1
|
Villa-Islas V, Izarraras-Gomez A, Larena M, Campos EMP, Sandoval-Velasco M, Rodríguez-Rodríguez JE, Bravo-Lopez M, Moguel B, Fregel R, Garfias-Morales E, Medina Tretmanis J, Velázquez-Ramírez DA, Herrera-Muñóz A, Sandoval K, Nieves-Colón MA, Zepeda García Moreno G, Villanea FA, Medina EFV, Aguayo-Haro R, Valdiosera C, Ioannidis AG, Moreno-Estrada A, Jay F, Huerta-Sanchez E, Moreno-Mayar JV, Sánchez-Quinto F, Ávila-Arcos MC. Demographic history and genetic structure in pre-Hispanic Central Mexico. Science 2023; 380:eadd6142. [PMID: 37167382 DOI: 10.1126/science.add6142] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Aridoamerica and Mesoamerica are two distinct cultural areas in northern and central Mexico, respectively, that hosted numerous pre-Hispanic civilizations between 2500 BCE and 1521 CE. The division between these regions shifted southward because of severe droughts ~1100 years ago, which allegedly drove a population replacement in central Mexico by Aridoamerican peoples. In this study, we present shotgun genome-wide data from 12 individuals and 27 mitochondrial genomes from eight pre-Hispanic archaeological sites across Mexico, including two at the shifting border of Aridoamerica and Mesoamerica. We find population continuity that spans the climate change episode and a broad preservation of the genetic structure across present-day Mexico for the past 2300 years. Lastly, we identify a contribution to pre-Hispanic populations of northern and central Mexico from two ancient unsampled "ghost" populations.
Collapse
Affiliation(s)
- Viridiana Villa-Islas
- International Laboratory for Human Genome Research, Universidad Nacional Autónoma de México (UNAM), Querétaro, México
| | - Alan Izarraras-Gomez
- International Laboratory for Human Genome Research, Universidad Nacional Autónoma de México (UNAM), Querétaro, México
| | - Maximilian Larena
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | | | - Marcela Sandoval-Velasco
- Section for Evolutionary Genomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Cuidad de México, Mexico
| | | | - Miriam Bravo-Lopez
- International Laboratory for Human Genome Research, Universidad Nacional Autónoma de México (UNAM), Querétaro, México
| | - Barbara Moguel
- International Laboratory for Human Genome Research, Universidad Nacional Autónoma de México (UNAM), Querétaro, México
- Centro de Geociencias, UNAM Juriquilla, Juriquilla, Querétaro, México
| | - Rosa Fregel
- Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Ernesto Garfias-Morales
- International Laboratory for Human Genome Research, Universidad Nacional Autónoma de México (UNAM), Querétaro, México
| | | | | | | | - Karla Sandoval
- Equity and Gender Office of the Centre for Research and Advanced Studies (CODIGO-C), CINVESTAV, Mexico City, Mexico
| | - Maria A Nieves-Colón
- Unit of Advanced Genomics, National Laboratory of Genomics for Biodiversity (LANGEBIO), CINVESTAV, Irapuato, Guanajuato, Mexico
- Department of Anthropology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | | | - Fernando A Villanea
- Department of Anthropology, University of Colorado Boulder, Boulder, CO, USA
| | | | | | - Cristina Valdiosera
- Departamento de Historia, Geografía y Comunicaciones, Universidad de Burgos, Burgos, Spain
- Department of History and Archaeology, La Trobe University, Melbourne, Australia
| | - Alexander G Ioannidis
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Andrés Moreno-Estrada
- Unit of Advanced Genomics, National Laboratory of Genomics for Biodiversity (LANGEBIO), CINVESTAV, Irapuato, Guanajuato, Mexico
| | - Flora Jay
- Laboratoire Interdisciplinaire des Sciences du Numérique, Université Paris-Saclay, CNRS, INRIA, 91400 Orsay, France
| | | | - J Víctor Moreno-Mayar
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - María C Ávila-Arcos
- International Laboratory for Human Genome Research, Universidad Nacional Autónoma de México (UNAM), Querétaro, México
| |
Collapse
|
2
|
Song M, Wang Z, Lyu Q, Ying J, Wu Q, Jiang L, Wang F, Zhou Y, Song F, Luo H, Hou Y, Song X, Ying B. Paternal genetic structure of the Qiang ethnic group in China revealed by high-resolution Y-chromosome STRs and SNPs. Forensic Sci Int Genet 2022; 61:102774. [PMID: 36156385 DOI: 10.1016/j.fsigen.2022.102774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/02/2022] [Accepted: 09/11/2022] [Indexed: 11/18/2022]
Abstract
The Qiang population mainly lived in Beichuan Qiang Autonomous County of Sichuan Province. It is one of the nomads in China, distributed along the Minjiang River. The Qiang population was assumed to have great affinity with the Han, the largest ethnic group in China, when it refers to the genetic origin. Whereas, it is deeply understudied, especially from the Y chromosome. Here in this study, we used validated high-resolution Y-chromosome single nucleotide polymorphisms (Y-SNPs) and short tandem repeats (Y-STRs) panels to study the Qiang ethnic group to unravel their paternal genetic, forensic and phylogenetic characteristics. A total of 422 male samples of the Qiang ethnic group were genotyped by 233 Y-SNPs and 29 Y-STRs. Haplogroup O-M175 (N = 312) was the most predominant haplogroup in the Qiang ethnic group, followed by D-M174 (N = 32) and C-M130 (N = 32), N-M231 (N = 27), and Q-M242 (N = 15). After further subdivision, O2a-M324 (N = 213) accounted for the majority of haplogroup O. Haplogroup C2b-Z1338 (N = 29), D1a-CTS11577 (N = 30). O2a2b1a1a1-F42 (N = 48), O2a1b1a1a1a-F11 (N = 35), and O2a2b1a1-M117 (N = 21) represented other large terminal haplogroups. The results unveiled that Qiang ethnic group was a population with a high percentage of haplogroup O2a2b1a1a1-F42 (48/422) and O2a1b1a1a1a-F11 (35/422), and O2a2b1a1-M117 (21/422), which has never been reported. Its haplogroup distribution pattern was different from any of the Han populations, implying that the Qiang ethnic group had its unique genetic pattern. Mismatch analysis indicated that the biggest mismatch number in haplogroup O2a2b1a1a1-F42 was 21, while that of haplogroup O2a1b1a1a1a-F11 was 20. The haplotype diversity of the Qiang ethnic group equaled 0.999788, with 392 haplotypes observed, of which 367 haplotypes were unique. The haplogroup diversity of the Qiang ethnic group reached 0.9767, and 53 terminal haplogroups were observed (The haplogroup diversity of the Qiang ethnic group was the highest among Qiang and all Han subgroups, indicating the larger genetic diversity of the Qiang ethnic group.). Haplogroup O2a2b1a1a1-F42 was the most predominant haplogroup, including 11.37 % of the Qiang individuals. Median-joining trees showed gene flow between the Qiang and Han individuals. Our results indicated that 1) the highest genetic diversity was observed in the Qiang ethnic group compared to any of the former studied Chinese population, suggesting that the Qiang might be an older paternal branch; 2) the haplogroup D-M174 individuals of Qiang, Tibetans and Japanese distributed in three different subclades, which was unable to identify through low-resolution Y-SNP panel; and 3) the Qiang had lower proportion of haplogroup D compared to Yi and Tibetan ethnic groups, showing that the Qiang had less genetic communication with them than with Han Chinese.
Collapse
Affiliation(s)
- Mengyuan Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zefei Wang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qiang Lyu
- Department of Clinical Laboratory, People's Hospital of Beichuan Qiang Autonomous County, Beichuan 622750, Sichuan, China
| | - Jun Ying
- Department of Clinical Laboratory, Santai People's Hospital, Santai 621100, Sichuan, China
| | - Qian Wu
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Lanrui Jiang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Fei Wang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuxiang Zhou
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Feng Song
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Haibo Luo
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yiping Hou
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xingbo Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
3
|
Reyes-Madrid M, Flores-Alvarado S, Pezo-Valderrama P, Orellana-Soto M, Apata M, Moraga M, de Saint Pierre M. An approach on the migratory processes in the north of Chile based on Y chromosome analysis. Am J Hum Biol 2022; 34:e23736. [PMID: 35263492 DOI: 10.1002/ajhb.23736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/23/2021] [Accepted: 02/12/2022] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES Northern Chile is an area characterized by a complex cultural and demographic trajectory. During the last few centuries, this complex trajectory has become the destination of intra- and intercontinental migratory waves. In this study, we analyzed the Y chromosome to evaluate how migratory and admixture patterns have affected the genetic composition of the populations in northern Chile compared with other populations of the country. METHODS A total of 311 people from urban (Antofagasta and Calama), rural (Azapa and Camarones), and Native (Aymara and Atacameño) populations from northern Chile were characterized by 26 SNPs and the STR DYS393 of the Y chromosome, along with 69 individuals from Native populations (Mapuche, Pehuenche, and Huilliche) from southern Chile. In addition to characterizing the paternal lineages, multivariate analyses were performed to compare with published data from other Chilean populations. RESULTS Both the Antofagasta and Calama populations show differences compared with the rest of the Chilean population. On one side, Antofagasta shows a high diversity of non-Amerindian lineages, including the highest value for haplogroup I (12%) for all Chileans populations. Otherwise, Calama has the highest value of any Chilean urban population (31.9%) for Amerindian lineages, including the only Q-M3 sub-lineage detected in the entire sample. Regarding the Native population, Aymara presents the highest percentage of Q-M3 (94.4%). CONCLUSIONS The Y chromosome haplogroup distribution allowed us to identify recent migratory processes typical of the northern populations studied. These have shaped the demographic and cultural dynamics of local and migrant groups in the territory.
Collapse
Affiliation(s)
- Margarita Reyes-Madrid
- Departamento de Antropología, Facultad de Ciencias Sociales, Universidad de Chile, Santiago, Chile
| | - Sandra Flores-Alvarado
- Programa de Bioestadística, Instituto de Salud Pública, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | - Michael Orellana-Soto
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mario Apata
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mauricio Moraga
- Departamento de Antropología, Facultad de Ciencias Sociales, Universidad de Chile, Santiago, Chile.,Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Michelle de Saint Pierre
- Departamento de Antropología, Facultad de Ciencias Sociales, Universidad de Chile, Santiago, Chile
| |
Collapse
|
4
|
Gómez R, Tapia-Guerrero YS, Cisneros B, Orozco L, Cerecedo-Zapata C, Mendoza-Caamal E, Leyva-Gómez G, Leyva-García N, Velázquez-Pérez L, Magaña JJ. Genetic Distribution of Five Spinocerebellar Ataxia Microsatellite Loci in Mexican Native American Populations and Its Impact on Contemporary Mestizo Populations. Genes (Basel) 2022; 13:genes13010157. [PMID: 35052497 PMCID: PMC8775409 DOI: 10.3390/genes13010157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/04/2022] [Accepted: 01/13/2022] [Indexed: 12/17/2022] Open
Abstract
Spinocerebellar ataxias (SCAs) conform a heterogeneous group of neurodegenerative disorders with autosomal dominant inheritance. Five of the most frequent SCAs are caused by a CAG repeat expansion in the exons of specific genes. The SCAs incidence and the distribution of polymorphic CAG alleles vary among populations and ethnicities. Thus, characterization of the genetic architecture of ethnically diverse populations, which have undergone recent admixture and demographic events, could facilitate the identification of genetic risk factors. Owing to the great ethnic diversity of the Mexican population, this study aimed to analyze the allele frequencies of five SCA microsatellite loci (SCA1, SCA2, SCA3, SCA6, and SCA7) in eleven Mexican Native American (MNA) populations. Data from the literature were used to compare the allelic distribution of SCA loci with worldwide populations. The SCA loci allelic frequencies evidenced a certain genetic homogeneity in the MNA populations, except for Mayans, who exhibited distinctive genetic profiles. Neither pathological nor large normal alleles were found in MNA populations, except for the SCA2 pre-mutated allele in the Zapotec population. Collectively, our findings demonstrated the contribution of the MNA ancestry in shaping the genetic structure of contemporary Mexican Mestizo populations. Our results also suggest that Native American ancestry has no impact on the origin of SCAs in the Mexican population. Instead, the acquisition of pathological SCA alleles could be associated with European migration.
Collapse
Affiliation(s)
- Rocío Gómez
- Department of Toxicology, CINVESTAV-IPN, Mexico City 07360, Mexico;
| | - Yessica S. Tapia-Guerrero
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute-Luis Guillermo Ibarra Ibarra (INR-LGII), Mexico City 14389, Mexico; (Y.S.T.-G.); (C.C.-Z.); (N.L.-G.)
| | - Bulmaro Cisneros
- Department of Genetics and Molecular Biology, CINVESTAV-IPN, Mexico City 07360, Mexico;
| | - Lorena Orozco
- Laboratory of Immunogenomics and Metabolic Diseases, National Genomic Medicine Institute (INMEGEN), Mexico City 14610, Mexico; (L.O.); (E.M.-C.)
| | - César Cerecedo-Zapata
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute-Luis Guillermo Ibarra Ibarra (INR-LGII), Mexico City 14389, Mexico; (Y.S.T.-G.); (C.C.-Z.); (N.L.-G.)
- Rehabilitation and Social Inclusion Center of Veracruz (CRIS-DIF), Xalapa, Veracruz 91097, Mexico
| | - Elvia Mendoza-Caamal
- Laboratory of Immunogenomics and Metabolic Diseases, National Genomic Medicine Institute (INMEGEN), Mexico City 14610, Mexico; (L.O.); (E.M.-C.)
| | - Gerardo Leyva-Gómez
- Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México (UNAM); Mexico City 04510, Mexico;
| | - Norberto Leyva-García
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute-Luis Guillermo Ibarra Ibarra (INR-LGII), Mexico City 14389, Mexico; (Y.S.T.-G.); (C.C.-Z.); (N.L.-G.)
| | | | - Jonathan J. Magaña
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute-Luis Guillermo Ibarra Ibarra (INR-LGII), Mexico City 14389, Mexico; (Y.S.T.-G.); (C.C.-Z.); (N.L.-G.)
- Department of Bioengineering, School of Engineering and Sciences, Tecnologico de Monterrey, Campus Ciudad de México (ITESM-CCM), Mexico City 14380, Mexico
- Correspondence: ; Tel.: +52-(55)-5999-1000 (ext. 14708)
| |
Collapse
|
5
|
Roca-Rada X, Souilmi Y, Teixeira JC, Llamas B. Ancient DNA Studies in Pre-Columbian Mesoamerica. Genes (Basel) 2020; 11:E1346. [PMID: 33202852 PMCID: PMC7696771 DOI: 10.3390/genes11111346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
Mesoamerica is a historically and culturally defined geographic area comprising current central and south Mexico, Belize, Guatemala, El Salvador, and border regions of Honduras, western Nicaragua, and northwestern Costa Rica. The permanent settling of Mesoamerica was accompanied by the development of agriculture and pottery manufacturing (2500 BCE-150 CE), which led to the rise of several cultures connected by commerce and farming. Hence, Mesoamericans probably carried an invaluable genetic diversity partly lost during the Spanish conquest and the subsequent colonial period. Mesoamerican ancient DNA (aDNA) research has mainly focused on the study of mitochondrial DNA in the Basin of Mexico and the Yucatán Peninsula and its nearby territories, particularly during the Postclassic period (900-1519 CE). Despite limitations associated with the poor preservation of samples in tropical areas, recent methodological improvements pave the way for a deeper analysis of Mesoamerica. Here, we review how aDNA research has helped discern population dynamics patterns in the pre-Columbian Mesoamerican context, how it supports archaeological, linguistic, and anthropological conclusions, and finally, how it offers new working hypotheses.
Collapse
Affiliation(s)
- Xavier Roca-Rada
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia; (Y.S.); (J.C.T.)
| | - Yassine Souilmi
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia; (Y.S.); (J.C.T.)
- National Centre for Indigenous Genomics, Australian National University, Canberra, ACT 0200, Australia
- Environment Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - João C. Teixeira
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia; (Y.S.); (J.C.T.)
- Centre of Excellence for Australian Biodiversity and Heritage (CABAH), School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Bastien Llamas
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia; (Y.S.); (J.C.T.)
- National Centre for Indigenous Genomics, Australian National University, Canberra, ACT 0200, Australia
- Environment Institute, University of Adelaide, Adelaide, SA 5005, Australia
- Centre of Excellence for Australian Biodiversity and Heritage (CABAH), School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
6
|
Szathmáry EJE, Zegura SL, Hammer MF. Exceeding Hrdlička's aims: 100 Years of genetics in anthropology. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 165:754-776. [PMID: 29574830 DOI: 10.1002/ajpa.23406] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Emőke J E Szathmáry
- Department of Anthropology, St. Paul's College, University of Manitoba, 70 Dysart Road, Winnipeg, Manitoba, R3T 2M6, Canada
| | | | | |
Collapse
|
7
|
Whole-sequence analysis indicates that the Y chromosome C2*-Star Cluster traces back to ordinary Mongols, rather than Genghis Khan. Eur J Hum Genet 2018; 26:230-237. [PMID: 29358612 DOI: 10.1038/s41431-017-0012-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 07/27/2017] [Accepted: 08/23/2017] [Indexed: 11/08/2022] Open
Abstract
The Y-chromosome haplogroup C3*-Star Cluster (revised to C2*-ST in this study) was proposed to be the Y-profile of Genghis Khan. Here, we re-examined the origin of C2*-ST and its associations with Genghis Khan and Mongol populations. We analyzed 34 Y-chromosome sequences of haplogroup C2*-ST and its most closely related lineage. We redefined this paternal lineage as C2b1a3a1-F3796 and generated a highly revised phylogenetic tree of the haplogroup, including 36 sub-lineages and 265 non-private Y-chromosome variants. We performed a comprehensive analysis and age estimation of this lineage in eastern Eurasia, including 18,210 individuals from 292 populations. We discovered that the origin of populations with high frequencies of C2*-ST can be traced to either an ancient Niru'un Mongol clan or ordinary Mongol tribes. Importantly, the age of the most recent common ancestor of C2*-ST (2576 years, 95% CI = 1975-3178) and its sub-lineages, and their expansion patterns, are consistent with the diffusion of all Mongolic-speaking populations, rather than Genghis Khan himself or his close male relatives. We concluded that haplogroup C2*-ST is one of the founder paternal lineages of all Mongolic-speaking populations, and direct evidence of an association between C2*-ST and Genghis Khan has yet to be discovered.
Collapse
|
8
|
Taino and African maternal heritage in the Greater Antilles. Gene 2017; 637:33-40. [PMID: 28912065 DOI: 10.1016/j.gene.2017.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/22/2017] [Accepted: 09/04/2017] [Indexed: 01/08/2023]
Abstract
Notwithstanding the general interest and the geopolitical importance of the island countries in the Greater Antilles, little is known about the specific ancestral Native American and African populations that settled them. In an effort to alleviate this lacuna of information on the genetic constituents of the Greater Antilles, we comprehensively compared the mtDNA compositions of Cuba, Dominican Republic, Haiti, Jamaica and Puerto Rico. To accomplish this, the mtDNA HVRI and HVRII regions, as well as coding diagnostic sites, were assessed in the Haitian general population and compared to data from reference populations. The Taino maternal DNA is prominent in the ex-Spanish colonies (61.3%-22.0%) while it is basically non-existent in the ex-French and ex-English colonies of Haiti (0.0%) and Jamaica (0.5%), respectively. The most abundant Native American mtDNA haplogroups in the Greater Antilles are A2, B2 and C1. The African mtDNA component is almost fixed in Haiti (98.2%) and Jamaica (98.5%), and the frequencies of specific African haplogroups vary considerably among the five island nations. The strong persistence of Taino mtDNA in the ex-Spanish colonies (and especially in Puerto Rico), and its absence in the French and English excolonies is likely the result of different social norms regarding mixed marriages with Taino women during the early years after the first contact with Europeans. In addition, this article reports on the results of an integrative approach based on mtDNA analysis and demographic data that tests the hypothesis of a southward shift in raiding zones along the African west coast during the period encompassing the Transatlantic Slave Trade.
Collapse
|