1
|
Orsucci D, Tessa A, Caldarazzo Ienco E, Trovato R, Natale G, Bilancieri G, Giuntini M, Napolitano A, Salvetti S, Vista M, Santorelli FM. Clinical and genetic features of dominant Essential Tremor in Tuscany, Italy: FUS, CAMTA1, ATXN1 and beyond. J Neurol Sci 2024; 460:123012. [PMID: 38626532 DOI: 10.1016/j.jns.2024.123012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/18/2024]
Abstract
OBJECTIVE Essential Tremor (ET) is one of the most common neurological disorders. In most instances ET is inherited as an autosomal dominant trait with age-related penetrance (virtually complete in advanced age); however, ET genetics remains elusive. The current study aims to identify possibly pathogenic genetic variants in a group of well-characterized ET families. METHODS 34 individuals from 14 families with dominant ET were clinically evaluated and studied by whole exome sequencing studies (after excluding trinucleotide expansion disorders). RESULTS Most patients had pure ET. In 4 families, exome studies could identify a genetic variant potentially able to significantly alter the protein structure (CADD >20, REVEL score > 0.25), shared by all the affected individuals (in CAMTA1, FUS, MYH14, SGCE genes). In another family there were two variants in dominant genes (PCDH9 and SQSTM1). Moreover, an interrupted "intermediate" trinucleotide expansion in ATXN1 ("SCA1") was identified in a further family with pure ET. CONCLUSION Combining our observations together with earlier reports, we can conclude that ET genes confirmed in at least two families to date include CAMTA1 and FUS (reported here), as well as CACNA1G, NOTCH2NLC and TENM4. Most cases of familial ET, inherited with an autosomal dominant inheritance, may result from "mild" variants of many different genes that, when affected by more harmful genetic variants, lead to more severe neurological syndromes (still autosomal dominant). Thus, ET phenotype may be the "mild", incomplete manifestation of many other dominant neurogenetic diseases. These findings further support evidence of genetic heterogeneity for such disease(s). Author's keywords: cerebellar ataxias, movement disorders, neurogenetics, rare neurological disorders, tremor.
Collapse
Affiliation(s)
- D Orsucci
- Unit of Neurology, San Luca Hospital, Lucca, Italy.
| | - A Tessa
- IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| | | | - R Trovato
- IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| | - G Natale
- IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| | - G Bilancieri
- IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| | - M Giuntini
- Unit of Neurology, San Luca Hospital, Lucca, Italy
| | - A Napolitano
- Unit of Neurology, Apuane Hospital, Massa Carrara, Italy
| | - S Salvetti
- Unit of Neurology, San Luca Hospital, Lucca, Italy
| | - M Vista
- Unit of Neurology, San Luca Hospital, Lucca, Italy
| | | |
Collapse
|
2
|
Swords SB, Jia N, Norris A, Modi J, Cai Q, Grant BD. A conserved requirement for RME-8/DNAJC13 in neuronal autophagic lysosome reformation. Autophagy 2024; 20:792-808. [PMID: 37942902 PMCID: PMC11062384 DOI: 10.1080/15548627.2023.2269028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/16/2023] [Accepted: 10/02/2023] [Indexed: 11/10/2023] Open
Abstract
Autophagosomes fuse with lysosomes, forming autolysosomes that degrade engulfed cargo. To maintain lysosomal capacity, autophagic lysosome reformation (ALR) must regenerate lysosomes from autolysosomes using a membrane tubule-based process. Maintaining lysosomal capacity is required to maintain cellular health, especially in neurons where lysosomal dysfunction has been repeatedly implicated in neurodegenerative disease. The DNA-J domain HSC70 co-chaperone RME-8/DNAJC13 has been linked to endosomal coat protein regulation and to neurological disease. We report new analysis of the requirements for the RME-8/DNAJC13 protein in neurons, focusing on intact C. elegans mechanosensory neurons, and primary mouse cortical neurons in culture. Loss of RME-8/DNAJC13 in both systems results in accumulation of grossly elongated autolysosomal tubules. Further C. elegans analysis revealed a similar autolysosome tubule accumulation defect in mutants known to be required for ALR in mammals, including mutants lacking bec-1/BECN1/Beclin1 and vps-15/PIK3R4/p150 that regulate the class III phosphatidylinositol 3-kinase (PtdIns3K) VPS-34, and dyn-1/dynamin that severs ALR tubules. Clathrin is also an important ALR regulator implicated in autolysosome tubule formation and release. In C. elegans we found that loss of RME-8 causes severe depletion of clathrin from neuronal autolysosomes, a phenotype shared with bec-1 and vps-15 mutants. We conclude that RME-8/DNAJC13 plays a previously unrecognized role in ALR, likely affecting autolysosome tubule severing. Additionally, in both systems, loss of RME-8/DNAJC13 reduced macroautophagic/autophagic flux, suggesting feedback regulation from ALR to autophagy. Our results connecting RME-8/DNAJC13 to ALR and autophagy provide a potential mechanism by which RME-8/DNAJC13 could influence neuronal health and the progression of neurodegenerative disease.Abbreviation: ALR, autophagic lysosome reformation; ATG-13/EPG-1, AuTophaGy (yeast Atg homolog)-13; ATG-18, AuTophaGy (yeast Atg homolog)-18; AV, autophagic vacuole; CLIC-1, Clathrin Light Chain-1; EPG-3, Ectopic P Granules-3; EPG-6, Ectopic P Granules-6; LGG-1, LC3, GABARAP and GATE-16 family-1; MAP1LC3/LC3, microtubule-associated protein 1 light chain 3; PD, Parkinson disease; PtdIns3P, phosphatidylinositol-3-phosphate; PtdIns(4,5)P2, phosphatidylinositol-4,5-bisphosphate; RME-8, Receptor Mediated Endocytosis-8; SNX-1, Sorting NeXin-1; VPS-34, related to yeast Vacuolar Protein Sorting factor-34.
Collapse
Affiliation(s)
- Sierra B. Swords
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA
| | - Nuo Jia
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Anne Norris
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA
| | - Jil Modi
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA
| | - Qian Cai
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Barth D. Grant
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA
- Center for Lipid Research, New Brunswick, NJ, USA
| |
Collapse
|
3
|
Swords S, Jia N, Norris A, Modi J, Cai Q, Grant BD. A Conserved Requirement for RME-8/DNAJC13 in Neuronal Autolysosome Reformation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.530319. [PMID: 36909501 PMCID: PMC10002637 DOI: 10.1101/2023.02.27.530319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Autophagosomes fuse with lysosomes, forming autolysosomes that degrade engulfed cargo. To maintain lysosomal capacity, autolysosome reformation (ALR) must regenerate lysosomes from autolysosomes using a membrane tubule-based process. Maintaining lysosomal capacity is required to maintain proteostasis and cellular health, especially in neurons where lysosomal dysfunction has been repeatedly implicated in neurodegenerative disease. Cell biological studies have linked the DNA-J domain Hsc70 co-chaperone RME-8/DNAJC13 to endosomal coat protein regulation, while human genetics studies have linked RME-8/DNAJC13 to neurological disease, including Parkinsonism and Essential Tremor. We report new analysis of the requirements for the RME-8/DNAJC13 protein in neurons, focusing on C. elegans mechanosensory neurons in the intact animal, and in primary mouse cortical neurons in culture. We find that loss of RME-8/DNAJC13 in both systems results in accumulation of grossly elongated autolysosomal tubules. Further C. elegans analysis revealed a similar autolysosome tubule accumulation defect in mutants known to be required for ALR in mammals, including bec-1/beclin and vps-15/PIK3R4/p150 that regulate type-III PI3-kinase VPS-34, and dyn-1/dynamin that severs ALR tubules. Clathrin is also an important ALR regulator implicated in autolysosome tubule formation and release. In C. elegans we found that loss of RME-8 causes severe depletion of clathrin from neuronal autolysosomes, a phenotype shared with bec-1 and vps-15 mutants. We conclude that RME-8/DNAJC13 plays a conserved but previously unrecognized role in autolysosome reformation, likely affecting ALR tubule initiation and/or severing. Additionally, in both systems, we found that loss of RME-8/DNAJC13 appeared to reduce autophagic flux, suggesting feedback regulation from ALR to autophagy. Our results connecting RME-8/DNAJC13 to ALR and autophagy provide a potential mechanism by which RME-8/DNAJC13 could influence neuronal health and the progression of neurodegenerative disease.
Collapse
Affiliation(s)
- Sierra Swords
- Department of Molecular Biology and Biochemistry Rutgers University, Piscataway, NJ USA, 08854
| | - Nuo Jia
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ USA, 08854
| | - Anne Norris
- Department of Molecular Biology and Biochemistry Rutgers University, Piscataway, NJ USA, 08854
| | - Jil Modi
- Department of Molecular Biology and Biochemistry Rutgers University, Piscataway, NJ USA, 08854
| | - Qian Cai
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ USA, 08854
| | - Barth D. Grant
- Department of Molecular Biology and Biochemistry Rutgers University, Piscataway, NJ USA, 08854
- Center for Lipid Research, New Brunswick, NJ USA 08901
| |
Collapse
|
4
|
Abstract
Molecular chaperones and co-chaperones facilitate the assembly of newly synthesized polypeptides and refolding of unfolded or misfolded proteins, thereby maintaining protein homeostasis in cells. As co-chaperones of the master chaperone heat shock protein (HSP) 70, the HSP40 (DNAJ) proteins are largest chaperone family in eukaryotic cells. They contain a characteristic J-domain which mediates interaction with HSP70, thereby helping protein folding. It is well perceived that protein homeostasis is vital for neuronal health. DNAJ family proteins have been linked to the occurrence and progression of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, spinocerebellar ataxia, Charcot-Marie-Tooth disease, spinal muscular atrophy, distal hereditary motor neuropathy, limb-girdle type muscular dystrophy, neuronal ceroid lipofuscinosis and essential tremor in recent studies. DNAJA1 effectively degrades huntington aggregates; DNAJB1 can degrade protein aggregates ataxin-3; DNAJB2 can inhibit the formation of huntington aggregates; DNAJB6 can inhibit the aggregation of Aβ 42 and α-synuclein; DNAJC5 can promote the release of TDP-43, τ protein, and α-synuclein into the extracellular space. Mutations in the essential tremor-associated DNAJC13 gene can prevent endosome protein trafficking. This article reviews the mechanism of DNAJ protein family in neurodegenerative diseases.
Collapse
|
5
|
Asif M, Mocanu ID, Abdullah U, Höhne W, Altmüller J, Makhdoom EUH, Thiele H, Baig SM, Nürnberg P, Graul-Neumann L, Hussain MS. A novel missense variant of SCN4A co-segregates with congenital essential tremor in a consanguineous Kurdish family. Am J Med Genet A 2021; 188:1251-1258. [PMID: 34913263 DOI: 10.1002/ajmg.a.62610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/10/2021] [Accepted: 11/30/2021] [Indexed: 11/09/2022]
Abstract
Essential tremor (ET) is a neurological disorder characterized by bilateral and symmetric postural, isometric, and kinetic tremors of forelimbs produced during voluntary movements. To date, only a single SCN4A variant has been suggested to cause ET. In continuation of the previous report on the association between SCN4A and ET in a family from Spain, we validated the pathogenicity of a novel SCN4A variant and its involvement in ET in a second family affected by this disease. We recruited a Kurdish family with four affected members manifesting congenital tremor. Using whole-exome sequencing, we identified a novel missense variant in SCN4A, NM_000334.4:c.4679C>T; p.(Pro1560Leu), thus corroborating SCN4A's role in ET. The residue is highly conserved across vertebrates and the substitution is predicted to be pathogenic by various in silico tools. Western blotting and immunocytochemistry performed in cells derived from one of the patients showed reduced immunoreactivity of SCN4A as compared to control cells. The study provides supportive evidence for the role of SCN4A in the etiology of ET and expands the phenotypic spectrum of channelopathies to this neurological disorder.
Collapse
Affiliation(s)
- Maria Asif
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Ionut Dragos Mocanu
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Uzma Abdullah
- University Institute of Biochemistry and Biotechnology (UIBB), PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Wolfgang Höhne
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Core Facility Genomics, Berlin, Germany.,Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Ehtisham Ul Haq Makhdoom
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany.,Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) College, PIEAS, Faisalabad, Pakistan.,Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Holger Thiele
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Shahid Mahmood Baig
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) College, PIEAS, Faisalabad, Pakistan.,Pakistan Science Foundation (PSF), Islamabad, Pakistan.,Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Luitgard Graul-Neumann
- Charité-Universitätsmedizin Berlin, Institut für Medizinische Genetik und Humangenetik, Berlin, Germany
| | - Muhammad Sajid Hussain
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| |
Collapse
|
6
|
Iyer K, Chand K, Mitra A, Trivedi J, Mitra D. Diversity in heat shock protein families: functional implications in virus infection with a comprehensive insight of their role in the HIV-1 life cycle. Cell Stress Chaperones 2021; 26:743-768. [PMID: 34318439 PMCID: PMC8315497 DOI: 10.1007/s12192-021-01223-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
Heat shock proteins (HSPs) are a group of cellular proteins that are induced during stress conditions such as heat stress, cold shock, UV irradiation and even pathogenic insult. They are classified into families based on molecular size like HSP27, 40, 70 and 90 etc, and many of them act as cellular chaperones that regulate protein folding and determine the fate of mis-folded or unfolded proteins. Studies have also shown multiple other functions of these proteins such as in cell signalling, transcription and immune response. Deregulation of these proteins leads to devastating consequences, such as cancer, Alzheimer's disease and other life threatening diseases suggesting their potential importance in life processes. HSPs exist in multiple isoforms, and their biochemical and functional characterization still remains a subject of active investigation. In case of viral infections, several HSP isoforms have been documented to play important roles with few showing pro-viral activity whereas others seem to have an anti-viral role. Earlier studies have demonstrated that HSP40 plays a pro-viral role whereas HSP70 inhibits HIV-1 replication; however, clear isoform-specific functional roles remain to be established. A detailed functional characterization of all the HSP isoforms will uncover their role in cellular homeostasis and also may highlight some of them as potential targets for therapeutic strategies against various viral infections. In this review, we have tried to comprehend the details about cellular HSPs and their isoforms, their role in cellular physiology and their isoform-specific functions in case of virus infection with a specific focus on HIV-1 biology.
Collapse
Affiliation(s)
- Kruthika Iyer
- Laboratory for HIV Research, National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune, 411007, India
| | - Kailash Chand
- Laboratory for HIV Research, National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune, 411007, India
| | - Alapani Mitra
- Laboratory for HIV Research, National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune, 411007, India
| | - Jay Trivedi
- Laboratory for HIV Research, National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune, 411007, India
| | - Debashis Mitra
- Laboratory for HIV Research, National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune, 411007, India.
| |
Collapse
|
7
|
Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, Álvarez I, Pastor P, Agúndez JAG. Genomic Markers for Essential Tremor. Pharmaceuticals (Basel) 2021; 14:ph14060516. [PMID: 34072005 PMCID: PMC8226734 DOI: 10.3390/ph14060516] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
There are many reports suggesting an important role of genetic factors in the etiopathogenesis of essential tremor (ET), encouraging continuing the research for possible genetic markers. Linkage studies in families with ET have identified 4 genes/loci for familial ET, although the responsible gene(s) have not been identified. Genome-wide association studies (GWAS) described several variants in LINGO1, SLC1A2, STK32B, PPARGC1A, and CTNNA3, related with ET, but none of them have been confirmed in replication studies. In addition, the case-control association studies performed for candidate variants have not convincingly linked any gene with the risk for ET. Exome studies described the association of several genes with familial ET (FUS, HTRA2, TENM4, SORT1, SCN11A, NOTCH2NLC, NOS3, KCNS2, HAPLN4, USP46, CACNA1G, SLIT3, CCDC183, MMP10, and GPR151), but they were found only in singular families and, again, not found in other families or other populations, suggesting that some can be private polymorphisms. The search for responsible genes for ET is still ongoing.
Collapse
Affiliation(s)
- Félix Javier Jiménez-Jiménez
- Section of Neurology, Hospital Universitario del Sureste, E28500 Arganda del Rey, Spain;
- Correspondence: ; Tel.: +34-636-96-83-95; Fax: +34-913-28-07-04
| | | | - Elena García-Martín
- ARADyAL Instituto de Salud Carlos III, University Institute of Molecular Pathology Biomarkers, University of Extremadura, E10071 Caceres, Spain; (E.G.-M.); (J.A.G.A.)
| | - Ignacio Álvarez
- Movement Disorders Unit, Department of Neurology, University Hospital Mútua de Terrassa, Fundació Docencia i Recerça Mútua de Terrassa, E08221 Terrassa, Spain; (I.Á.); (P.P.)
| | - Pau Pastor
- Movement Disorders Unit, Department of Neurology, University Hospital Mútua de Terrassa, Fundació Docencia i Recerça Mútua de Terrassa, E08221 Terrassa, Spain; (I.Á.); (P.P.)
| | - José A. G. Agúndez
- ARADyAL Instituto de Salud Carlos III, University Institute of Molecular Pathology Biomarkers, University of Extremadura, E10071 Caceres, Spain; (E.G.-M.); (J.A.G.A.)
| |
Collapse
|
8
|
Sailani MR, Jahanbani F, Abbott CW, Lee H, Zia A, Rego S, Winkelmann J, Hopfner F, Khan TN, Katsanis N, Müller SH, Berg D, Lyman KM, Mychajliw C, Deuschl G, Bernstein JA, Kuhlenbäumer G, Snyder MP. Candidate variants in TUB are associated with familial tremor. PLoS Genet 2020; 16:e1009010. [PMID: 32956375 PMCID: PMC7529431 DOI: 10.1371/journal.pgen.1009010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 10/01/2020] [Accepted: 07/24/2020] [Indexed: 11/19/2022] Open
Abstract
Essential tremor (ET) is the most common adult-onset movement disorder. In the present study, we performed whole exome sequencing of a large ET-affected family (10 affected and 6 un-affected family members) and identified a TUB p.V431I variant (rs75594955) segregating in a manner consistent with autosomal-dominant inheritance. Subsequent targeted re-sequencing of TUB in 820 unrelated individuals with sporadic ET and 630 controls revealed significant enrichment of rare nonsynonymous TUB variants (e.g. rs75594955: p.V431I, rs1241709665: p.Ile20Phe, rs55648406: p.Arg49Gln) in the ET cohort (SKAT-O test p-value = 6.20e-08). TUB encodes a transcription factor predominantly expressed in neuronal cells and has been previously implicated in obesity. ChIP-seq analyses of the TUB transcription factor across different regions of the mouse brain revealed that TUB regulates the pathways responsible for neurotransmitter production as well thyroid hormone signaling. Together, these results support the association of rare variants in TUB with ET. Essential tremor (ET) is the most common adult-onset movement disorder and in most affected families it appears to be inherited in an autosomal dominant pattern. The causes of essential tremor are unknown. Although many genetic studies in affected families and sporadic cases of ET have shown that genes may play a role, it has proven quite challenging to identify the specific genetic variants involved. Here, we use state-of-the-art technologies to identify the role of genetic variants on ET through exome sequencing of a large affected ET family and subsequent validation in a large population of cases and controls. We show that rare nonsynonymous variants of the TUB gene are significantly enriched in ET cases versus healthy controls. Further studies of biological pathways regulated by TUB in the mouse brain reveal key pathways related to ET. Our work expands our knowledge of the genetic basis of ET.
Collapse
Affiliation(s)
- M. Reza Sailani
- Department of Genetics, Stanford University, Stanford, CA, United States of America
| | - Fereshteh Jahanbani
- Department of Genetics, Stanford University, Stanford, CA, United States of America
| | - Charles W. Abbott
- Department of Genetics, Stanford University, Stanford, CA, United States of America
| | - Hayan Lee
- Department of Genetics, Stanford University, Stanford, CA, United States of America
| | - Amin Zia
- Department of Genetics, Stanford University, Stanford, CA, United States of America
| | - Shannon Rego
- Department of Genetics, Stanford University, Stanford, CA, United States of America
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Institute of Human Genetics, Technical University, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Franziska Hopfner
- Department of Neurology, Kiel University, Germany
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Tahir N. Khan
- Center for Human Disease Modeling, Duke University, United States of America
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University, United States of America
- Advanced Center for Translational and Genetic Medicine, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, United States of America
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | | | - Daniela Berg
- Department of Neurology, Kiel University, Germany
- Department of Neurology, Universitätsklinikum Tübingen, Germany
| | - Katherine M. Lyman
- Department of Genetics, Stanford University, Stanford, CA, United States of America
| | - Christian Mychajliw
- University Hospital Tübingen, Department of Psychiatry and Psychotherapy, Tübingen, Germany
| | | | - Jonathan A. Bernstein
- Department of Pediatrics, Stanford University, Stanford, CA, United States of America
| | | | - Michael P. Snyder
- Department of Genetics, Stanford University, Stanford, CA, United States of America
- * E-mail: (GK); (MPS)
| |
Collapse
|
9
|
Magrinelli F, Latorre A, Balint B, Mackenzie M, Mulroy E, Stamelou M, Tinazzi M, Bhatia KP. Isolated and combined genetic tremor syndromes: a critical appraisal based on the 2018 MDS criteria. Parkinsonism Relat Disord 2020; 77:121-140. [PMID: 32818815 DOI: 10.1016/j.parkreldis.2020.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/13/2020] [Accepted: 04/18/2020] [Indexed: 12/12/2022]
Abstract
The 2018 consensus statement on the classification of tremors proposes a two-axis categorization scheme based on clinical features and etiology. It also defines "isolated" and "combined" tremor syndromes depending on whether tremor is the sole clinical manifestation or is associated with other neurological or systemic signs. This syndromic approach provides a guide to investigate the underlying etiology of tremors, either genetic or acquired. Several genetic defects have been proven to cause tremor disorders, including autosomal dominant and recessive, X-linked, and mitochondrial diseases, as well as chromosomal abnormalities. Furthermore, some tremor syndromes are recognized in individuals with a positive family history, but their genetic confirmation is pending. Although most genetic tremor disorders show a combined clinical picture, there are some distinctive conditions in which tremor may precede the appearance of other neurological signs by years or remain the prominent manifestation throughout the disease course, previously leading to misdiagnosis as essential tremor (ET). Advances in the knowledge of genetically determined tremors may have been hampered by the inclusion of heterogeneous entities in previous studies on ET. The recent classification of tremors therefore aims to provide more consistent clinical data for deconstructing the genetic basis of tremor syndromes in the next-generation and long-read sequencing era. This review outlines the wide spectrum of tremor disorders with defined or presumed genetic etiology, both isolated and combined, unraveling diagnostic clues of these conditions and focusing mainly on ET-like phenotypes. Furthermore, we suggest a phenotype-to-genotype algorithm to support clinicians in identifying tremor syndromes and guiding genetic investigations.
Collapse
Affiliation(s)
- Francesca Magrinelli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Anna Latorre
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.
| | - Bettina Balint
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany.
| | - Melissa Mackenzie
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.
| | - Eoin Mulroy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.
| | - Maria Stamelou
- Department of Neurology, Attikon University Hospital, Athens, Greece.
| | - Michele Tinazzi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.
| |
Collapse
|
10
|
Ebanks K, Lewis PA, Bandopadhyay R. Vesicular Dysfunction and the Pathogenesis of Parkinson's Disease: Clues From Genetic Studies. Front Neurosci 2020; 13:1381. [PMID: 31969802 PMCID: PMC6960401 DOI: 10.3389/fnins.2019.01381] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a common age-related neurodegenerative disorder with disabling motor symptoms and no available disease modifying treatment. The majority of the PD cases are of unknown etiology, with both genetics and environment playing important roles. Over the past 25 years, however, genetic analysis of patients with familial history of Parkinson's and, latterly, genome wide association studies (GWAS) have provided significant advances in our understanding of the causes of the disease. These genetic insights have uncovered pathways that are affected in both genetic and sporadic forms of PD. These pathways involve oxidative stress, abnormal protein homeostasis, mitochondrial dysfunction, and lysosomal defects. In addition, newly identified PD genes and GWAS nominated genes point toward synaptic changes involving vesicles. This review will highlight the genes that contribute PD risk relating to intracellular vesicle trafficking and their functional consequences. There is still much to investigate on this newly identified and converging pathway of vesicular dynamics and PD, which will aid in better understanding and suggest novel therapeutic strategies for PD patients.
Collapse
Affiliation(s)
- Kirsten Ebanks
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Department of Clinical and Motor Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Patrick A. Lewis
- School of Pharmacy, University of Reading, Reading, United Kingdom
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Rina Bandopadhyay
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Department of Clinical and Motor Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
11
|
Roosen DA, Blauwendraat C, Cookson MR, Lewis PA. DNAJC
proteins and pathways to parkinsonism. FEBS J 2019; 286:3080-3094. [DOI: 10.1111/febs.14936] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/21/2019] [Accepted: 05/21/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Dorien A. Roosen
- Laboratory of Neurogenetics National Institute on AgingNational Institutes of Health Bethesda MD USA
- School of Pharmacy University of Reading UK
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics National Institute on AgingNational Institutes of Health Bethesda MD USA
| | - Mark R. Cookson
- Laboratory of Neurogenetics National Institute on AgingNational Institutes of Health Bethesda MD USA
| | - Patrick A. Lewis
- School of Pharmacy University of Reading UK
- Department of Neurodegenerative Disease UCL Institute of Neurology London UK
| |
Collapse
|
12
|
Tarakad A, Jankovic J. Essential Tremor and Parkinson's Disease: Exploring the Relationship. Tremor Other Hyperkinet Mov (N Y) 2019; 8:589. [PMID: 30643667 PMCID: PMC6329774 DOI: 10.7916/d8md0gvr] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/04/2018] [Indexed: 12/31/2022] Open
Abstract
Background There is longstanding controversy surrounding the possible link between essential tremor (ET) and Parkinson's disease (PD). Inconsistent and unreliable diagnostic criteria may in part account for some of the difficulties in defining the relationship between these two common movement disorders. Methods References for this systematic review were identified using PubMed with the search terms "essential tremor" AND "Parkinson's disease" with articles published in English between 1960 and September 2018 included. Results In this review we provide evidence that some patients diagnosed with ET have an increased risk of developing PD years or decades after onset of action tremor. There are several still unresolved questions about the link between the two disorders including lack of verifiable diagnostic criteria for the two disorders and marked overlap in phenomenology. Here we review clinical, epidemiologic, imaging, pathologic, and genetic studies that address the ET-PD relationship. Several lines of evidence support the association between ET and PD, including overlapping motor and non-motor features, relatively high prevalence of rapid eye movement sleep behavior disorder (26-43%) in ET patients, increased prevalence of PD in patients with longstanding antecedent ET, increased prevalence of ET in family members of patients with PD, and the presence of Lewy bodies in the brains of some ET patients (15-24%). Discussion There is a substantial body of evidence supporting the association between ET and PD within at least a subset of patients, although the nature and possible pathogenic mechanisms of the relationship are not well understood.
Collapse
Affiliation(s)
- Arjun Tarakad
- Parkinson’s Disease Center and Movement Disorders Clinic, Baylor College of Medicine Houston, TX, USA
| | - Joseph Jankovic
- Parkinson’s Disease Center and Movement Disorders Clinic, Baylor College of Medicine Houston, TX, USA
| |
Collapse
|
13
|
Shi CH, Cheng Y, Tang MB, Liu YT, Yang ZH, Li F, Fan Y, Yang J, Xu YM. Analysis of Single Nucleotide Polymorphisms of STK32B, PPARGC1A and CTNNA3 Gene With Sporadic Parkinson's Disease Susceptibility in Chinese Han Population. Front Neurol 2018; 9:387. [PMID: 29899728 PMCID: PMC5989317 DOI: 10.3389/fneur.2018.00387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 05/11/2018] [Indexed: 12/13/2022] Open
Abstract
Recently, five novel single nucleotide polymorphisms (SNPs), rs10937625 in STK32B (serine/threonine kinase 32B), rs17590046 in PPARGC1A (peroxisome proliferator-activated receptor gamma coactivator 1-alpha), and rs12764057, rs10822974, and rs7903491 in CTNNA3 (catenin alpha 3), were found to be associated with increased risk of essential tremor (ET) in a genome-wide association study (GWAS)in individuals of Caucasian ancestry. Considering the overlap between ET and Parkinson's disease (PD) in pathological features and clinical manifestations, a case-control study comprising 546 PD patients and 550 control subjects was carried out to examine whether the same variants were also associated with PD in Chinese Han population. However, the above variants did not show an association with PD. Our results suggested that these variants do not play a major role in PD in the Chinese population, Actually, the clinical overlap between PD and ET is under debate. In our Chinese Han cohort, we did not verify potential genetic pleiotropy between two diseases, which may indicated that etiology and pathobiology of PD and ET are distinct. Thus, a more comprehensive study such as a multi-center study may be helpful to evaluate the relationship between the five new susceptible loci and PD in Chinese Han population in the future.
Collapse
Affiliation(s)
- Chang-He Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuan Cheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mi-Bo Tang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu-Tao Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhi-Hua Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fang Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu-Ming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Chen H, Yuan L, Song Z, Deng X, Yang Z, Gong L, Zi X, Deng H. Genetic Analysis of LRRK1 and LRRK2 Variants in Essential Tremor Patients. Genet Test Mol Biomarkers 2018; 22:398-402. [PMID: 29812962 DOI: 10.1089/gtmb.2017.0277] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AIMS Essential tremor (ET) is one of the most common adult-onset movement disorders. ET and Parkinson's disease (PD) overlap clinically and pathologically, which prompted this investigation into the association of PD risk variants in ET patients. This study was designed to explore the role of variants of two PD-related genes LRRK1 and LRRK2 in a Han Chinese ET population. MATERIALS AND METHODS Genetic analysis of LRRK1, rs2924835, and LRRK2, rs34594498, rs34410987, and rs33949390 variants was conducted on 200 Han Chinese patients with ET and 434 ethnically matched normal controls. RESULTS No statistically significant differences were identified in either genotypic or allelic frequencies of variants between the ET patients and the control cohort (all p > 0.05). Haplotype analysis of three LRRK2 variants (rs34594498, rs34410987, and rs33949390) showed no haplotypes displayed an association with ET risk (all p > 0.05). CONCLUSIONS The data suggest that LRRK1 variant (rs2924835) and LRRK2 variants (rs34594498, rs34410987, and rs33949390) are not associated with ET in this Han Chinese population.
Collapse
Affiliation(s)
- Han Chen
- 1 Department of Neurology, The Third Xiangya Hospital, Central South University , Changsha, China
| | - Lamei Yuan
- 2 Center for Experimental Medicine, The Third Xiangya Hospital, Central South University , Changsha, China
| | - Zhi Song
- 1 Department of Neurology, The Third Xiangya Hospital, Central South University , Changsha, China
| | - Xiong Deng
- 2 Center for Experimental Medicine, The Third Xiangya Hospital, Central South University , Changsha, China
| | - Zhijian Yang
- 2 Center for Experimental Medicine, The Third Xiangya Hospital, Central South University , Changsha, China
| | - Lina Gong
- 1 Department of Neurology, The Third Xiangya Hospital, Central South University , Changsha, China
| | - Xiaohong Zi
- 1 Department of Neurology, The Third Xiangya Hospital, Central South University , Changsha, China
| | - Hao Deng
- 1 Department of Neurology, The Third Xiangya Hospital, Central South University , Changsha, China .,2 Center for Experimental Medicine, The Third Xiangya Hospital, Central South University , Changsha, China
| |
Collapse
|
15
|
Reitz C. Retromer Dysfunction and Neurodegenerative Disease. Curr Genomics 2018; 19:279-288. [PMID: 29755290 PMCID: PMC5930449 DOI: 10.2174/1389202919666171024122809] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/07/2015] [Accepted: 05/25/2016] [Indexed: 11/22/2022] Open
Abstract
In recent years, genomic, animal and cell biology studies have implicated deficiencies in retromer-mediated trafficking of proteins in an increasing number of neurodegenerative diseases including Alzheimer's Disease (AD), Parkinson's Disease (PD) and Frontotemporal Lobar Degener-ation (FTLD). The retromer complex, which is highly conserved across all eukaryotes, regulates the sorting of transmembrane proteins out of endo-somes to the cell surface or to the trans-Golgi network. Within retromer, cargo selection and binding are performed by a trimer of the Vps26, Vps29 and Vps35 proteins, named the "Cargo-Selective Complex (CSC)". Sorting of cargo into tubules for distribution to the trans-Golgi network or the cell sur-face is achieved through the dimeric sorting nexin (SNX) component of retromer and accessory proteins such as the WASH complex which medi-ates the formation of discrete endosomal tubules enabling the sorting of cargo into distinct pathways through production of filamentous actin patch-es. In the present article, we review the molecular structure and function of the retromer and summarize the evidence linking retromer dysfunction to neurodegenerative disease.
Collapse
Affiliation(s)
- Christiane Reitz
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, The Gertrude H. Sergievsky Center, Columbia University, New York, NY, USA; Department of Neurology, Columbia University, New York, NY, USA; Department of Epidemiology, Columbia University, New York, NY, USA
| |
Collapse
|
16
|
Hasegawa T, Yoshida S, Sugeno N, Kobayashi J, Aoki M. DnaJ/Hsp40 Family and Parkinson's Disease. Front Neurosci 2018; 11:743. [PMID: 29367843 PMCID: PMC5767785 DOI: 10.3389/fnins.2017.00743] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 12/20/2017] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is the second most common devastating neurodegenerative disorder after Alzheimer's disease. The precise molecular and cellular basis underlying PD still remains uncertain; however, accumulating evidence suggests that neuronal cell death is caused by a combination of environmental and genetic factors. Over the previous two decades, more than 20 genes have been identified as the cause of and/or risk for PD. Because sporadic and familial forms of PD have many similarities in clinical and neuropathological features, common molecular pathways, such as aberrant mitochondrial and protein homeostasis, are likely to exist in both conditions. Of the various genes and proteins involved in PD, the versatile DnaJ/Hsp40 co-chaperones have attracted particular attention since several genes encoding this protein family have been successively identified as the cause of the familial forms of PD/Parkinsonism. In this review, we will introduce the current knowledge regarding the integratory and modulatory effect of DnaJ/Hsp40 in various cellular functions and argue how the failure of these proteins may initiate and/or facilitate of the disease.
Collapse
Affiliation(s)
- Takafumi Hasegawa
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shun Yoshida
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoto Sugeno
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junpei Kobayashi
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masashi Aoki
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
17
|
Blau N, Martinez A, Hoffmann GF, Thöny B. DNAJC12 deficiency: A new strategy in the diagnosis of hyperphenylalaninemias. Mol Genet Metab 2018; 123:1-5. [PMID: 29174366 DOI: 10.1016/j.ymgme.2017.11.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/16/2017] [Accepted: 11/16/2017] [Indexed: 01/17/2023]
Abstract
Patients with hyperphenylalaninemia (HPA) are detected through newborn screening for phenylketonuria (PKU). HPA is known to be caused by deficiencies of the enzyme phenylalanine hydroxylase (PAH) or its cofactor tetrahydrobiopterin (BH4). Current guidelines for the differential diagnosis of HPA would, however, miss a recently described DNAJC12 deficiency. The co-chaperone DNAJC12 is, together with the 70kDa heat shock protein (HSP70), responsible for the proper folding of PAH. All DNAJC12-deficient patients investigated to date responded to a challenge with BH4 by lowering their blood phenylalanine levels. In addition, the patients presented with low levels of biogenic amine in CSF and responded to supplementation with BH4, L-dopa/carbidopa and 5-hydroxytryptophan. The phenotypic spectrum ranged from mild autistic features or hyperactivity to severe intellectual disability, dystonia and parkinsonism. Late diagnosis result in permanent neurological disability, while early diagnosed and treated patients develop normally. Molecular diagnostics for DNAJC12 variants are thus mandatory in all patients in which deficiencies of PAH and BH4 are genetically excluded.
Collapse
Affiliation(s)
- Nenad Blau
- Dietmar-Hopp-Metabolic Center, University Children's Hospital, Heidelberg, Germany.
| | - Aurora Martinez
- Department of Biomedicine and K.G. Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | - Georg F Hoffmann
- Dietmar-Hopp-Metabolic Center, University Children's Hospital, Heidelberg, Germany
| | - Beat Thöny
- Division of Metabolism, University Children's Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
18
|
Chen H, Song Z, Yuan L, Xiong W, Yang Z, Gong L, Deng H. Genetic analysis of PITX3 variants in patients with essential tremor. Acta Neurol Scand 2017; 135:373-376. [PMID: 27145793 DOI: 10.1111/ane.12608] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND A clinical overlap between essential tremor (ET) and Parkinson's disease (PD) has prompted investigation whether these disorders share common genetic factors. The paired-like homeodomain transcription factor 3 gene (PITX3) has been shown to play an important role for the differentiation and survival of midbrain dopaminergic neurons in the substantia nigra pars compacta. The preferential degeneration of those dopaminergic neurons is the pathological hallmark in PD. AIMS OF THE STUDY The purpose of this study was to evaluate whether PITX3 variants are related to susceptibility of ET in Chinese Han population. METHODS Genetic analysis of two variants rs3758549 and rs4919621 of the PITX3 gene was conducted in 200 Chinese Han patients with ET and 426 controls. RESULTS We did not identify any statistically significant difference in either genotypic or allelic frequencies of variants between the ET patients and control cohort (all P > 0.05). Haplotype analysis of two variants in the PITX3 gene showed no potential association between the haplotypes and risk of ET (all P > 0.05). CONCLUSIONS Our data suggest that PITX3 variants rs3758549 and rs4919621 are not associated with ET in Chinese Han population.
Collapse
Affiliation(s)
- H. Chen
- Department of Neurology; the Third Xiangya Hospital; Central South University; Changsha China
- Center for Experimental Medicine; the Third Xiangya Hospital; Central South University; Changsha China
| | - Z. Song
- Department of Neurology; the Third Xiangya Hospital; Central South University; Changsha China
| | - L. Yuan
- Center for Experimental Medicine; the Third Xiangya Hospital; Central South University; Changsha China
| | - W. Xiong
- Cancer Research Institute; Xiangya School of Medicine; Central South University; Changsha China
| | - Z. Yang
- Center for Experimental Medicine; the Third Xiangya Hospital; Central South University; Changsha China
| | - L. Gong
- Department of Neurology; the Third Xiangya Hospital; Central South University; Changsha China
| | - H. Deng
- Department of Neurology; the Third Xiangya Hospital; Central South University; Changsha China
- Center for Experimental Medicine; the Third Xiangya Hospital; Central South University; Changsha China
| |
Collapse
|
19
|
Lorenzo-Betancor O, Ogaki K, Soto-Ortolaza AI, Labbe C, Walton RL, Strongosky AJ, van Gerpen JA, Uitti RJ, McLean PJ, Springer W, Siuda J, Opala G, Krygowska-Wajs A, Barcikowska M, Czyzewski K, McCarthy A, Lynch T, Puschmann A, Rektorova I, Sanotsky Y, Vilariño-Güell C, Farrer MJ, Ferman TJ, Boeve BF, Petersen RC, Parisi JE, Graff-Radford NR, Dickson DW, Wszolek ZK, Ross OA. DNAJC13 p.Asn855Ser mutation screening in Parkinson's disease and pathologically confirmed Lewy body disease patients. Eur J Neurol 2016; 22:1323-5. [PMID: 26278106 DOI: 10.1111/ene.12770] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/06/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND Recently, a novel mutation in exon 24 of DNAJC13 gene (p.Asn855Ser, rs387907571) has been reported to cause autosomal dominant Parkinson's disease (PD) in a multi-incident Mennonite family. METHODS In the present study the mutation containing exon of the DNAJC13 gene has been sequenced in a Caucasian series consisting of 1938 patients with clinical PD and 838 with pathologically diagnosed Lewy body disease (LBD). RESULTS Our sequence analysis did not identify any coding variants in exon 24 of DNAJC13. Two previously described variants in intron 23 (rs200204728 and rs2369796) were observed. CONCLUSION Our results indicate that the region surrounding the DNAJC13 p.Asn855Ser substitution is highly conserved and mutations in this exon are not a common cause of PD or LBD among Caucasian populations.
Collapse
Affiliation(s)
| | - K Ogaki
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - C Labbe
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - R L Walton
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - A J Strongosky
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - J A van Gerpen
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - R J Uitti
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - P J McLean
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - W Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - J Siuda
- Department of Neurology, Medical University of Silesia, Katowice, Poland
| | - G Opala
- Department of Neurology, Medical University of Silesia, Katowice, Poland
| | - A Krygowska-Wajs
- Department of Neurology, Jagiellonian University, Krakow, Poland
| | - M Barcikowska
- Department of Neurodegenerative Disorders, Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - K Czyzewski
- Department of Neurology, Central Hospital of the Ministry of Interior and Administration, Warsaw, Poland
| | - A McCarthy
- Dublin Neurological Institute at the Mater Misericordiae University Hospital, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - T Lynch
- Dublin Neurological Institute at the Mater Misericordiae University Hospital, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - A Puschmann
- Department of Clinical Sciences, Lund University, Lund, Sweden.,Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - I Rektorova
- School of Medicine, Central European Institute of Technology and First Department of Neurology, Masaryk University, Brno, Czech Republic
| | - Y Sanotsky
- Lviv Regional Clinical Hospital, Lviv, Ukraine
| | - C Vilariño-Güell
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - M J Farrer
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - T J Ferman
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, USA
| | - B F Boeve
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - R C Petersen
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - J E Parisi
- Department of Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - D W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.,Department of Pathology, Mayo Clinic, Jacksonville, FL, USA
| | - Z K Wszolek
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - O A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
20
|
Tio M, Tan EK. Genetics of essential tremor. Parkinsonism Relat Disord 2016; 22 Suppl 1:S176-8. [DOI: 10.1016/j.parkreldis.2015.09.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 09/07/2015] [Indexed: 12/11/2022]
|
21
|
Mitochondrial serine protease HTRA2 p.G399S in a kindred with essential tremor and Parkinson disease. Proc Natl Acad Sci U S A 2014; 111:18285-90. [PMID: 25422467 DOI: 10.1073/pnas.1419581111] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Essential tremor is one of the most frequent movement disorders of humans and can be associated with substantial disability. Some but not all persons with essential tremor develop signs of Parkinson disease, and the relationship between the conditions has not been clear. In a six-generation consanguineous Turkish kindred with both essential tremor and Parkinson disease, we carried out whole exome sequencing and pedigree analysis, identifying HTRA2 p.G399S as the allele likely responsible for both conditions. Essential tremor was present in persons either heterozygous or homozygous for this allele. Homozygosity was associated with earlier age at onset of tremor (P < 0.0001), more severe postural tremor (P < 0.0001), and more severe kinetic tremor (P = 0.0019). Homozygotes, but not heterozygotes, developed Parkinson signs in the middle age. Among population controls from the same Anatolian region as the family, frequency of HTRA2 p.G399S was 0.0027, slightly lower than other populations. HTRA2 encodes a mitochondrial serine protease. Loss of function of HtrA2 was previously shown to lead to parkinsonian features in motor neuron degeneration (mnd2) mice. HTRA2 p.G399S was previously shown to lead to mitochondrial dysfunction, altered mitochondrial morphology, and decreased protease activity, but epidemiologic studies of an association between HTRA2 and Parkinson disease yielded conflicting results. Our results suggest that in some families, HTRA2 p.G399S is responsible for hereditary essential tremor and that homozygotes for this allele develop Parkinson disease. This hypothesis has implications for understanding the pathogenesis of essential tremor and its relationship to Parkinson disease.
Collapse
|