellular O-GlcNAc in animals.
Collapse
Affiliation(s)
- Mitsutaka Ogawa
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan.
| |
Collapse
|
24
|
Southgate L. Current opinion in the molecular genetics of Adams-Oliver syndrome. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2019.1559049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Laura Southgate
- Molecular and Clinical Sciences Research Institute, St George’s University of London, London, UK
- Department of Medical and Molecular Genetics, King’s College London, London, UK
| |
Collapse
|
25
|
Tashima Y, Okajima T. Congenital diseases caused by defective O-glycosylation of Notch receptors. NAGOYA JOURNAL OF MEDICAL SCIENCE 2018; 80:299-307. [PMID: 30214079 PMCID: PMC6125653 DOI: 10.18999/nagjms.80.3.299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Notch signaling pathway is highly conserved and essential for animal development. It is required for cell differentiation, survival, and proliferation. Regulation of Notch signaling is a crucial process for human health. Ligands initiate a signal cascade by binding to Notch receptors expressed on a neighboring cell. Notch receptors interact with ligands through their epidermal growth factor-like repeats (EGF repeats). Most EGF repeats are modified by O-glycosylation with residues such as O-linked N-acetylglucosamine (O-GlcNAc), O-fucose, and O-glucose. These O-glycan modifications are important for Notch function. Defects in O-glycosylation affect Notch-ligand interaction, trafficking of Notch receptors, and Notch stability on the cell surface. Although the roles of each modification are not fully understood, O-fucose is essential for binding of Notch receptors to their ligands. We reported an EGF domain-specific O-GlcNAc transferase (EOGT) localized in the endoplasmic reticulum. Mutations in genes encoding EOGT or NOTCH1 cause Adams-Oliver syndrome. Dysregulation of Notch signaling because of defects or mutations in Notch receptors or Notch signal-regulating proteins, such as glycosyltransferases, induce a variety of congenital disorders. In this review, we discuss O-glycosylation of Notch receptors and congenital human diseases caused by defects in O-glycans on Notch receptors.
Collapse
Affiliation(s)
- Yuko Tashima
- Department of Molecular & Cellular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuya Okajima
- Department of Molecular & Cellular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
26
|
Varshney S, Stanley P. Multiple roles for O-glycans in Notch signalling. FEBS Lett 2018; 592:3819-3834. [PMID: 30207383 DOI: 10.1002/1873-3468.13251] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022]
Abstract
Notch signalling regulates a plethora of developmental processes and is also essential for the maintenance of tissue homeostasis in adults. Therefore, fine-tuning of Notch signalling strength needs to be tightly regulated. Of key importance for the regulation of Notch signalling are O-fucose, O-GlcNAc and O-glucose glycans attached to the extracellular domain of Notch receptors. The EGF repeats of the Notch receptor extracellular domain harbour consensus sites for addition of the different types of O-glycan to Ser or Thr, which takes place in the endoplasmic reticulum. Studies from Drosophila to mammals have demonstrated the multifaceted roles of O-glycosylation in regulating Notch signalling. O-glycosylation modulates different aspects of Notch signalling including recognition by Notch ligands, the strength of ligand binding, Notch receptor trafficking, stability and activation at the cell surface. Defects in O-glycosylation of Notch receptors give rise to pathologies in humans. This Review summarizes the nature of the O-glycans on Notch receptors and their differential effects on Notch signalling.
Collapse
Affiliation(s)
- Shweta Varshney
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Pamela Stanley
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| |
Collapse
|
27
|
Ogawa M, Senoo Y, Ikeda K, Takeuchi H, Okajima T. Structural Divergence in O-GlcNAc Glycans Displayed on Epidermal Growth Factor-like Repeats of Mammalian Notch1. Molecules 2018; 23:E1745. [PMID: 30018219 PMCID: PMC6099671 DOI: 10.3390/molecules23071745] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/12/2018] [Accepted: 07/14/2018] [Indexed: 01/19/2023] Open
Abstract
Extracellular O-GlcNAc is a novel class of modification catalyzed by epidermal growth factor-like (EGF)-domain specific O-GlcNAc transferase (EOGT). In mammals, EOGT is required for ligand-mediated Notch signaling for vascular development. Previous studies have revealed that O-GlcNAc in mammalian cultured cells is subject to subsequent glycosylation, which may impose additional layers of regulation. This study aimed to analyze the O-GlcNAc glycans of Drosophila EGF20 as model substrates and mouse Notch1 EGF repeats by mass-spectrometry. The analysis of Drosophila EGF20 expressed in HEK293T cells revealed that the majority of the proteins are modified with an elongated form of O-GlcNAc glycan comprising terminal galactose or sialic acid residues. In contrast, recombinant Notch1 EGF repeats isolated from HEK293T cells revealed structural divergence of O-GlcNAc glycans among the different EGF domains. Although the majority of Notch1 EGF2 and EGF20 domains contained the extended forms of the glycan, the O-GlcNAc in many other domains mostly existed as a monosaccharide irrespective of the exogenous EOGT expression. Our results raised a hypothesis that an array of O-GlcNAc monosaccharides may impact the structure and function of Notch receptors.
Collapse
Affiliation(s)
- Mitsutaka Ogawa
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan.
| | - Yuya Senoo
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan.
| | - Kazutaka Ikeda
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan.
- RIKEN, Center for Integrative Medical Sciences, 1-7-22 SuehirO-cho, Tsurumi, Yokohama 230-0045, Japan.
| | - Hideyuki Takeuchi
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan.
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan.
| |
Collapse
|
28
|
Meester JAN, Sukalo M, Schröder KC, Schanze D, Baynam G, Borck G, Bramswig NC, Duman D, Gilbert-Dussardier B, Holder-Espinasse M, Itin P, Johnson DS, Joss S, Koillinen H, McKenzie F, Morton J, Nelle H, Reardon W, Roll C, Salih MA, Savarirayan R, Scurr I, Splitt M, Thompson E, Titheradge H, Travers CP, Van Maldergem L, Whiteford M, Wieczorek D, Vandeweyer G, Trembath R, Van Laer L, Loeys BL, Zenker M, Southgate L, Wuyts W. Elucidating the genetic architecture of Adams-Oliver syndrome in a large European cohort. Hum Mutat 2018; 39:1246-1261. [PMID: 29924900 PMCID: PMC6175364 DOI: 10.1002/humu.23567] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/15/2018] [Accepted: 06/18/2018] [Indexed: 01/08/2023]
Abstract
Adams–Oliver syndrome (AOS) is a rare developmental disorder, characterized by scalp aplasia cutis congenita (ACC) and transverse terminal limb defects (TTLD). Autosomal dominant forms of AOS are linked to mutations in ARHGAP31, DLL4, NOTCH1 or RBPJ, while DOCK6 and EOGT underlie autosomal recessive inheritance. Data on the frequency and distribution of mutations in large cohorts are currently limited. The purpose of this study was therefore to comprehensively examine the genetic architecture of AOS in an extensive cohort. Molecular diagnostic screening of 194 AOS/ACC/TTLD probands/families was conducted using next‐generation and/or capillary sequencing analyses. In total, we identified 63 (likely) pathogenic mutations, comprising 56 distinct and 22 novel mutations, providing a molecular diagnosis in 30% of patients. Taken together with previous reports, these findings bring the total number of reported disease variants to 63, with a diagnostic yield of 36% in familial cases. NOTCH1 is the major contributor, underlying 10% of AOS/ACC/TTLD cases, with DLL4 (6%), DOCK6 (6%), ARHGAP31 (3%), EOGT (3%), and RBPJ (2%) representing additional causality in this cohort. We confirm the relevance of genetic screening across the AOS/ACC/TTLD spectrum, highlighting preliminary but important genotype–phenotype correlations. This cohort offers potential for further gene identification to address missing heritability.
Collapse
Affiliation(s)
- Josephina A N Meester
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Maja Sukalo
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Kim C Schröder
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Denny Schanze
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Gareth Baynam
- Genetic Services of Western Australia and the Western Australian Register of Developmental Anomalies, King Edward Memorial Hospital, Perth, Australia.,Telethon Kids Institute, Perth, Australia.,School of Paediatrics and Child Health, University of Western Australia, Perth, Australia
| | - Guntram Borck
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Nuria C Bramswig
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Duygu Duman
- Division of Pediatric Genetics, Ankara University School of Medicine, Ankara, Turkey
| | | | - Muriel Holder-Espinasse
- Guy's Regional Genetics Service, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Peter Itin
- Department of Dermatology, Basel University Hospital, Basel, Switzerland
| | - Diana S Johnson
- Department of Clinical Genetics, Sheffield Children's NHS Foundation Trust, Sheffield, United Kingdom
| | - Shelagh Joss
- West of Scotland Clinical Genetics Service, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Hannele Koillinen
- Department of Clinical Genetics, Helsinki University Hospital, Helsinki, Finland
| | - Fiona McKenzie
- Genetic Services of Western Australia, King Edward Memorial Hospital for Women, Subiaco, Australia
| | - Jenny Morton
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's Hospital NHS Foundation Trust, Birmingham, United Kingdom
| | - Heike Nelle
- MVZ für Pränatalmedizin und Genetik, Nürnberg, Germany
| | - Willie Reardon
- Clinical Genetics, National Maternity Hospital, Dublin, Ireland
| | - Claudia Roll
- Abteilung Neonatologie und Pädiatrische Intensivmedizin, Vestische Kinder- und Jugendklinik Datteln, Universität Witten/Herdecke, Datteln, Germany
| | - Mustafa A Salih
- Division of Pediatric Neurology, Department of Pediatrics, King Khalid University Hospital and College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ravi Savarirayan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, and the University of Melbourne, Melbourne, Australia
| | - Ingrid Scurr
- Bristol Genetics Service, University Hospitals Bristol NHS Foundation Trust, St Michael's Hospital, Bristol, United Kingdom
| | - Miranda Splitt
- Northern Genetics Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Elizabeth Thompson
- South Australian Clinical Genetics Service, North Adelaide, South Australia, Australia, SA Clinical Genetics Service, SA Pathology at the Women's and Children's Hospital, North Adelaide, SA, Australia.,School of Medicine, University of Adelaide, North Terrace, Adelaide, SA, Australia
| | - Hannah Titheradge
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's Hospital NHS Foundation Trust, Birmingham, United Kingdom
| | - Colm P Travers
- Division of Neonatology, University of Alabama at Birmingham, Birmingham, USA
| | | | - Margo Whiteford
- West of Scotland Genetic Services, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Dagmar Wieczorek
- Institute of Human Genetics, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Geert Vandeweyer
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Richard Trembath
- Division of Genetics & Molecular Medicine, King's College London, Faculty of Life Sciences & Medicine, Guy's Hospital, London, United Kingdom
| | - Lut Van Laer
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Bart L Loeys
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Laura Southgate
- Division of Genetics & Molecular Medicine, King's College London, Faculty of Life Sciences & Medicine, Guy's Hospital, London, United Kingdom.,Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
| | - Wim Wuyts
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
29
|
Harvey BM, Haltiwanger RS. Regulation of Notch Function by O-Glycosylation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:59-78. [PMID: 30030822 DOI: 10.1007/978-3-319-89512-3_4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Notch receptor initiates a unique intercellular signaling pathway that is evolutionarily conserved across all metazoans and contributes to the development and maintenance of numerous tissues. Consequently, many diseases result from aberrant Notch signaling. Emerging roles for Notch in disease are being uncovered as studies reveal new information regarding various components of this signaling pathway. Notch activity is regulated at several levels, but O-linked glycosylation of Epidermal Growth Factor (EGF) repeats in the Notch extracellular domain has emerged as a major regulator that, depending on context, can increase or decrease Notch activity. Three types of O-linked glycosylation occur at consensus sequences found within the EGF repeats of Notch: O-fucosylation, O-glucosylation, and O-GlcNAcylation. Recent studies have investigated the site occupancy of these types of glycosylation and also defined specific roles for these glycans on Notch structure and function. Nevertheless, there are many functional aspects to each type of O-glycosylation that remain unclear. Here, we will discuss molecular mechanisms of how O-glycosylation regulates Notch signaling and describe disorders associated with defects in Notch O-glycosylation.
Collapse
Affiliation(s)
- Beth M Harvey
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA.,Present Address: Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert S Haltiwanger
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA. .,Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.
| |
Collapse
|
30
|
Cohen I, Staretz-Chacham O, Wormser O, Perez Y, Saada A, Kadir R, Birk OS. A novel homozygous SLC25A1 mutation with impaired mitochondrial complex V: Possible phenotypic expansion. Am J Med Genet A 2017; 176:330-336. [PMID: 29226520 DOI: 10.1002/ajmg.a.38574] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 11/13/2017] [Accepted: 11/16/2017] [Indexed: 11/08/2022]
Abstract
SLC25A1 mutations are associated with combined D,L-2-hydroxyglutaric aciduria (DL- 2HGA; OMIM #615182), characterized by muscular hypotonia, severe neurodevelopmental dysfunction and intractable seizures. SLC25A1 encodes the mitochondrial citrate carrier (CIC), which mediates efflux of the mitochondrial tricarboxylic acid (TCA) cycle intermediates citrate and isocitrate in exchange for cytosolic malate. Only a single family with an SLC25A1 mutation has been described in which mitochondrial respiratory chain dysfunction was documented, specifically in complex IV. Five infants of two consanguineous Bedouin families of the same tribe presented with small head circumference and neonatal-onset encephalopathy with severe muscular weakness, intractable seizures, respiratory distress, and lack of psychomotor development culminating in early death. Ventricular septal defects (VSD) were demonstrated in three patients. Blood and CSF lactate were elevated with normal levels of plasma amino acids and free carnitine and increased 2-OH-glutaric acid urinary exertion. EEG was compatible with white matter disorder. Brain MRI revealed ventriculomegaly, thin corpus callosum with increased lactate peak on spectroscopy. Mitochondrial complex V deficiency was demonstrated in skeletal muscle biopsy of one infant. Homozygosity mapping and sequencing ruled out homozygosity of affected individuals in all known complex V-associated genes. Whole exome sequencing identified a novel homozygous SLC25A1 c.713A>G (p.Asn238Ser) mutation, segregating as expected in the affected kindred and not found in 220 control alleles. Thus, SLC25A1 mutations might be associated with mitochondrial complex V deficiency and should be considered in the differential diagnosis of mitochondrial respiratory chain defects.
Collapse
Affiliation(s)
- Idan Cohen
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Orna Staretz-Chacham
- Metabolic unit, Division of Pediatrics, Soroka Medical Center, Ben Gurion University, Beer Sheva, Israel
| | - Ohad Wormser
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Yonatan Perez
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Ann Saada
- Monique and Jacques Roboh Department of Genetic Research and The Department of Genetic Metabolic Diseases, Hadassah, Hebrew University Medical Center, Jerusalem, Israel
| | - Rotem Kadir
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Ohad S Birk
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel.,Genetics Institute, Soroka Medical Center, Beer-Sheva, Israel
| |
Collapse
|
31
|
Siebel C, Lendahl U. Notch Signaling in Development, Tissue Homeostasis, and Disease. Physiol Rev 2017; 97:1235-1294. [PMID: 28794168 DOI: 10.1152/physrev.00005.2017] [Citation(s) in RCA: 667] [Impact Index Per Article: 83.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/19/2017] [Accepted: 05/26/2017] [Indexed: 02/07/2023] Open
Abstract
Notch signaling is an evolutionarily highly conserved signaling mechanism, but in contrast to signaling pathways such as Wnt, Sonic Hedgehog, and BMP/TGF-β, Notch signaling occurs via cell-cell communication, where transmembrane ligands on one cell activate transmembrane receptors on a juxtaposed cell. Originally discovered through mutations in Drosophila more than 100 yr ago, and with the first Notch gene cloned more than 30 yr ago, we are still gaining new insights into the broad effects of Notch signaling in organisms across the metazoan spectrum and its requirement for normal development of most organs in the body. In this review, we provide an overview of the Notch signaling mechanism at the molecular level and discuss how the pathway, which is architecturally quite simple, is able to engage in the control of cell fates in a broad variety of cell types. We discuss the current understanding of how Notch signaling can become derailed, either by direct mutations or by aberrant regulation, and the expanding spectrum of diseases and cancers that is a consequence of Notch dysregulation. Finally, we explore the emerging field of Notch in the control of tissue homeostasis, with examples from skin, liver, lung, intestine, and the vasculature.
Collapse
Affiliation(s)
- Chris Siebel
- Department of Discovery Oncology, Genentech Inc., DNA Way, South San Francisco, California; and Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Urban Lendahl
- Department of Discovery Oncology, Genentech Inc., DNA Way, South San Francisco, California; and Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
32
|
EOGT and O-GlcNAc on secreted and membrane proteins. Biochem Soc Trans 2017; 45:401-408. [PMID: 28408480 DOI: 10.1042/bst20160165] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/01/2017] [Accepted: 02/06/2017] [Indexed: 11/17/2022]
Abstract
Here, we describe a recently discovered O-GlcNAc transferase termed EOGT for EGF domain-specific O-GlcNAc transferase. EOGT transfers GlcNAc (N-acetylglucosamine) to Ser or Thr in secreted and membrane proteins that contain one or more epidermal growth factor-like repeats with a specific consensus sequence. Thus, EOGT is distinct from OGT, the O-GlcNAc transferase, that transfers GlcNAc to Ser/Thr in proteins of the cytoplasm or nucleus. EOGT and OGT are in separate cellular compartments and have mostly distinct substrates, although both can act on cytoplasmic (OGT) and lumenal (EOGT) domains of transmembrane proteins. The present review will describe known substrates of EOGT and biological roles for EOGT in Drosophila and humans. Mutations in EOGT that give rise to Adams-Oliver Syndrome in humans will also be discussed.
Collapse
|
33
|
Harvey BM, Rana NA, Moss H, Leonardi J, Jafar-Nejad H, Haltiwanger RS. Mapping Sites of O-Glycosylation and Fringe Elongation on Drosophila Notch. J Biol Chem 2016; 291:16348-60. [PMID: 27268051 DOI: 10.1074/jbc.m116.732537] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Indexed: 12/19/2022] Open
Abstract
Glycosylation of the Notch receptor is essential for its activity and serves as an important modulator of signaling. Three major forms of O-glycosylation are predicted to occur at consensus sites within the epidermal growth factor-like repeats in the extracellular domain of the receptor: O-fucosylation, O-glucosylation, and O-GlcNAcylation. We have performed comprehensive mass spectral analyses of these three types of O-glycosylation on Drosophila Notch produced in S2 cells and identified peptides containing all 22 predicted O-fucose sites, all 18 predicted O-glucose sites, and all 18 putative O-GlcNAc sites. Using semiquantitative mass spectral methods, we have evaluated the occupancy and relative amounts of glycans at each site. The majority of the O-fucose sites were modified to high stoichiometries. Upon expression of the β3-N-acetylglucosaminyltransferase Fringe with Notch, we observed varying degrees of elongation beyond O-fucose monosaccharide, indicating that Fringe preferentially modifies certain sites more than others. Rumi modified O-glucose sites to high stoichiometries, although elongation of the O-glucose was site-specific. Although the current putative consensus sequence for O-GlcNAcylation predicts 18 O-GlcNAc sites on Notch, we only observed apparent O-GlcNAc modification at five sites. In addition, we performed mass spectral analysis on endogenous Notch purified from Drosophila embryos and found that the glycosylation states were similar to those found on Notch from S2 cells. These data provide foundational information for future studies investigating the mechanisms of how O-glycosylation regulates Notch activity.
Collapse
Affiliation(s)
- Beth M Harvey
- From the Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794-5215
| | - Nadia A Rana
- From the Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794-5215
| | - Hillary Moss
- From the Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794-5215
| | - Jessica Leonardi
- the Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, and
| | - Hamed Jafar-Nejad
- the Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, and the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Robert S Haltiwanger
- From the Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794-5215,
| |
Collapse
|
34
|
Abstract
Notch 1 to 4 receptors are important determinants of cell fate and function, and Notch signaling plays an important role in skeletal development and bone remodeling. After direct interactions with ligands of the Jagged and Delta-like families, a series of cleavages release the Notch intracellular domain (NICD), which translocates to the nucleus where it induces transcription of Notch target genes. Classic gene targets of Notch are hairy and enhancer of split (Hes) and Hes-related with YRPW motif (Hey). In cells of the osteoblastic lineage, Notch activation inhibits cell differentiation and causes cancellous bone osteopenia because of impaired bone formation. In osteocytes, Notch1 has distinct effects that result in an inhibition of bone resorption secondary to an induction of osteoprotegerin and suppression of sclerostin with a consequent enhancement of Wnt signaling. Notch1 inhibits, whereas Notch2 enhances, osteoclastogenesis and bone resorption. Congenital disorders of loss- and gain-of-Notch function present with severe clinical manifestations, often affecting the skeleton. Enhanced Notch signaling is associated with osteosarcoma, and Notch can influence the invasive potential of carcinoma of the breast and prostate. Notch signaling can be controlled by the use of inhibitors of Notch activation, small peptides that interfere with the formation of a transcriptional complex, or antibodies to the extracellular domain of specific Notch receptors or to Notch ligands. In conclusion, Notch plays a critical role in skeletal development and homeostasis, and serious skeletal disorders can be attributed to alterations in Notch signaling.
Collapse
Affiliation(s)
- Stefano Zanotti
- Departments of Orthopaedic Surgery and Medicine and the UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut 06030
| | - Ernesto Canalis
- Departments of Orthopaedic Surgery and Medicine and the UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut 06030
| |
Collapse
|
35
|
Liu W, Bo P. Relationship of protein O-GlcNAcylation with inflammation and immunity. Shijie Huaren Xiaohua Zazhi 2016; 24:2025-2031. [DOI: 10.11569/wcjd.v24.i13.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Addition of O-linked N-acetylglucosamine (O-GlcNAc) to the hydroxyl group of serine/threonine residues (O-GlcNAcylation) is a post-translational modification common to multicellular eukaryotes. O-GlcNAc plays an important role in the regulation of many biological processes including, but not limited to, cell cycle progression, transcription, translation, signal transduction, and stress response. Physiologically, it functions as a major stress sensor that inhibits the inflammatory response and cell apoptosis, reduces the amount of protein degradation, and adjusts the body's immunity. In this review, we summarize the current understanding of the physiological significance of O-GlcNAcylation, as well as its correlation with inflammation and immunity.
Collapse
|
36
|
Intracellular and extracellular O-linked N-acetylglucosamine in the nervous system. Exp Neurol 2015; 274:166-74. [DOI: 10.1016/j.expneurol.2015.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/07/2015] [Accepted: 08/11/2015] [Indexed: 12/16/2022]
|
37
|
Haltom AR, Jafar-Nejad H. The multiple roles of epidermal growth factor repeat O-glycans in animal development. Glycobiology 2015; 25:1027-42. [PMID: 26175457 DOI: 10.1093/glycob/cwv052] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/08/2015] [Indexed: 12/26/2022] Open
Abstract
The epidermal growth factor (EGF)-like repeat is a common, evolutionarily conserved motif found in secreted proteins and the extracellular domain of transmembrane proteins. EGF repeats harbor six cysteine residues which form three disulfide bonds and help generate the three-dimensional structure of the EGF repeat. A subset of EGF repeats harbor consensus sequences for the addition of one or more specific O-glycans, which are initiated by O-glucose, O-fucose or O-N-acetylglucosamine. These glycans are relatively rare compared to mucin-type O-glycans. However, genetic experiments in model organisms and cell-based assays indicate that at least some of the glycosyltransferases involved in the addition of O-glycans to EGF repeats play important roles in animal development. These studies, combined with state-of-the-art biochemical and structural biology experiments have started to provide an in-depth picture of how these glycans regulate the function of the proteins to which they are linked. In this review, we will discuss the biological roles assigned to EGF repeat O-glycans and the corresponding glycosyltransferases. Since Notch receptors are the best studied proteins with biologically-relevant O-glycans on EGF repeats, a significant part of this review is devoted to the role of these glycans in the regulation of the Notch signaling pathway. We also discuss recently identified proteins other than Notch which depend on EGF repeat glycans to function properly. Several glycosyltransferases involved in the addition or elongation of O-glycans on EGF repeats are mutated in human diseases. Therefore, mechanistic understanding of the functional roles of these carbohydrate modifications is of interest from both basic science and translational perspectives.
Collapse
Affiliation(s)
- Amanda R Haltom
- Program in Genes and Development, The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA Department of Molecular and Human Genetics
| | - Hamed Jafar-Nejad
- Department of Molecular and Human Genetics Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
38
|
Abstract
Neonatologists have a unique opportunity to be the first to identify abnormalities in a neonate. In this review, multiple anomalies and physical features are discussed along with the potential associated genetic syndromes. The anomalies and physical features that are discussed include birth parameters, aplasia cutis congenita, holoprosencephaly, asymmetric crying facies, preauricular ear tags and pits, cleft lip with or without cleft palate, esophageal atresia/tracheoesophageal fistula, congenital heart defects, ventral wall defects, and polydactyly.
Collapse
Affiliation(s)
| | - Margaret P. Adam
- CORRESPONDING AUTHOR: Margaret P. Adam, MD, Professor of Pediatrics, Division of Genetic Medicine, 4800 Sand Point Way NE, PO Box 5371/OC.9.850, Seattle, WA 98105, , ph: 206-987-2689, fax: 206-987-2495, Kelly Jones, MD, 4800 Sand Point Way NE, OC.9.850, Seattle, WA 98105, , ph: 206-987-7119
| |
Collapse
|
39
|
Southgate L, Sukalo M, Karountzos ASV, Taylor EJ, Collinson CS, Ruddy D, Snape KM, Dallapiccola B, Tolmie JL, Joss S, Brancati F, Digilio MC, Graul-Neumann LM, Salviati L, Coerdt W, Jacquemin E, Wuyts W, Zenker M, Machado RD, Trembath RC. Haploinsufficiency of the NOTCH1 Receptor as a Cause of Adams-Oliver Syndrome With Variable Cardiac Anomalies. ACTA ACUST UNITED AC 2015; 8:572-581. [PMID: 25963545 DOI: 10.1161/circgenetics.115.001086] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 05/01/2015] [Indexed: 01/17/2023]
Abstract
BACKGROUND Adams-Oliver syndrome (AOS) is a rare disorder characterized by congenital limb defects and scalp cutis aplasia. In a proportion of cases, notable cardiac involvement is also apparent. Despite recent advances in the understanding of the genetic basis of AOS, for the majority of affected subjects, the underlying molecular defect remains unresolved. This study aimed to identify novel genetic determinants of AOS. METHODS AND RESULTS Whole-exome sequencing was performed for 12 probands, each with a clinical diagnosis of AOS. Analyses led to the identification of novel heterozygous truncating NOTCH1 mutations (c.1649dupA and c.6049_6050delTC) in 2 kindreds in which AOS was segregating as an autosomal dominant trait. Screening a cohort of 52 unrelated AOS subjects, we detected 8 additional unique NOTCH1 mutations, including 3 de novo amino acid substitutions, all within the ligand-binding domain. Congenital heart anomalies were noted in 47% (8/17) of NOTCH1-positive probands and affected family members. In leukocyte-derived RNA from subjects harboring NOTCH1 extracellular domain mutations, we observed significant reduction of NOTCH1 expression, suggesting instability and degradation of mutant mRNA transcripts by the cellular machinery. Transient transfection of mutagenized NOTCH1 missense constructs also revealed significant reduction in gene expression. Mutant NOTCH1 expression was associated with downregulation of the Notch target genes HEY1 and HES1, indicating that NOTCH1-related AOS arises through dysregulation of the Notch signaling pathway. CONCLUSIONS These findings highlight a key role for NOTCH1 across a range of developmental anomalies that include cardiac defects and implicate NOTCH1 haploinsufficiency as a likely molecular mechanism for this group of disorders.
Collapse
Affiliation(s)
- Laura Southgate
- Division of Genetics & Molecular Medicine, King's College London, Faculty of Life Sciences & Medicine, Guy's Hospital, London, United Kingdom.,Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| | - Maja Sukalo
- Institute of Human Genetics, Otto-von-Guericke-Universität Magdeburg, University Hospital Magdeburg, Magdeburg, Germany
| | | | - Edward J Taylor
- School of Life Sciences, University of Lincoln, Lincoln, United Kingdom
| | - Claire S Collinson
- Division of Genetics & Molecular Medicine, King's College London, Faculty of Life Sciences & Medicine, Guy's Hospital, London, United Kingdom
| | - Deborah Ruddy
- Department of Clinical Genetics, Guy's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Katie M Snape
- Department of Clinical Genetics, South West Thames Regional Genetics Service, St George's Healthcare NHS Trust, London, United Kingdom
| | - Bruno Dallapiccola
- Scientific Directorate, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - John L Tolmie
- South West of Scotland Clinical Genetics Service, Southern General Hospital, Glasgow, United Kingdom
| | - Shelagh Joss
- South West of Scotland Clinical Genetics Service, Southern General Hospital, Glasgow, United Kingdom
| | - Francesco Brancati
- Department of Medical, Oral & Biotechnological Sciences, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | | | | | - Leonardo Salviati
- Clinical Genetics Unit, Department of Woman & Child Health, University of Padova, Padova, Italy
| | - Wiltrud Coerdt
- Institute of Human Genetics, Mainz University Medical Center, Mainz, Germany
| | - Emmanuel Jacquemin
- Pediatric Hepatology & Liver Transplantation Unit, Bicêtre Hospital, Assistance Publique - Hôpitaux de Paris, Hepatinov, Le Kremlin Bicêtre, France.,Inserm U1174, University Paris-Sud 11, Orsay, France
| | - Wim Wuyts
- Department of Medical Genetics, University & University Hospital of Antwerp, Edegem, Belgium
| | - Martin Zenker
- Institute of Human Genetics, Otto-von-Guericke-Universität Magdeburg, University Hospital Magdeburg, Magdeburg, Germany
| | - Rajiv D Machado
- School of Life Sciences, University of Lincoln, Lincoln, United Kingdom
| | - Richard C Trembath
- Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom.,Department of Clinical Genetics, Guy's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
40
|
Ogawa M, Sawaguchi S, Furukawa K, Okajima T. N-acetylglucosamine modification in the lumen of the endoplasmic reticulum. Biochim Biophys Acta Gen Subj 2015; 1850:1319-24. [PMID: 25791024 DOI: 10.1016/j.bbagen.2015.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/07/2015] [Accepted: 03/11/2015] [Indexed: 12/25/2022]
Abstract
BACKGROUND O-linked β-N-acetylglucosamine (O-GlcNAc) modification of epidermal growth factor (EGF) domains catalyzed by EGF domain O-GlcNAc transferase (EOGT) is the first example of GlcNAc modification in the lumen of the endoplasmic reticulum (ER). SCOPE OF REVIEW This review summarizes current knowledge on the EOGT-catalyzed O-GlcNAc modification of EGF domains obtained through biochemical characterization, genetic analysis in Drosophila, and identification of human EOGT mutation. Additionally, this review discusses GTDC2-another ER protein homologous to EOGT that catalyzes the GlcNAc modification of O-mannosylated α-dystroglycan-and other components of the biosynthetic pathway involved in GlcNAc modification in the ER lumen. MAJOR CONCLUSIONS GlcNAc modification in the ER lumen has been identified as a novel type of protein modification that regulates specific protein function. Moreover, abnormal GlcNAc modification in the ER lumen is responsible for Adams-Oliver syndrome and Walker-Warburg syndrome. GENERAL SIGNIFICANCE Elucidation of the biological function of GlcNAc modification in the ER lumen will provide new insights into the unique roles of O-glycans, whose importance has been demonstrated in multifunctional glycoproteins such as Notch receptors and α-dystroglyan.
Collapse
Affiliation(s)
- Mitsutaka Ogawa
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan; Department of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829, Japan
| | - Shogo Sawaguchi
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan
| | - Koichi Furukawa
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan
| | - Tetsuya Okajima
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan.
| |
Collapse
|
41
|
Marneros AG. Genetics of Aplasia Cutis Reveal Novel Regulators of Skin Morphogenesis. J Invest Dermatol 2015; 135:666-672. [DOI: 10.1038/jid.2014.413] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 09/01/2014] [Accepted: 09/04/2014] [Indexed: 11/09/2022]
|
42
|
Ogawa M, Sawaguchi S, Kawai T, Nadano D, Matsuda T, Yagi H, Kato K, Furukawa K, Okajima T. Impaired O-linked N-acetylglucosaminylation in the endoplasmic reticulum by mutated epidermal growth factor (EGF) domain-specific O-linked N-acetylglucosamine transferase found in Adams-Oliver syndrome. J Biol Chem 2014; 290:2137-49. [PMID: 25488668 DOI: 10.1074/jbc.m114.598821] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Epidermal growth factor (EGF) domain-specific O-linked N-acetylglucosamine (EOGT) is an endoplasmic reticulum (ER)-resident O-linked N-acetylglucosamine (O-GlcNAc) transferase that acts on EGF domain-containing proteins such as Notch receptors. Recently, mutations in EOGT have been reported in patients with Adams-Oliver syndrome (AOS). Here, we have characterized enzymatic properties of mouse EOGT and EOGT mutants associated with AOS. Simultaneous expression of EOGT with Notch1 EGF repeats in human embryonic kidney 293T (HEK293T) cells led to immunoreactivity with the CTD110.6 antibody in the ER. Consistent with the GlcNAc modification in the ER, the enzymatic properties of EOGT are distinct from those of Golgi-resident GlcNAc transferases; the pH optimum of EOGT ranges from 7.0 to 7.5, and the Km value for UDP N-acetylglucosamine (UDP-GlcNAc) is 25 μm. Despite the relatively low Km value for UDP-GlcNAc, EOGT-catalyzed GlcNAcylation depends on the hexosamine pathway, as revealed by the increased O-GlcNAcylation of Notch1 EGF repeats upon supplementation with hexosamine, suggesting differential regulation of the luminal UDP-GlcNAc concentration in the ER and Golgi. As compared with wild-type EOGT, O-GlcNAcylation in the ER is nearly abolished in HEK293T cells exogenously expressing EOGT variants associated with AOS. Introduction of the W207S mutation resulted in degradation of the protein via the ubiquitin-proteasome pathway, although the stability and ER localization of EOGT(R377Q) were not affected. Importantly, the interaction between UDP-GlcNAc and EOGT(R377Q) was impaired without adversely affecting the acceptor substrate interaction. These results suggest that impaired glycosyltransferase activity in mutant EOGT proteins and the consequent defective O-GlcNAcylation in the ER constitute the molecular basis for AOS.
Collapse
Affiliation(s)
- Mitsutaka Ogawa
- From the Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, the Department of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829
| | - Shogo Sawaguchi
- From the Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065
| | - Takami Kawai
- From the Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065
| | - Daita Nadano
- the Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601
| | - Tsukasa Matsuda
- the Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601
| | - Hirokazu Yagi
- the Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, and
| | - Koichi Kato
- the Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, and the Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama Myodaiji, Okazaki 444-8787, Japan
| | - Koichi Furukawa
- From the Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065
| | - Tetsuya Okajima
- From the Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065,
| |
Collapse
|
43
|
Fernandez I, Patey N, Marchand V, Birlea M, Maranda B, Haddad E, Decaluwe H, Le Deist F. Multiple intestinal atresia with combined immune deficiency related to TTC7A defect is a multiorgan pathology: study of a French-Canadian-based cohort. Medicine (Baltimore) 2014; 93:e327. [PMID: 25546680 PMCID: PMC4602622 DOI: 10.1097/md.0000000000000327] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Hereditary multiple intestinal atresia (HMIA) is a rare cause of intestinal obstruction in humans associated with a profound combined immune deficiency. Deleterious mutations of the tetratricopeptide repeat domain-7A (TTC7A) gene lead to HMIA, although the mechanism(s) causing the disease in TTC7A deficiency has (have) not yet been clearly identified. To evaluate the consequences of TTC7A deficiency, we studied the morphology of several organs from HMIA patients at different developmental stages, as well as the expression of the TTC7A protein. We performed histological and immunohistochemical analyses on biopsies and autopsies of 6 patients and 1 fetus with HMIA. Moreover, we characterized for the first time the expression of the TTC7A protein by immunostaining it in several organs from control (including fetal samples), infants, and 1 fetus with HMIA. Besides the gastrointestinal tract, HMIA disease was associated with morphological alterations in multiple organs: thymus, lung, spleen, and liver. Moreover, we demonstrated that normal TTC7A protein was expressed in the cytoplasm of epithelial cells of the intestine, thymus, and pancreas. Surprisingly, altered TTC7A protein was highly expressed in tissues from patients, mainly in the epithelial cells. We have established that HMIA associated with a TTC7A defect is characterized by multiorgan impairments. Overall, this report suggests that TTC7A protein is critical for the proper development, preservation, and/or function of thymic and gastrointestinal epithelium.
Collapse
Affiliation(s)
- Isabel Fernandez
- From the Department of Microbiology, Infectiology and Immunology, University of Montreal, Montreal, Canada (IF, EH, FLD); Department of Microbiology and Immunology, CHU Sainte-Justine, Montreal, Canada (IF, FLD); CHU Sainte-Justine Research Center, Montreal, Canada (IF, NP, EH, HD, FLD); Department of Pathology and Cell Biology, CHU Sainte-Justine and University of Montreal, Montreal, Canada (NP); Department of Paediatrics, University of Montreal, Montreal, Canada (VM, EH, HD, FLD); Division of Gastroenterology, Hepatology and Nutrition, CHU Sainte-Justine, Montreal, Canada (VM); Histology Facility, IRIC, University of Montreal, Montreal, Montreal, Canada (MB); Medical Genetics Service, University of Sherbrooke, Sherbrooke, Canada (BM); and Division of Rheumatology, Immunology and Allergology, CHU Sainte-Justine Montreal, Canada (EH, HD, FLD)
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Stittrich AB, Lehman A, Bodian D, Ashworth J, Zong Z, Li H, Lam P, Khromykh A, Iyer R, Vockley J, Baveja R, Silva E, Dixon J, Leon E, Solomon B, Glusman G, Niederhuber J, Roach J, Patel M. Mutations in NOTCH1 cause Adams-Oliver syndrome. Am J Hum Genet 2014; 95:275-84. [PMID: 25132448 DOI: 10.1016/j.ajhg.2014.07.011] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 07/22/2014] [Indexed: 12/16/2022] Open
Abstract
Notch signaling determines and reinforces cell fate in bilaterally symmetric multicellular eukaryotes. Despite the involvement of Notch in many key developmental systems, human mutations in Notch signaling components have mainly been described in disorders with vascular and bone effects. Here, we report five heterozygous NOTCH1 variants in unrelated individuals with Adams-Oliver syndrome (AOS), a rare disease with major features of aplasia cutis of the scalp and terminal transverse limb defects. Using whole-genome sequencing in a cohort of 11 families lacking mutations in the four genes with known roles in AOS pathology (ARHGAP31, RBPJ, DOCK6, and EOGT), we found a heterozygous de novo 85 kb deletion spanning the NOTCH1 5' region and three coding variants (c.1285T>C [p.Cys429Arg], c.4487G>A [p.Cys1496Tyr], and c.5965G>A [p.Asp1989Asn]), two of which are de novo, in four unrelated probands. In a fifth family, we identified a heterozygous canonical splice-site variant (c.743-1 G>T) in an affected father and daughter. These variants were not present in 5,077 in-house control genomes or in public databases. In keeping with the prominent developmental role described for Notch1 in mouse vasculature, we observed cardiac and multiple vascular defects in four of the five families. We propose that the limb and scalp defects might also be due to a vasculopathy in NOTCH1-related AOS. Our results suggest that mutations in NOTCH1 are the most common cause of AOS and add to a growing list of human diseases that have a vascular and/or bony component and are caused by alterations in the Notch signaling pathway.
Collapse
|
45
|
Lehman A, Stittrich AB, Glusman G, Zong Z, Li H, Eydoux P, Senger C, Lyons C, Roach JC, Patel M. Diffuse angiopathy in Adams-Oliver syndrome associated with truncating DOCK6 mutations. Am J Med Genet A 2014; 164A:2656-62. [PMID: 25091416 DOI: 10.1002/ajmg.a.36685] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 06/18/2014] [Indexed: 11/11/2022]
Abstract
Adams-Oliver syndrome (AOS) is a rare malformation syndrome characterized by the presence of two anomalies: aplasia cutis congenita of the scalp and transverse terminal limb defects. Many affected individuals also have additional malformations, including a variety of intracranial anomalies such as periventricular calcification in keeping with cerebrovascular microbleeds, impaired neuronal migration, epilepsy, and microcephaly. Cardiac malformations can be present, as can vascular dysfunction in the forms of cutis marmorata telangiectasia congenita, pulmonary vein stenoses, and abnormal hepatic microvasculature. Elucidated genetic causes include four genes in different pathways, leading to a model of AOS as a multi-pathway disorder. We identified an infant with mild aplasia cutis congenita and terminal transverse limb defects, developmental delay and a severe, diffuse angiopathy with incomplete microvascularization. Whole-genome sequencing documented two rare truncating variants in DOCK6, a gene associated with a type of autosomal recessive AOS that recurrently features periventricular calcification and impaired neurodevelopment. We highlight an unexpectedly high frequency of likely deleterious mutations in this gene in the general population, relative to the rarity of the disease, and discuss possible explanations for this discrepancy.
Collapse
Affiliation(s)
- Anna Lehman
- Department of Medical Genetics and Child and Family Research Institute, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Significance of glycosylation in Notch signaling. Biochem Biophys Res Commun 2014; 453:235-42. [PMID: 24909690 DOI: 10.1016/j.bbrc.2014.05.115] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 05/27/2014] [Indexed: 12/15/2022]
Abstract
Notch signaling is essential for cell-fate specification in metazoans, and dysregulation of the pathway leads to a variety of human diseases including heart and vascular defects as well as cancer. Glycosylation of the Notch extracellular domain has emerged as an elegant means for regulating Notch activity, especially since the discovery that Fringe is a glycosyltransferase that modifies O-fucose in 2000. Since then, several other O-glycans on the extracellular domain have been demonstrated to modulate Notch activity. Here we will describe recent results on the molecular mechanisms by which Fringe modulates Notch activity, summarize recent work on how O-glucose, O-GlcNAc, and O-GalNAc glycans affect Notch, and discuss several human genetic disorders resulting from defects in Notch glycosylation.
Collapse
|
47
|
Ogawa M, Furukawa K, Okajima T. Extracellular O-linked β- N-acetylglucosamine: Its biology and relationship to human disease. World J Biol Chem 2014; 5:224-230. [PMID: 24921011 PMCID: PMC4050115 DOI: 10.4331/wjbc.v5.i2.224] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/20/2014] [Accepted: 04/09/2014] [Indexed: 02/05/2023] Open
Abstract
The O-linked β-N-acetylglucosamine (O-GlcNAc)ylation of cytoplasmic and nuclear proteins regulates basic cellular functions and is involved in the etiology of neurodegeneration and diabetes. Intracellular O-GlcNAcylation is catalyzed by a single O-GlcNAc transferase, O-GlcNAc transferase (OGT). Recently, an atypical O-GlcNAc transferase, extracellular O-linked β-N-acetylglucosamine (EOGT), which is responsible for the modification of extracellular O-GlcNAc, was identified. Although both OGT and EOGT are regulated through the common hexosamine biosynthesis pathway, EOGT localizes to the lumen of the endoplasmic reticulum and transfers GlcNAc to epidermal growth factor-like domains in an OGT-independent manner. In Drosophila, loss of Eogt gives phenotypes similar to those caused by defects in the apical extracellular matrix. Dumpy, a membrane-anchored apical extracellular matrix protein, was identified as a major O-GlcNAcylated protein, and EOGT mediates Dumpy-dependent cell adhesion. In mammals, extracellular O-GlcNAc was detected on extracellular proteins including heparan sulfate proteoglycan 2, Nell1, laminin subunit alpha-5, Pamr1, and transmembrane proteins, including Notch receptors. Although the physiological function of O-GlcNAc in mammals has not yet been elucidated, exome sequencing identified homozygous EOGT mutations in patients with Adams-Oliver syndrome, a rare congenital disorder characterized by aplasia cutis congenita and terminal transverse limb defects. This review summarizes the current knowledge of extracellular O-GlcNAc and its implications in the pathological processes in Adams-Oliver syndrome.
Collapse
|
48
|
Suila H, Hirvonen T, Ritamo I, Natunen S, Tuimala J, Laitinen S, Anderson H, Nystedt J, Räbinä J, Valmu L. Extracellular o-linked N-acetylglucosamine is enriched in stem cells derived from human umbilical cord blood. Biores Open Access 2014; 3:39-44. [PMID: 24804163 PMCID: PMC3995142 DOI: 10.1089/biores.2013.0050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Stem cells have a unique ability to self-renew and differentiate into diverse cell types. Currently, stem cells from various sources are being explored as a promising new treatment for a variety of human diseases. A diverse set of functional and phenotypical markers are used in the characterization of specific therapeutic stem cell populations. The glycans on the stem cell surface respond rapidly to alterations in cellular state and signaling and are therefore ideal for identifying even minor changes in cell populations. Many stem cell markers are based on cell surface glycan epitopes including the widely used markers SSEA-3, SSEA-4, Tra 1-60, and Tra 1-81. We have now discovered by mRNA analysis that a novel glycosyltranferase, epidermal growth factor (EGF) domain-specific O-linked GlcNAc transferase (EOGT), is highly expressed in stem cells. EOGT is responsible for adding O-linked N-acetylglucosamine (O-GlcNAc) to folded EGF domains on extracellular proteins, such as those on the Notch receptors. We were able to show by immunological assays that human umbilical cord blood–derived mesenchymal stromal cells display O-GlcNAc, the product of EOGT, and that O-GlcNAc is further elongated with galactose to form O-linked N-acetyllactosamine. We suggest that these novel glycans are involved in the fine tuning of Notch receptor signaling pathways in stem cells.
Collapse
Affiliation(s)
- Heli Suila
- Finnish Red Cross Blood Service , Helsinki, Finland
| | - Tia Hirvonen
- Finnish Red Cross Blood Service , Helsinki, Finland
| | - Ilja Ritamo
- Finnish Red Cross Blood Service , Helsinki, Finland
| | - Suvi Natunen
- Finnish Red Cross Blood Service , Helsinki, Finland
| | | | | | | | | | | | - Leena Valmu
- Finnish Red Cross Blood Service , Helsinki, Finland
| |
Collapse
|