1
|
Yin B, Pang YY, Shi JY, Lin YS, Sun JL, Zheng Q, Shi B, Jia ZL. A Novel Missense Variant in the TCOF1 Gene in one Chinese Case With Treacher Collins Syndrome. Cleft Palate Craniofac J 2024; 61:192-199. [PMID: 36082953 DOI: 10.1177/10556656221125387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The purpose of this study is to analyze the clinical characteristics of a Treacher Collins syndrome (TCS) patient carrying a de novo variant of TCOF1, and briefly analyze the correlation between genetic results and clinical features. Also, the pathogenesis and clinical treatment of TCS are reviewed. A Chinese pedigree with TCS containing 8 members was enrolled. Phenotype of the proband was evaluated by a surgeon, then whole exome sequencing of the proband was performed. Then we verified the proband-derived variants by Sanger sequencing in the pedigree. Correlation between genotype and phenotype was analyzed. The study was conducted in a stomatological hospital. A Chinese pedigree with TCS containing 8 members. To ascertain the genetic variants in the Chinese pedigree with TCS. Blood samples were collected. We reported a case of typical TCS with a de novo missense variant (NM_001371623.1:c.38T>G, p.(Leu13Arg)) in exon 1 of TCOF1, who presented asymmetrical facial abnormalities, including downward slanting of the palpebral fissures, sparse eyebrows, lateral tilt of the eyeballs, bilateral external ears deformities, hypoplasia of midface, reduction of the zygomatic body, bilateral orbital invagination, right external auditory canal atresia, mandibular ramus short deformity, cleft palate and the whole face was convex. This research found a novel variant of TCS in Chinese, expanding the spectrum of TCS pathogenic variants. Genetic results combined with clinical phenotype can make a definite diagnosis and provide genetic counseling for the family.
Collapse
Affiliation(s)
- Bin Yin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu-Ya Pang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jia-Yu Shi
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, USA
| | - Yan-Song Lin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jia-Lin Sun
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qian Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bing Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhong-Lin Jia
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Ulhaq ZS, Nurputra DK, Soraya GV, Kurniawati S, Istifiani LA, Pamungkas SA, Tse WKF. A systematic review on Treacher Collins syndrome: Correlation between molecular genetic findings and clinical severity. Clin Genet 2023; 103:146-155. [PMID: 36203321 DOI: 10.1111/cge.14243] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 01/20/2023]
Abstract
Treacher Collins syndrome (TCS, OMIM: 154500) is a rare congenital craniofacial disorder that is caused by variants in the genes TCOF1, POLR1D, POLR1C, and POLR1B. Studies on the association between phenotypic variability and their relative variants are very limited. This systematic review summarized the 53 literatures from PubMed and Scopus to explore the potential TCS genotype-phenotype correlations with statistical analysis. Studies reporting both complete molecular genetics and clinical data were included. We identified that the molecular anomaly within TCOF1 (88.71%) accounted for most TCS cases. The only true hot spot for TCOF1 was detected in exon 24, with recurrent c.4369_4373delAAGAA variant is identified. While the hot spot for POLR1D, POLR1C, and POLR1B were identified in exons 3, 8, and 15, respectively. Our result suggested that the higher severity level was likely to be observed in Asian patients harboring TCOF1 variants rather than POLR1. Moreover, common 5-bp deletions tended to have a higher severity degree in comparison to any variants within exon 24 of TCOF1. In summary, this report suggested the relationship between genetic and clinical data in TCS. Our findings could be used as a reference for clinical diagnosis and further biological studies.
Collapse
Affiliation(s)
- Zulvikar Syambani Ulhaq
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
- Research Center for Pre-clinical and Clinical Medicine, National Research and Innovation Agency Republic of Indonesia, Cibinong, Indonesia
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Maulana Malik Ibrahim State Islamic University, Batu, Indonesia
| | | | - Gita Vita Soraya
- Department of Biochemistry, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
- Department of Neurology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Siti Kurniawati
- Department of Clinical Microbiology, Faculty of Medicine, Brawijaya University, Malang, Indonesia
| | - Lola Ayu Istifiani
- Department of Nutrition, Faculty of Medicine, Brawijaya University, Malang, Indonesia
| | | | - William Ka Fai Tse
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
3
|
Multiple types of navigational information are independently encoded in the population activities of the dentate gyrus neurons. Proc Natl Acad Sci U S A 2022; 119:e2106830119. [PMID: 35930667 PMCID: PMC9371651 DOI: 10.1073/pnas.2106830119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In this study, we found that multiple types of information (position, speed, and motion direction in an open field and current and future location in a T-maze) are independently encoded in the overlapping, but different, populations of dentate gyrus (DG) neurons. This computational nature of the independent distribution of information in neural circuits is newly found not only in the DG, but also in other hippocampal regions. The dentate gyrus (DG) plays critical roles in cognitive functions, such as learning, memory, and spatial coding, and its dysfunction is implicated in various neuropsychiatric disorders. However, it remains largely unknown how information is represented in this region. Here, we recorded neuronal activity in the DG using Ca2+ imaging in freely moving mice and analyzed this activity using machine learning. The activity patterns of populations of DG neurons enabled us to successfully decode position, speed, and motion direction in an open field, as well as current and future location in a T-maze, and each individual neuron was diversely and independently tuned to these multiple information types. Our data also showed that each type of information is unevenly distributed in groups of DG neurons, and different types of information are independently encoded in overlapping, but different, populations of neurons. In alpha-calcium/calmodulin-dependent kinase II (αCaMKII) heterozygous knockout mice, which present deficits in spatial remote and working memory, the decoding accuracy of position in the open field and future location in the T-maze were selectively reduced. These results suggest that multiple types of information are independently distributed in DG neurons.
Collapse
|
4
|
Mohanan AG, Gunasekaran S, Jacob RS, Omkumar RV. Role of Ca2+/Calmodulin-Dependent Protein Kinase Type II in Mediating Function and Dysfunction at Glutamatergic Synapses. Front Mol Neurosci 2022; 15:855752. [PMID: 35795689 PMCID: PMC9252440 DOI: 10.3389/fnmol.2022.855752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/21/2022] [Indexed: 01/25/2023] Open
Abstract
Glutamatergic synapses harbor abundant amounts of the multifunctional Ca2+/calmodulin-dependent protein kinase type II (CaMKII). Both in the postsynaptic density as well as in the cytosolic compartment of postsynaptic terminals, CaMKII plays major roles. In addition to its Ca2+-stimulated kinase activity, it can also bind to a variety of membrane proteins at the synapse and thus exert spatially restricted activity. The abundance of CaMKII in glutamatergic synapse is akin to scaffolding proteins although its prominent function still appears to be that of a kinase. The multimeric structure of CaMKII also confers several functional capabilities on the enzyme. The versatility of the enzyme has prompted hypotheses proposing several roles for the enzyme such as Ca2+ signal transduction, memory molecule function and scaffolding. The article will review the multiple roles played by CaMKII in glutamatergic synapses and how they are affected in disease conditions.
Collapse
Affiliation(s)
- Archana G. Mohanan
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Sowmya Gunasekaran
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Research Scholar, Manipal Academy of Higher Education, Manipal, India
| | - Reena Sarah Jacob
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Research Scholar, Manipal Academy of Higher Education, Manipal, India
| | - R. V. Omkumar
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- *Correspondence: R. V. Omkumar,
| |
Collapse
|
5
|
Proietti Onori M, van Woerden GM. Role of calcium/calmodulin-dependent kinase 2 in neurodevelopmental disorders. Brain Res Bull 2021; 171:209-220. [PMID: 33774142 DOI: 10.1016/j.brainresbull.2021.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 01/28/2023]
Abstract
Neurodevelopmental disorders are a complex and heterogeneous group of neurological disorders characterized by their early-onset and estimated to affect more than 3% of children worldwide. The rapid advancement of sequencing technologies in the past years allowed the identification of hundreds of variants in several different genes causing neurodevelopmental disorders. Between those, new variants in the Calcium/calmodulin dependent protein kinase II (CAMK2) genes were recently linked to intellectual disability. Despite many years of research on CAMK2, this proves for the first time that this well-known and highly conserved molecule plays an important role in the human brain. In this review, we give an overview of the identified CAMK2 variants, and we speculate on potential mechanisms through which dysfunctions in CAMK2 result in neurodevelopmental disorders. Additionally, we discuss how the identification of CAMK2 variants might result in new exciting discoveries regarding the function of CAMK2 in the human brain.
Collapse
Affiliation(s)
- Martina Proietti Onori
- Department of Neuroscience, Erasmus MC, Rotterdam, 3015 GD, the Netherlands; The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, 3015 GD, the Netherlands
| | - Geeske M van Woerden
- Department of Neuroscience, Erasmus MC, Rotterdam, 3015 GD, the Netherlands; The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, 3015 GD, the Netherlands.
| |
Collapse
|
6
|
The Role of TCOF1 Gene in Health and Disease: Beyond Treacher Collins Syndrome. Int J Mol Sci 2021; 22:ijms22052482. [PMID: 33804586 PMCID: PMC7957619 DOI: 10.3390/ijms22052482] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/23/2022] Open
Abstract
The nucleoli are membrane-less nuclear substructures that govern ribosome biogenesis and participate in multiple other cellular processes such as cell cycle progression, stress sensing, and DNA damage response. The proper functioning of these organelles is ensured by specific proteins that maintain nucleolar structure and mediate key nucleolar activities. Among all nucleolar proteins, treacle encoded by TCOF1 gene emerges as one of the most crucial regulators of cellular processes. TCOF1 was initially discovered as a gene involved in the Treacher Collins syndrome, a rare genetic disorder characterized by severe craniofacial deformations. Later studies revealed that treacle regulates ribosome biogenesis, mitosis, proliferation, DNA damage response, and apoptosis. Importantly, several reports indicate that treacle is also involved in cancer development, progression, and response to therapies, and may contribute to other pathologies such as Hirschsprung disease. In this manuscript, we comprehensively review the structure, function, and the regulation of TCOF1/treacle in physiological and pathological processes.
Collapse
|
7
|
Bhat S, El-Kasaby A, Freissmuth M, Sucic S. Functional and Biochemical Consequences of Disease Variants in Neurotransmitter Transporters: A Special Emphasis on Folding and Trafficking Deficits. Pharmacol Ther 2020; 222:107785. [PMID: 33310157 PMCID: PMC7612411 DOI: 10.1016/j.pharmthera.2020.107785] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/02/2020] [Indexed: 01/30/2023]
Abstract
Neurotransmitters, such as γ-aminobutyric acid, glutamate, acetyl choline, glycine and the monoamines, facilitate the crosstalk within the central nervous system. The designated neurotransmitter transporters (NTTs) both release and take up neurotransmitters to and from the synaptic cleft. NTT dysfunction can lead to severe pathophysiological consequences, e.g. epilepsy, intellectual disability, or Parkinson’s disease. Genetic point mutations in NTTs have recently been associated with the onset of various neurological disorders. Some of these mutations trigger folding defects in the NTT proteins. Correct folding is a prerequisite for the export of NTTs from the endoplasmic reticulum (ER) and the subsequent trafficking to their pertinent site of action, typically at the plasma membrane. Recent studies have uncovered some of the key features in the molecular machinery responsible for transporter protein folding, e.g., the role of heat shock proteins in fine-tuning the ER quality control mechanisms in cells. The therapeutic significance of understanding these events is apparent from the rising number of reports, which directly link different pathological conditions to NTT misfolding. For instance, folding-deficient variants of the human transporters for dopamine or GABA lead to infantile parkinsonism/dystonia and epilepsy, respectively. From a therapeutic point of view, some folding-deficient NTTs are amenable to functional rescue by small molecules, known as chemical and pharmacological chaperones.
Collapse
Affiliation(s)
- Shreyas Bhat
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Ali El-Kasaby
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Sonja Sucic
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria.
| |
Collapse
|
8
|
Tu M, He L, You Y, Li J, Yao N, Qu C, Huang W, Xu L, Luo R, Hong J. EFTUD2 maintains the survival of tumor cells and promotes hepatocellular carcinoma progression via the activation of STAT3. Cell Death Dis 2020; 11:830. [PMID: 33024090 PMCID: PMC7538941 DOI: 10.1038/s41419-020-03040-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 12/21/2022]
Abstract
Elongation factor Tu GTP binding domain containing 2 (EFTUD2), a spliceosomal GTPase, plays a pivotal role in multiple organ development and innate immune. It has been reported that EFTUD2 is a new host factor with activity against HCV infection. However, the role of EFTUD2 in solid tumors, including hepatocellular carcinoma (HCC), remains unexplored. In this study, we investigated the molecular function of EFTUD2 in HCC. Data from The Cancer Genome Atlas (TCGA) indicated an upregulation of EFTUD2 in HCC tissues compared to that in nontumor liver tissues. Immunohistochemical analysis performed on two independent HCC cohorts confirmed the upregulation of EFTUD2 in HCC tissues and further suggested that a high level of EFTUD2 expression predicted shorter overall and recurrence-free survival in HCC patients. Functional studies suggested that siRNA interference with EFTUD2 expression significantly suppressed cell viability, blocked cell cycle progression, facilitated tumor cell apoptosis, and inhibited metastasis, while the enhancement of EFTUD2 expression promoted the proliferation and migration of HCC cells both in vitro and in vivo. Surprisingly, we also found that the stable knockdown of EFTUD2 expression via lentivirus infection was lethal for HCC cells. This finding suggested that EFTUD2 was essential for maintaining the survival of HCC cells. Mechanistically, RNA sequencing and gene set enrichment analysis (GSEA) suggested that the gene sets of epithelial-mesenchymal transition (EMT) and the JAK/STAT3 pathway were enriched in EFTUD2-overexpressing cells. Further verification indicated that EFTUD2-overexpressing cells exhibited an EMT-like phenotype and had enhanced STAT3 activation, while the STAT3 inhibitor S3I-201 partially blocked these pro-malignant effects of EFTUD2 overexpression. In summary, we report EFTUD2 as a novel oncogene that helps to maintain the survival of HCC cells and promotes HCC progression through the activation of STAT3. The high level of expression of EFTUD2 in HCC tissues indicates shorter overall and recurrence-free survival in HCC patients.
Collapse
Affiliation(s)
- Mengxian Tu
- Department of Pathophysiology, School of Medicine, Jinan University, 510630, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, Guangdong, China.,Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, Guangdong, China
| | - Lu He
- Department of Radiotherapy, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, Guangdong, China
| | - Yang You
- Department of Pathophysiology, School of Medicine, Jinan University, 510630, Guangzhou, Guangdong, China
| | - Jinying Li
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, 510630, Guangzhou, Guangdong, China
| | - Nan Yao
- Department of Pathophysiology, School of Medicine, Jinan University, 510630, Guangzhou, Guangdong, China
| | - Chen Qu
- Department of Pathophysiology, School of Medicine, Jinan University, 510630, Guangzhou, Guangdong, China
| | - Wei Huang
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, 510630, Guangzhou, Guangdong, China
| | - Leibo Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, Guangdong, China
| | - Rongcheng Luo
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, Guangdong, China
| | - Jian Hong
- Department of Pathophysiology, School of Medicine, Jinan University, 510630, Guangzhou, Guangdong, China.
| |
Collapse
|
9
|
Liu J, Lin P, Pang J, Jia Z, Peng Y, Xi H, Wu L, Li Z, Wang H. Identification of a novel gross deletion of TCOF1 in a Chinese prenatal case with Treacher Collins syndrome. Mol Genet Genomic Med 2020; 8:e1313. [PMID: 32543076 PMCID: PMC7434750 DOI: 10.1002/mgg3.1313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023] Open
Abstract
Background Treacher Collins syndrome (TCS) is the most common mandibulofacial dysostosis with an autosomal dominant or rarely recessive manner of inheritance. It is still challenging to make a definite diagnosis for affected fetuses with TCS only depending on the ultrasound screening. Genetic tests can contribute to the accurate diagnosis for those prenatal cases. Methods Targeted exome sequencing was performed in a fetus of a Chinese family, who presenting an abnormal facial appearance by prenatal 2D and 3D ultrasound screening, including micrognathia, nasal bridge pit, and abnormal auricle. The result was validated with multiplex ligation‐dependent probe amplification (MLPA) and real‐time quantitative PCR (qPCR). Results A novel 2–6 exons deletion of TCOF1 gene was identified and confirmed by the MLPA and qPCR in the fetus, which was inherited from the affected father with similar facial anomalies. Conclusion The heterozygous deletion of 2–6 exons in TCOF1 results in the TCS of this Chinese family. Our findings not only enlarge the spectrum of mutations in TCOF1 gene, but also highlight the values of combination of ultrasound and genetics tests in diagnosis of craniofacial malformation‐related diseases during perinatal period.
Collapse
Affiliation(s)
- Jing Liu
- Department of Medical Genetics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China.,National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Changsha, Hunan, China
| | - Pengsiyuan Lin
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Jialun Pang
- Department of Medical Genetics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China.,National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Changsha, Hunan, China
| | - Zhengjun Jia
- Department of Medical Genetics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China.,National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Changsha, Hunan, China
| | - Ying Peng
- Department of Medical Genetics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China.,National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Changsha, Hunan, China
| | - Hui Xi
- Department of Medical Genetics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China.,National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Changsha, Hunan, China
| | - Lingqian Wu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Zhuo Li
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Hua Wang
- Department of Medical Genetics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China.,National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Changsha, Hunan, China
| |
Collapse
|
10
|
Yin B, Shi B, Jia ZL. [Pathogenic genes and clinical therapeutic strategies for Treacher Collins syndrome]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2019; 37:330-335. [PMID: 31218872 DOI: 10.7518/hxkq.2019.03.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Treacher Collins syndrome is a congenital craniofacial malformation with autosomal dominant inheritance as the main genetic pattern. In this condition, the biosynthesis of ribosomes in neural crest cells and neuroepithelial cells is blocked and the number of neural crest cells that migrate to the craniofacial region decreases, causing first and second branchial arch dysplasia. Definite causative genes include treacle ribosome biogenesis factor 1 (tcof1), RNA polymerase Ⅰ and Ⅲ subunit C (polr1c), and RNA polymerase Ⅰ and Ⅲ subunit D (polr1d). This paper provides a review of research of three major patho-genic genes, pathogenesis, phenotypic research, prevention, and treatment of the syndrome.
Collapse
Affiliation(s)
- Bin Yin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cleft Lip and Palate Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Bing Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cleft Lip and Palate Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhong-Lin Jia
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cleft Lip and Palate Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
11
|
|
12
|
Yan Z, Lu Y, Wang Y, Zhang X, Duan H, Cheng J, Yuan H, Han D. Identification of a novel TCOF1 mutation in a Chinese family with Treacher Collins syndrome. Exp Ther Med 2018; 16:2645-2650. [PMID: 30186496 PMCID: PMC6122489 DOI: 10.3892/etm.2018.6446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 06/08/2018] [Indexed: 12/20/2022] Open
Abstract
Treacher Collins syndrome (TCS) is a severe congenital disorder characterized by craniofacial malformations, including cleft palate, hypoplasia of the facial bones, downward slanting of the palpebral fissures and malformation of the external and middle ear. Worldwide, 90% of cases of TCS are caused by mutations in the TCOF1 gene, which are inherited via an autosomal dominant pattern, while <2% cases are caused by POLR1D and POLR1C genes, which are inherited via autosomal dominant and autosomal recessive patterns, respectively. The present study describes the clinical findings and molecular diagnostics of a Chinese family with TCS. TCS was diagnosed in a 9-year-old female Chinese proband and her mother, while no craniofacial abnormalities were apparent in other family members. Exons of the TCOF1 gene and segregation analysis were used to examine causative mutations using the Sanger sequencing approach. A single novel heterozygous mutation in TCOF1 exon 3 splicing site c.165-1G>A was detected in the proband. Furthermore, the same mutation was identified in her mother, but not in other family members. These results suggest that c.165-1G>A is a novel heterozygous mutation of the TCOF1 gene that caused the development of TCS in the proband and her mother. The TCOF1 mutation that was identified in proband was inherited from her mother and so can be considered as de novo mutation.
Collapse
Affiliation(s)
- Zhiqiang Yan
- Department of Otolaryngology, Head and Neck Surgery, Chinese PLA General Hospital, Beijing 100853, P.R. China
- Department of Otolaryngology, Head and Neck Surgery, Chinese PLA 97th Hospital, Xuzhou, Jiangsu 221004, P.R. China
| | - Yu Lu
- Medical Genetics Center, First Affiliated Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Yanfei Wang
- Department of Otolaryngology, Head and Neck Surgery, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Xiuju Zhang
- Department of Otolaryngology, Head and Neck Surgery, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Hong Duan
- Department of Otolaryngology, Head and Neck Surgery, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Jing Cheng
- Medical Genetics Center, First Affiliated Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Huijun Yuan
- Medical Genetics Center, First Affiliated Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Dongyi Han
- Department of Otolaryngology, Head and Neck Surgery, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
13
|
Schulz D, Morschel J, Schuster S, Eulenburg V, Gomeza J. Inactivation of the Mouse L-Proline Transporter PROT Alters Glutamatergic Synapse Biochemistry and Perturbs Behaviors Required to Respond to Environmental Changes. Front Mol Neurosci 2018; 11:279. [PMID: 30177871 PMCID: PMC6110171 DOI: 10.3389/fnmol.2018.00279] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
The endogenous neutral amino acid L-proline exhibits a variety of physiological and behavioral actions in the nervous system, highlighting the importance of accurately regulating its extracellular abundance. The L-proline transporter PROT (Slc6A7) is believed to control the spatial and temporal distribution of L-proline at glutamatergic synapses by rapid uptake of this amino acid into presynaptic terminals. Despite the importance of members of the Slc6 transporter family regulating neurotransmitter signaling and homeostasis in brain, evidence that PROT dysfunction supports risk for mental illness is lacking. Here we report the disruption of the PROT gene by homologous recombination. Mice defective in PROT displayed altered expression of glutamate transmission-related synaptic proteins in cortex and thalamus. PROT deficiency perturbed mouse behavior, such as reduced locomotor activity, decreased approach motivation and impaired memory extinction. Thus, our study demonstrates that PROT regulates behaviors that are needed to respond to environmental changes in vivo and suggests that PROT dysfunctions might contribute to mental disorders showing altered response choice following task contingency changes.
Collapse
Affiliation(s)
- Daniel Schulz
- Institute for Pharmaceutical Biology, University of Bonn Bonn, Germany
| | - Julia Morschel
- Institute for Pharmaceutical Biology, University of Bonn Bonn, Germany
| | - Stefanie Schuster
- Institute of Biochemistry, University of Erlangen-Nuremberg Erlangen, Germany
| | - Volker Eulenburg
- Institute of Biochemistry, University of Erlangen-Nuremberg Erlangen, Germany.,Department of Anesthesiology and Intensive Care Medicine, University of Leipzig Leipzig, Germany
| | - Jesús Gomeza
- Institute for Pharmaceutical Biology, University of Bonn Bonn, Germany
| |
Collapse
|
14
|
Kaucka M, Petersen J, Tesarova M, Szarowska B, Kastriti ME, Xie M, Kicheva A, Annusver K, Kasper M, Symmons O, Pan L, Spitz F, Kaiser J, Hovorakova M, Zikmund T, Sunadome K, Matise MP, Wang H, Marklund U, Abdo H, Ernfors P, Maire P, Wurmser M, Chagin AS, Fried K, Adameyko I. Signals from the brain and olfactory epithelium control shaping of the mammalian nasal capsule cartilage. eLife 2018; 7:34465. [PMID: 29897331 PMCID: PMC6019068 DOI: 10.7554/elife.34465] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 06/12/2018] [Indexed: 12/14/2022] Open
Abstract
Facial shape is the basis for facial recognition and categorization. Facial features reflect the underlying geometry of the skeletal structures. Here, we reveal that cartilaginous nasal capsule (corresponding to upper jaw and face) is shaped by signals generated by neural structures: brain and olfactory epithelium. Brain-derived Sonic Hedgehog (SHH) enables the induction of nasal septum and posterior nasal capsule, whereas the formation of a capsule roof is controlled by signals from the olfactory epithelium. Unexpectedly, the cartilage of the nasal capsule turned out to be important for shaping membranous facial bones during development. This suggests that conserved neurosensory structures could benefit from protection and have evolved signals inducing cranial cartilages encasing them. Experiments with mutant mice revealed that the genomic regulatory regions controlling production of SHH in the nervous system contribute to facial cartilage morphogenesis, which might be a mechanism responsible for the adaptive evolution of animal faces and snouts.
Collapse
Affiliation(s)
- Marketa Kaucka
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Neurosciences, Medical University Vienna, Vienna, Austria
| | - Julian Petersen
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Neurosciences, Medical University Vienna, Vienna, Austria
| | - Marketa Tesarova
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Bara Szarowska
- Department of Molecular Neurosciences, Medical University Vienna, Vienna, Austria
| | - Maria Eleni Kastriti
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Neurosciences, Medical University Vienna, Vienna, Austria
| | - Meng Xie
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Kicheva
- Institute of Science and Technology IST Austria, Klosterneuburg, Austria
| | - Karl Annusver
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.,Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Maria Kasper
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.,Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Orsolya Symmons
- Department of Bioengineering, University of Pennsylvania, Philadelphia, United States
| | - Leslie Pan
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Francois Spitz
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Genomics of Animal Development Unit, Institut Pasteur, Paris, France
| | - Jozef Kaiser
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Maria Hovorakova
- Department of Developmental Biology, Institute of Experimental Medicine, The Czech Academy of Sciences, Prague, Czech Republic
| | - Tomas Zikmund
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Kazunori Sunadome
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Michael P Matise
- Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, Piscataway, United States
| | - Hui Wang
- Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, Piscataway, United States
| | - Ulrika Marklund
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Hind Abdo
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Patrik Ernfors
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Pascal Maire
- Department of Development, Reproduction and Cancer, Institute Cochin, Paris, France
| | - Maud Wurmser
- Department of Development, Reproduction and Cancer, Institute Cochin, Paris, France
| | - Andrei S Chagin
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Kaj Fried
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Neurosciences, Medical University Vienna, Vienna, Austria
| |
Collapse
|
15
|
De Novo Mutations in Protein Kinase Genes CAMK2A and CAMK2B Cause Intellectual Disability. Am J Hum Genet 2017; 101:768-788. [PMID: 29100089 DOI: 10.1016/j.ajhg.2017.10.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/09/2017] [Indexed: 02/08/2023] Open
Abstract
Calcium/calmodulin-dependent protein kinase II (CAMK2) is one of the first proteins shown to be essential for normal learning and synaptic plasticity in mice, but its requirement for human brain development has not yet been established. Through a multi-center collaborative study based on a whole-exome sequencing approach, we identified 19 exceedingly rare de novo CAMK2A or CAMK2B variants in 24 unrelated individuals with intellectual disability. Variants were assessed for their effect on CAMK2 function and on neuronal migration. For both CAMK2A and CAMK2B, we identified mutations that decreased or increased CAMK2 auto-phosphorylation at Thr286/Thr287. We further found that all mutations affecting auto-phosphorylation also affected neuronal migration, highlighting the importance of tightly regulated CAMK2 auto-phosphorylation in neuronal function and neurodevelopment. Our data establish the importance of CAMK2A and CAMK2B and their auto-phosphorylation in human brain function and expand the phenotypic spectrum of the disorders caused by variants in key players of the glutamatergic signaling pathway.
Collapse
|
16
|
Treacher Collins syndrome: a clinical and molecular study based on a large series of patients. Genet Med 2015; 18:49-56. [PMID: 25790162 DOI: 10.1038/gim.2015.29] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 01/28/2015] [Indexed: 01/01/2023] Open
Abstract
PURPOSE Treacher Collins/Franceschetti syndrome (TCS; OMIM 154500) is a disorder of craniofacial development belonging to the heterogeneous group of mandibulofacial dysostoses. TCS is classically characterized by bilateral mandibular and malar hypoplasia, downward-slanting palpebral fissures, and microtia. To date, three genes have been identified in TCS:,TCOF1, POLR1D, and POLR1C. METHODS We report a clinical and extensive molecular study, including TCOF1, POLR1D, POLR1C, and EFTUD2 genes, in a series of 146 patients with TCS. Phenotype-genotype correlations were investigated for 19 clinical features, between TCOF1 and POLR1D, and the type of mutation or its localization in the TCOF1 gene. RESULTS We identified 92/146 patients (63%) with a molecular anomaly within TCOF1, 9/146 (6%) within POLR1D, and none within POLR1C. Among the atypical negative patients (with intellectual disability and/or microcephaly), we identified four patients carrying a mutation in EFTUD2 and two patients with 5q32 deletion encompassing TCOF1 and CAMK2A in particular. Congenital cardiac defects occurred more frequently among patients with TCOF1 mutation (7/92, 8%) than reported in the literature. CONCLUSION Even though TCOF1 and POLR1D were associated with extreme clinical variability, we found no phenotype-genotype correlation. In cases with a typical phenotype of TCS, 6/146 (4%) remained with an unidentified molecular defect.
Collapse
|
17
|
Defining the blanks--pharmacochaperoning of SLC6 transporters and ABC transporters. Pharmacol Res 2013; 83:63-73. [PMID: 24316454 PMCID: PMC4059943 DOI: 10.1016/j.phrs.2013.11.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 11/27/2013] [Accepted: 11/27/2013] [Indexed: 02/06/2023]
Abstract
SLC6 family members and ABC transporters represent two extremes: SLC6 transporters are confined to the membrane proper and only expose small segments to the hydrophilic milieu. In ABC transporters the hydrophobic core is connected to a large intracellular (eponymous) ATP binding domain that is comprised of two discontiguous repeats. Accordingly, their folding problem is fundamentally different. This can be gauged from mutations that impair the folding of the encoded protein and give rise to clinically relevant disease phenotypes: in SLC6 transporters, these cluster at the protein–lipid interface on the membrane exposed surface. Mutations in ABC-transporters map to the interface between nucleotide binding domains and the coupling helices, which provide the connection to the hydrophobic core. Folding of these mutated ABC-transporters can be corrected with ligands/substrates that bind to the hydrophobic core. This highlights a pivotal role of the coupling helices in the folding trajectory. In contrast, insights into pharmacochaperoning of SLC6 transporters are limited to monoamine transporters – in particular the serotonin transporter (SERT) – because of their rich pharmacology. Only ligands that stabilize the inward facing conformation act as effective pharmacochaperones. This indicates that the folding trajectory of SERT proceeds via the inward facing conformation. Mutations that impair folding of SLC6 family members can be transmitted as dominant or recessive alleles. The dominant phenotype of the mutation can be rationalized, because SLC6 transporters are exported in oligomeric form from the endoplasmic reticulum (ER). Recessive transmission requires shielding of the unaffected gene product from the mutated transporter in the ER. This can be accounted for by a chaperone-COPII (coatomer protein II) exchange model, where proteinaceous ER-resident chaperones engage various intermediates prior to formation of the oligomeric state and subsequent export from the ER. It is likely that the action of pharmacochaperones is contingent on and modulated by these chaperones.
Collapse
|