1
|
Kwiatkowski F, Perthus I, Uhrhammer N, Francannet C, Arbre M, Bidet Y, Bignon YJ. Association between hereditary predisposition to common cancers and congenital multimalformations. Congenit Anom (Kyoto) 2020; 60:22-31. [PMID: 30785647 PMCID: PMC6973007 DOI: 10.1111/cga.12329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/28/2018] [Accepted: 02/17/2019] [Indexed: 12/12/2022]
Abstract
In a previous article we reported that mutations favoring cancer at adulthood seemed to improve fertility and limit miscarriages. Because spontaneous abortion may result from anomalies in embryo, we questioned if an increased frequency of congenital malformation could be evidenced among cancer-prone families. Oncogenetics database (≈193 000 members) of the comprehensive cancer center Jean Perrin was crossed with regional registry of congenital malformations (≈10 000). Among children born between 1986 and 2011, 176 children with malformation matched in both databases. In breast/ovaries cancer-prone families, the risk for malformations was multiplied by 2.4 [1.2-4.5] in case of a BRCA1 mutation. Frequencies of malformation in BRCA2 and MMR mutated families were similar to families without a cancer syndrome. In comparison to malformations concerning a unique anatomical system, multimalformations were significantly more frequent in case of BRCA or MMR mutations: compared to families without cancer syndrome, the risk of multimalformations was multiplied by 4.1 [0.8-21.7] for cancer-prone families but with no known deleterious mutation, by 6.9 [1.2-38.6] in families with a known mutation but an unknown parental mutational status and by 10.4 [2.3-46.0] when one parent carried the familial mutation. No association with the type of anatomical system was found, nor with multiple births. These results suggest that BRCA and MMR genes play an important role in human embryogenesis and that if their function is lowered because of heterozygote mutations, congenital malformations are either more likely (BRCA1 mutations) and/or more susceptible to concern several anatomical systems.
Collapse
Affiliation(s)
- Fabrice Kwiatkowski
- Oncogenetics Department, Centre Jean Perri (Comprehensive Cancer Center), Clermont-Ferrand, France.,Laboratory of Mathematics: Probabilities and Applied Statistics, Clermont-Auvergne University, Clermont-Ferrand, France
| | - Isabelle Perthus
- Medical Genetics Department, Study Center of Congenital Malformations in Auvergne (Centre d'Etude des Malformations Congénitales en Auvergne), Clermont-Ferrand, France
| | - Nancy Uhrhammer
- Oncogenetics Department, Centre Jean Perri (Comprehensive Cancer Center), Clermont-Ferrand, France
| | - Christine Francannet
- Medical Genetics Department, Study Center of Congenital Malformations in Auvergne (Centre d'Etude des Malformations Congénitales en Auvergne), Clermont-Ferrand, France
| | - Marie Arbre
- Oncogenetics Department, Centre Jean Perri (Comprehensive Cancer Center), Clermont-Ferrand, France
| | - Yannick Bidet
- Oncogenetics Department, Centre Jean Perri (Comprehensive Cancer Center), Clermont-Ferrand, France
| | - Yves-Jean Bignon
- Oncogenetics Department, Centre Jean Perri (Comprehensive Cancer Center), Clermont-Ferrand, France
| |
Collapse
|
2
|
BRCA mutations and reproduction. Fertil Steril 2018; 109:33-38. [PMID: 29307397 DOI: 10.1016/j.fertnstert.2017.12.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/28/2017] [Accepted: 12/05/2017] [Indexed: 02/07/2023]
Abstract
Deleterious mutations in BRCA1 or BRCA2 genes have long been recognized as independent risk factors, mostly for breast and ovarian cancer. Numerous studies have evaluated the molecular processes involving these genes, the pathophysiology of BRCAness, follow up options and modes of prophylaxis. The fertility of BRCA carriers, however, has not been widely investigated. The aim of the present work is to review the literature pertaining to this issue.
Collapse
|
3
|
Is Low FMR1 CGG Repeat Length in Males Correlated with Family History of BRCA-Associated Cancers? An Exploratory Analysis of Medical Records. J Genet Couns 2017; 26:1401-1410. [PMID: 28667565 DOI: 10.1007/s10897-017-0116-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 05/26/2017] [Indexed: 12/18/2022]
Abstract
The FMR1 gene has been studied extensively with regard to expansions and premutations, but much less research has focused on potential effects of low CGG repeat length. Previous studies have demonstrated that BRCA1/2 positive women are more likely to have an FMR1 genotype with one low CGG allele, and that women with both FMR1 alleles in the low CGG repeat range are more likely to have had breast cancer compared to women with normal numbers of CGG repeats. However, there has been no research as to whether low CGG repeat length impacts cancer risks in men. Therefore, this study aimed to examine cancer incidence and related risk factors in men with low CGG repeat length in the FMR1 gene. We utilized subject data from the Marshfield Personalized Medicine Research Project to compare cancer-related diagnoses between 878 males with low CGG repeat length (< 24 repeats) and 368 male controls with CGG repeats in the normal range (24 to 40 repeats). We utilized ICD-9 codes to examine various cancer diagnoses, family histories of cancer, other non-malignant neoplasms, cancer surveillance, and genetic susceptibility. Men with low CGG repeats were identified to have significantly higher rates of family history of any cancer type (p = 0.011), family history of any BRCA-associated cancer (p = 0.002), and specifically, family history of prostate cancer (p = 0.007). The mean number of BRCA-associated cancer diagnoses (breast, prostate, pancreatic, and melanoma) per individual in the low CGG group was slightly higher than that of the control group, with this difference trending toward significance (p = 0.091). Additionally, men with low CGG repeats had significantly higher rates of connective/soft tissue neoplasms (p = 0.026). Additional research is needed to replicate the observations reported in this preliminary exploratory study, particularly including verification of ICD-9 codes and family history by a genetic counselor.
Collapse
|
4
|
Yang W, Fan C, Chen L, Cui Z, Bai Y, Lan F. Pathological Effects of the FMR1 CGG-Repeat Polymorphism (5-55 Repeat Numbers): Systematic Review and Meta-Analysis. TOHOKU J EXP MED 2017; 239:57-66. [PMID: 27193037 DOI: 10.1620/tjem.239.57] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The fragile X mental retardation 1 (FMR1) gene contains a highly polymorphic trinucleotide (CGG) repeat and consists of various allelic forms. Traditionally, 55-200 repeats and over 200 CGG repeats have been highlighted to be associated with ovarian dysfunction and neuro-psychiatric risks. However, previous studies had paid little attention to the allelic forms of 5-55 CGG repeats. Herein, we sought to evaluate the pathological features of FMR1 allelic category with a range of 5-55 CGG repeats. We further classified the spectrum of CGG sizes (5-55 repeats) into three sub-groups as low numbers of CGG repeat (< 26 repeats), normal CGG count (26-34 repeats), and small CGG expansion (35-54 repeats). Our systematic review documented that low numbers of CGG repeat (< 26 repeats) revealed a close relationship with premature ovarian failure. Correspondingly, the meta-analysis showed that small CGG expansion, involving allelic sizes with 35-54 (n = 8, OR = 1.22, 95% CI: 0.75-2.00, P > 0.05) and 41-54 (n = 7, OR = 1.62, 95% CI: 1.14-2.30, P < 0.05), was both linked to the risk of ovarian dysfunction. Additionally, small CGG expansion exerts significant influence on male Parkinsonism cohorts (OR = 2.17, 95% CI: 1.50-3.14, P < 0.05), mental retardation, and repeat instability. Our data provide evidence that the CGG-repeat numbers below 26 or above 34 of FMR1 gene are also associated with disease risks and thus should be regarded as pathological genotypes for a routine test.
Collapse
Affiliation(s)
- Wenjing Yang
- Department of Clinical Genetics and Experimental Medicine, Affiliated Dongfang Hospital of Xiamen University
| | | | | | | | | | | |
Collapse
|
5
|
The impact of FMR1 gene mutations on human reproduction and development: a systematic review. J Assist Reprod Genet 2016; 33:1135-47. [PMID: 27432256 DOI: 10.1007/s10815-016-0765-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/27/2016] [Indexed: 10/21/2022] Open
Abstract
PURPOSE This is a comprehensive review of the literature in this field attempting to put the FMR1 gene and its evaluation into context, both in general and for the reproductive health audience. METHODS Online database search of publications with systematic review of all papers relevant to ovarian reserve and assisted reproduction was done. RESULTS Relevant papers were identified and assessed, and an attempt was made to understand, rationalize and explain the divergent views in this field of study. Seminal and original illustrations were employed. CONCLUSIONS FMR1 is a highly conserved gene whose interpretation and effect on outcomes remains controversial in the reproductive health setting. Recent re-evaluations of the commonly accepted normal range have yielded interesting tools for possibly explaining unexpected outcomes in assisted reproduction. Fragile X investigations should perhaps become more routinely assessed in the reproductive health setting, particularly following a failed treatment cycle where oocyte quality is thought to be a contributing factor, or in the presence of a surprise finding of diminished ovarian reserve in a young patient.
Collapse
|
6
|
FMR1 CGG allele length in Israeli BRCA1/BRCA2 mutation carriers and the general population display distinct distribution patterns. Genet Res (Camb) 2014; 96:e11. [PMID: 25579682 DOI: 10.1017/s0016672314000147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Premature ovarian failure and diminished ovarian reserve have been noted both in female BRCA1/BRCA2 mutation carriers and in carriers of the Fragile X syndrome FMR1 gene CGG repeat size premutation. Based on the observation that BRCA mutation carriers do not harbour long CGG repeats in the FMR1 gene, it was hypothesized that BRCA-associated premature ovarian failure is mediated via FMR1. To test this notion, we evaluated the distribution of constitutional FMR1 genotypes in 188 BRCA1/BRCA2 mutation-positive Jewish Ashkenazi women and 15 708 female, mostly Ashkenazi controls in Israel. BRCA1/BRCA2 mutation carriers displayed a unique distribution of FMR1 genotypes compared with controls (p = 0·018) with a prominence of the shorter CGG alleles (<26 repeats). There was no allele size distribution differences within BRCA carriers when comparing cancer free (n = 95) and breast cancer affected women (n = 93) (p = 0·43). In conclusion, BRCA mutation carriers exhibit a distinct CGG FMR1 repeat size pattern compared with the general population, but it is unlikely to account for the reported diminished ovarian reserve or act as a modifier breast cancer gene in BRCA mutation carriers.
Collapse
|
7
|
Gleicher N, McAlpine JN, Gilks CB, Kushnir VA, Lee HJ, Wu YG, Lazzaroni-Tealdi E, Barad DH. Absence of BRCA/FMR1 correlations in women with ovarian cancers. PLoS One 2014; 9:e102370. [PMID: 25036526 PMCID: PMC4103842 DOI: 10.1371/journal.pone.0102370] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/17/2014] [Indexed: 11/18/2022] Open
Abstract
Previously reported findings in Austrian BRCA1/2 mutation carriers suggested a possible dependency of embryos with BRCA1/2 mutations on so-called low alleles of the fragile X mental retardation 1 (FMR1) gene, characterized by less than 26 CGG repeats (CGG(n<26)). The hypothesis arose from a study reporting highly statistically significant enrichment of low FMR1 alleles, significantly exceeding low allele prevalence in a general population, suggesting embryo lethality of BRCA1/2 mutations, "rescued" by presence of low FMR1 alleles. Such a dependency would also offer an explanation for the so-called "BRCA-paradox," characterized by BRCA1/2 deficient embryonic tissues being anti-proliferative (thereby potentially causing embryo-lethality) but proliferative in malignant tumors, including breast and ovarian cancers. Follow up investigations by other investigators, however, at most demonstrated trends towards enrichment but, mostly, no enrichment at all, raising questions about the original observation and hypothesis. We in this study, therefore, investigated CGGn of the FMR1 gene of 86 anonymized DNA samples from women with various forms of ovarian cancer, and were unable to demonstrate differences in prevalence of low FMR1 alleles either between positive and negative ovarian cancer patients for BRCA1/2 or between ovarian cancer patients and reported rates in non-cancer populations. This raises further questions about a suggested dependency between BRCA1/2 and FMR1, but also raises the possibility that investigated Austrian BRCA1/2 carrier populations differ from those in other countries. Either only selected BRCA1/2 mutations, therefore, interact with low FMR1 alleles or the Austrian data reflect only coincidental observations.
Collapse
Affiliation(s)
- Norbert Gleicher
- Center for Human Reproduction, New York, New York, United States of America
- Foundation for Reproductive Medicine, New York, New York, United States of America
- * E-mail:
| | - Jessica N. McAlpine
- Division of Gynecologic Oncology, Department of Gynecology and Obstetrics, University of British Columbia, Vancouver, British Columbia, Canada
- OvCaRe Gynecologic Tissue Bank, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - C. Blake Gilks
- OvCaRe Gynecologic Tissue Bank, BC Cancer Agency, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vitaly A. Kushnir
- Center for Human Reproduction, New York, New York, United States of America
| | - Ho-Joon Lee
- Center for Human Reproduction, New York, New York, United States of America
| | - Yan-Guang Wu
- Center for Human Reproduction, New York, New York, United States of America
| | | | - David H. Barad
- Center for Human Reproduction, New York, New York, United States of America
- Foundation for Reproductive Medicine, New York, New York, United States of America
| |
Collapse
|