1
|
Ding T, Liu H, Yu G. Novel MSX1 Gene Variants in Chinese Children with Non-Syndromic Tooth Agenesis: A Clinical and Genetic Analysis. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1418. [PMID: 39767847 PMCID: PMC11674387 DOI: 10.3390/children11121418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Tooth agenesis is the most frequently occurring genetic developmental anomaly in clinical dentistry. The MSX1 gene, essential for tooth development, has been associated with non-syndromic tooth agenesis. This study aims to identify novel MSX1 variants associated with this condition and to understand their impact on tooth development. METHODS This study involved the genetic analysis of two children presenting with non-syndromic tooth agenesis. Conservation analysis and 3D structural modeling were conducted to assess the pathogenicity of these variants. Additionally, a review of 108 patients with known MSX1 variants was performed to identify patterns of tooth agenesis. RESULTS We discovered two novel MSX1 variants, c.823 T>G and c.890 A>G, located in the second exon of the MSX1 gene. The identified MSX1 variants, c.823 T>G and c.890 A>G, were predicted to be pathogenic. Conservation analysis showed that the impacted amino acids are highly conserved across species, and 3D structural analysis indicated potential disruptions to protein function. Among the 108 patients reviewed, a consistent pattern of tooth agenesis was observed, with the most frequently missing teeth being the maxillary second premolars, the mandibular second premolars, and the maxillary first premolars. CONCLUSIONS This research broadens the known range of MSX1 gene variants and deepens our comprehension of the genetic foundations of non-syndromic tooth agenesis. The findings provide valuable insights for genetic counseling and future research into tooth development, emphasizing the importance of MSX1 in dental anomalies.
Collapse
Affiliation(s)
- Tingting Ding
- Department of Stomatology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China;
| | - Haochen Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Central Laboratory, Beijing 100081, China;
| | - Guoxia Yu
- Department of Stomatology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China;
| |
Collapse
|
2
|
Memon A, Khidri FF, Waryah YM, Nigar R, Bhinder MA, Shaikh AM, Shaikh H, Waryah AM. Association of MSX1 Gene Variants with Nonsyndromic Cleft Lip and/or Palate in the Pakistani Population. Cleft Palate Craniofac J 2024; 61:1845-1852. [PMID: 37431261 DOI: 10.1177/10556656231185218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023] Open
Abstract
OBJECTIVES This study investigated the association of MSX1 gene variants rs3821949 and rs12532 with nonsyndromic cleft lip and/or palate (NSCL/P) in the Pakistani population. DESIGN Comparative cross-sectional study.Setting: Multicenter of CL/P malformation.Patients/Participants: Unrelated Non-Syndromic cleft Lip/Palate patients and healthy controls were enrolled. METHODS One hundred (n = 100) subjects with NSCL/P and n = 50 unrelated healthy controls were enrolled in a multicenter comparative cross-sectional study. A tetra amplification refractory mutation system (ARMS) polymerase chain reaction (PCR) was performed to analyze MSXI gene single nucleotide variants (SNVs). RESULTS Among 100 NSCL/P subjects, the majority were males (56%; male: female = 1.27: 1). Most of the cases (74%) had cleft lip and palate (CLP) compared to isolated clefts. Genotyping of MSX1 gene variant rs3821949 showed an increased risk for NSCL/P in various genetic models (P < 0.0001), and the A allele exhibited a more than 4-fold increased risk among cases (OR = 4.22: 95% CI = 2.16-8.22; P < 0.0001). Our investigation found no significant difference between the rs12532 variation and NSCL/P. CONCLUSION Our study findings suggest that MSX1 gene variants may increase predisposition to NSCL/P in the Pakistani population. Further studies comprising large samples are required to identify the genetic aetiology of NSCL/P among our people.
Collapse
Affiliation(s)
- Anny Memon
- Department of Molecular Biology and Genetics, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
- Department of Oral Biology, Faculty of Dentistry, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Feriha Fatima Khidri
- Department of Biochemistry, Bilawal Medical College, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Yar Muhammad Waryah
- Department of Molecular Biology and Genetics, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
- Department of Molecular Biology and Genetics, Sindh Institute of Ophthalmology and Visual Sciences, Hyderabad, Pakistan
| | - Roohi Nigar
- Department of Gynecology and Obstetrics, Bilawal Medical College, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Munir Ahmad Bhinder
- Department of Human Genetics, University of Health Sciences, Lahore, Pakistan
| | | | - Hina Shaikh
- Department of Molecular Biology and Genetics, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Ali Muhammad Waryah
- Department of Molecular Biology and Genetics, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| |
Collapse
|
3
|
Haghshenas S, Karimi K, Stevenson RE, Levy MA, Relator R, Kerkhof J, Rzasa J, McConkey H, Lauzon-Young C, Balci TB, White-Brown AM, Carter MT, Richer J, Armour CM, Sawyer SL, Bhola PT, Tedder ML, Skinner CD, van Rooij IALM, van de Putte R, de Blaauw I, Koeck RM, Hoischen A, Brunner H, Esteki MZ, Pelet A, Lyonnet S, Amiel J, Boycott KM, Sadikovic B. Identification of a DNA methylation episignature for recurrent constellations of embryonic malformations. Am J Hum Genet 2024; 111:1643-1655. [PMID: 39089258 PMCID: PMC11339616 DOI: 10.1016/j.ajhg.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 08/03/2024] Open
Abstract
The term "recurrent constellations of embryonic malformations" (RCEM) is used to describe a number of multiple malformation associations that affect three or more body structures. The causes of these disorders are currently unknown, and no diagnostic marker has been identified. Consequently, providing a definitive diagnosis in suspected individuals is challenging. In this study, genome-wide DNA methylation analysis was conducted on DNA samples obtained from the peripheral blood of 53 individuals with RCEM characterized by clinical features recognized as VACTERL and/or oculoauriculovertebral spectrum association. We identified a common DNA methylation episignature in 40 out of the 53 individuals. Subsequently, a sensitive and specific binary classifier was developed based on the DNA methylation episignature. This classifier can facilitate the use of RCEM episignature as a diagnostic biomarker in a clinical setting. The study also investigated the functional correlation of RCEM DNA methylation relative to other genetic disorders with known episignatures, highlighting the common genomic regulatory pathways involved in the pathophysiology of RCEM.
Collapse
Affiliation(s)
- Sadegheh Haghshenas
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Karim Karimi
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | | | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Jessica Rzasa
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Carolyn Lauzon-Young
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Tugce B Balci
- Department of Pediatrics, Division of Medical Genetics, Western University, London, ON, Canada; Medical Genetics Program of Southwestern Ontario, London Health Sciences Centre and Children's Health Research Institute, London, ON, Canada
| | - Alexandre M White-Brown
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Melissa T Carter
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Julie Richer
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Christine M Armour
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Sarah L Sawyer
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Priya T Bhola
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | | | | | - Iris A L M van Rooij
- Department IQ Health, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Romy van de Putte
- Department IQ Health, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ivo de Blaauw
- Department of Surgery-Pediatric Surgery, Radboudumc Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rebekka M Koeck
- Department of Clinical Genetics, Maastricht University Medical Centre+, Maastricht, the Netherlands; Department of Genetics and Cell Biology, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands
| | - Alexander Hoischen
- Department of Human Genetics and Donders Center for Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands; Center for Infectious Diseases (RCI), Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Expertise Center for Immunodeficiency and Autoinflammation and Radboud Center for Infectious Disease (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Han Brunner
- Department of Clinical Genetics, Maastricht University Medical Centre+, Maastricht, the Netherlands; Department of Genetics and Cell Biology, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands; Department of Human Genetics and Donders Center for Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Masoud Zamani Esteki
- Department of Clinical Genetics, Maastricht University Medical Centre+, Maastricht, the Netherlands; Department of Genetics and Cell Biology, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands
| | - Anna Pelet
- Laboratory of Embryology and Genetics of Human Malformations, Institut National de La Santé et de La Recherche Médicale (INSERM) UMR 1163, Institut Imagine and Université Paris Cité, Paris, France
| | - Stanislas Lyonnet
- Laboratory of Embryology and Genetics of Human Malformations, Institut National de La Santé et de La Recherche Médicale (INSERM) UMR 1163, Institut Imagine and Université Paris Cité, Paris, France; Service de Médecine Génomique des Maladies Rares, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Jeanne Amiel
- Laboratory of Embryology and Genetics of Human Malformations, Institut National de La Santé et de La Recherche Médicale (INSERM) UMR 1163, Institut Imagine and Université Paris Cité, Paris, France; Service de Médecine Génomique des Maladies Rares, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada; Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada.
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada.
| |
Collapse
|
4
|
Nevoránková P, Šulcová M, Kavková M, Zimčík D, Balková SM, Peléšková K, Kristeková D, Jakešová V, Zikmund T, Kaiser J, Holá LI, Kolář M, Buchtová M. Region-specific gene expression profiling of early mouse mandible uncovered SATB2 as a key molecule for teeth patterning. Sci Rep 2024; 14:18212. [PMID: 39107332 PMCID: PMC11303781 DOI: 10.1038/s41598-024-68016-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/18/2024] [Indexed: 08/10/2024] Open
Abstract
Mammalian dentition exhibits distinct heterodonty, with more simple teeth located in the anterior area of the jaw and more complex teeth situated posteriorly. While some region-specific differences in signalling have been described previously, here we performed a comprehensive analysis of gene expression at the early stages of odontogenesis to obtain complete knowledge of the signalling pathways involved in early jaw patterning. Gene expression was analysed separately on anterior and posterior areas of the lower jaw at two early stages (E11.5 and E12.5) of odontogenesis. Gene expression profiling revealed distinct region-specific expression patterns in mouse mandibles, including several known BMP and FGF signalling members and we also identified several new molecules exhibiting significant differences in expression along the anterior-posterior axis, which potentially can play the role during incisor and molar specification. Next, we followed one of the anterior molecules, SATB2, which was expressed not only in the anterior mesenchyme where incisor germs are initiated, however, we uncovered a distinct SATB2-positive region in the mesenchyme closely surrounding molars. Satb2-deficient animals demonstrated defective incisor development confirming a crucial role of SATB2 in formation of anterior teeth. On the other hand, ectopic tooth germs were observed in the molar area indicating differential effect of Satb2-deficiency in individual jaw regions. In conclusion, our data provide a rich source of fundamental information, which can be used to determine molecular regulation driving early embryonic jaw patterning and serve for a deeper understanding of molecular signalling directed towards incisor and molar development.
Collapse
Affiliation(s)
- Petra Nevoránková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveri 97, 602 00, Brno, Czech Republic
- Department of Stomatology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Stomatology, St. Anne's University Hospital, Brno, Czech Republic
| | - Marie Šulcová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveri 97, 602 00, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Michaela Kavková
- Laboratory of Computed Tomography, CEITEC BUT, Brno, Czech Republic
| | - David Zimčík
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveri 97, 602 00, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Simona Moravcová Balková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveri 97, 602 00, Brno, Czech Republic
| | - Kristýna Peléšková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveri 97, 602 00, Brno, Czech Republic
| | - Daniela Kristeková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveri 97, 602 00, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Veronika Jakešová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveri 97, 602 00, Brno, Czech Republic
| | - Tomáš Zikmund
- Laboratory of Computed Tomography, CEITEC BUT, Brno, Czech Republic
| | - Jozef Kaiser
- Laboratory of Computed Tomography, CEITEC BUT, Brno, Czech Republic
| | - Lydie Izakovičová Holá
- Department of Stomatology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Stomatology, St. Anne's University Hospital, Brno, Czech Republic
| | - Michal Kolář
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Marcela Buchtová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveri 97, 602 00, Brno, Czech Republic.
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
5
|
Linhuan H, Liangying Z, Shaobin L, Caixia Z, Danlei C, Siqi H, Peiming H, Shu K, Yingjun X, Yanmin L. Effect of MSX1 on the cellular function of cardiomyocytes. Gene 2024; 916:148419. [PMID: 38556116 DOI: 10.1016/j.gene.2024.148419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
MSX1 (Muscle Segment Homeobox 1) has pleiotropic effects in various tissues, including cardiomyocytes, while the effect of MSX1 on cardiomyocyte cellular function was not well known. In this study, we used AC16 cell culture, real-time fluorescence quantitative PCR (qPCR), protein blotting (Western blot), flow cytometry apoptosis assay and lactate dehydrogenase (LDH) ELISA (Enzyme-Linked Immunosorbnent Assay) to investigate the effect of the MSX1 gene on cardiomyocyte function. The results showed that MSX1 plays a protective role against hypoxia of cardiomyocytes. However, further studies are required to fully understand the role of MSX1 in the regulation of LDH expression in different cell types and under different conditions.
Collapse
Affiliation(s)
- Huang Linhuan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510100, Guangdong Province, PR China.
| | - Zhong Liangying
- Department of Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510100, Guangdong Province, PR China.
| | - Lin Shaobin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510100, Guangdong Province, PR China.
| | - Zhu Caixia
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510100, Guangdong Province, PR China.
| | - Cai Danlei
- Department of Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510100, Guangdong Province, PR China.
| | - Huang Siqi
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong Province, PR China.
| | - Hong Peiming
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong Province, PR China.
| | - Kong Shu
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong Province, PR China.
| | - Xie Yingjun
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong Province, PR China.
| | - Luo Yanmin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510100, Guangdong Province, PR China.
| |
Collapse
|
6
|
Matošić Ž, Šimunović L, Jukić T, Granić R, Meštrović S. "Examining the link between tooth agenesis and papillary thyroid cancer: is there a risk factor?" Observational study. Prog Orthod 2024; 25:12. [PMID: 38523193 PMCID: PMC10961299 DOI: 10.1186/s40510-024-00511-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/14/2024] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND Mutations in one or multiple genes can lead to hypodontia and its characteristic features. Numerous studies have shown a strong genetic influence on the occurrence of hypodontia, and identified several genes, including AXIN2, EDA, FGF3, FGFR2, FGFR10, WNT10A, MSX1, and PAX9, that are directly associated with dental agenesis and carcinogenesis. The objective of this study was to investigate the occurrence and pattern of tooth agenesis, microdontia, and palatally displaced canine (PDC) in women diagnosed with papillary thyroid cancer (PTC), compared to a control group of women without any malignancy or thyroid disease. MATERIALS AND METHODS This case-control study was carried at the Department of Orthodontics, School of Dental Medicine University of Zagreb, and Department of Oncology and Nuclear Medicine Sestre Milosrdnice University Hospital Centre. The study involved a clinical examination and evaluation of dental status, panoramic X-ray analysis, and assessment of medical and family history of 116 female patients aged 20-40 with PTC, as well as 424 females in the control group who were of similar age. RESULTS The prevalence of hypodontia, microdontia, and PDC was statistically higher in women with PTC than in the control group. The prevalence rate of hypodontia was 11.3% in the experimental group and 3.5% in the control group. The experimental group showed a higher occurrence of missing upper lateral incisors, lower left central incisors, and all the third molars (except the upper left) compared to the control group. Women with PTC showed the prevalence of PDC significantly higher than the control group (3.5%, 0.7%, p = 0.002). The probability of hypodontia as a clinical finding increases 2.6 times, and microdontia occurs 7.7 times more frequently in women with PTC. CONCLUSION Our study suggests a possible link between odontogenesis and PTC. The absence of permanent teeth may increase the likelihood of PTC in women. Leveraging the age-7 orthopantomogram to identify women at high risk for PTC within a critical early detection window could significantly improve oral health outcomes and PTC prognosis through proactive interventions.
Collapse
Affiliation(s)
- Željana Matošić
- School of Dental Medicine, University of Zagreb, Zagreb, Croatia
| | - Luka Šimunović
- Department of Orthodontics, School of Dental Medicine, University of Zagreb, Zagreb, Croatia.
| | - Tomislav Jukić
- Department of Oncology and Nuclear Medicine, Sestre Milosrdnice University Hospital Center, 10000, Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000, Zagreb, Croatia
| | - Roko Granić
- Department of Oncology and Nuclear Medicine, Sestre Milosrdnice University Hospital Center, 10000, Zagreb, Croatia
| | - Senka Meštrović
- Department of Orthodontics, School of Dental Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
7
|
Zhao Y, Qin L, Pan H, Song T, Wang Y, Zhou X, Xiang Y, Li J, Liu Z, Sun Q, Guo J, Yan X, Tang B, Xu Q. Genetic analysis of transcription factors in dopaminergic neuronal development in Parkinson's disease. Chin Med J (Engl) 2024; 137:450-456. [PMID: 37341647 PMCID: PMC10876230 DOI: 10.1097/cm9.0000000000002743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Genetic variants of dopaminergic transcription factor-encoding genes are suggested to be Parkinson's disease (PD) risk factors; however, no comprehensive analyses of these genes in patients with PD have been undertaken. Therefore, we aimed to genetically analyze 16 dopaminergic transcription factor genes in Chinese patients with PD. METHODS Whole-exome sequencing (WES) was performed using a Chinese cohort comprising 1917 unrelated patients with familial or sporadic early-onset PD and 1652 controls. Additionally, whole-genome sequencing (WGS) was performed using another Chinese cohort comprising 1962 unrelated patients with sporadic late-onset PD and 1279 controls. RESULTS We detected 308 rare and 208 rare protein-altering variants in the WES and WGS cohorts, respectively. Gene-based association analyses of rare variants suggested that MSX1 is enriched in sporadic late-onset PD. However, the significance did not pass the Bonferroni correction. Meanwhile, 72 and 1730 common variants were found in the WES and WGS cohorts, respectively. Unfortunately, single-variant logistic association analyses did not identify significant associations between common variants and PD. CONCLUSIONS Variants of 16 typical dopaminergic transcription factors might not be major genetic risk factors for PD in Chinese patients. However, we highlight the complexity of PD and the need for extensive research elucidating its etiology.
Collapse
Affiliation(s)
- Yuwen Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Lixia Qin
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Hongxu Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Tingwei Song
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yige Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xiaoxia Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yaqin Xiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jinchen Li
- Bioinformatics Center National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - Zhenhua Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qiying Sun
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Bioinformatics Center National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan 410008, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Bioinformatics Center National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan 410008, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Bioinformatics Center National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
8
|
Zhao Y, Ren J, Meng L, Hou Y, Liu C, Zhang G, Shen W. Characterization of novel MSX1 variants causally associated with non-syndromic oligodontia in Chinese families. Mol Genet Genomic Med 2024; 12:e2334. [PMID: 38069551 PMCID: PMC10767605 DOI: 10.1002/mgg3.2334] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/03/2023] [Accepted: 11/28/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND MSX1 (OMIM #142983) is crucial to normal dental development, and variants in MSX1 are associated with dental anomalies. The objective of this study was to characterize the pathogenicity of novel MSX1 variants in Chinese families with non-syndromic oligodontia (NSO). METHODS Genomic DNA was extracted from individuals representing 35 families with non-syndromic oligodontia and was analyzed by Sanger sequencing and whole-exome sequencing. Pathogenic variants were screened via analyses involving PolyPhen-2, Sorting-Intolerant from Tolerant, and MutationTaster, and conservative analysis of variants. Patterns of MSX1-related NSO were analyzed. MSX1 structural changes suggested functional consequences in vitro. RESULTS Three previously unreported MSX1 heterozygous variants were identified: one insertion variant (c.576_577insTAG; p.Gln193*) and two missense variants (c. 871T>C; p.Tyr291His and c. 644A>C; p.Gln215Pro). Immunofluorescence analysis revealed abnormal subcellular localization of the p.Gln193* MSX1 variant. In addition, we found that these MSX1 variants likely lead to the loss of second premolars. CONCLUSION Three novel MSX1 variants were identified in Chinese Han families with NSO, expanding the MSX1 variant spectrum and presenting a genetic origin for the pathogenesis detected in patients and their families.
Collapse
Affiliation(s)
- Ya Zhao
- Department of Prosthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of StomatologyHebei Medical UniversityShijiazhuangPR China
| | - Jiabao Ren
- Department of Prosthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of StomatologyHebei Medical UniversityShijiazhuangPR China
| | - Lingqiang Meng
- Department of Prosthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of StomatologyHebei Medical UniversityShijiazhuangPR China
| | - Yan Hou
- Department of Orthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of StomatologyHebei Medical UniversityShijiazhuangPR China
| | - Chunyan Liu
- Department of Orthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of StomatologyHebei Medical UniversityShijiazhuangPR China
| | - Guozhong Zhang
- College of Forensic MedicineHebei Medical UniversityShijiazhuangPR China
| | - Wenjing Shen
- Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of StomatologyHebei Medical UniversityShijiazhuangPR China
| |
Collapse
|
9
|
Jyothish A, George A, Narayanan PV, Krishnamurthy RG. MSX1 Gene Polymorphisms in Patients with non-Syndromic Cleft lip and Palate: A Tertiary Care Centre Based Case-Control Study from Central Kerala. Cleft Palate Craniofac J 2023:10556656231214131. [PMID: 37968856 DOI: 10.1177/10556656231214131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023] Open
Abstract
OBJECTIVE The purpose of this study was to investigate the contribution of MSX1 gene polymorphisms to the risk of developing NSCLP. DESIGN Case-Control Study. SETTING A tertiary care centre. PATIENTS/PARTICIPANTS The sample consisted of 200 subjects (100 cases and 100 controls). INTERVENTIONS None. MAIN OUTCOME MEASURE(S) Genotyping was performed by restriction fragment length polymorphism. Allele and genotype frequencies were calculated between patients and controls and analyzed using online Web Tools such as SISA and SNPstats. The MSX1 gene polymorphisms c. 799 GT, c.458 CA can be risk factors in the development of orofacial clefts. RESULTS In the cases, an association was found between NSCLP and c.799 and c.458 of the MSX1 gene when compared with the control. The dominant and overdominant models, c. 799 GT, c.458 CA genotypes and c. 799 T, c.458 A alleles in the population are said to be the main risk factors to develop the NSCLP in our study population. The genotype variation of c 799 G/T and c.458 C/A are revealed to be specifically contributing to an NSCLP-type Cleft lip and Palate. It is worth noting that NSCLP females in the study population showed a stronger association with heterozygous genotypes of c.799 and c.458. However, further investigation with a larger cohort is necessary to confirm these findings. CONCLUSION Overall the results of the study revealed that MSX1 c 799 G > T and c.458 C > A can be considered as one of the genetic risk factors in the formation of Non-Syndromic Cleft Lip and Palate in the study population.
Collapse
Affiliation(s)
- Arun Jyothish
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Alex George
- Jubilee Centre for Medical Research, JMMC&RI, Thrissur, Kerala, India
| | | | | |
Collapse
|
10
|
Zhu Y, Zhang Y, Dong J, Ruan W, Yang S, Huang P, Duan X. MSX1 involved selective tooth agenesis and abnormal labial frenum, pedigree, and retrospective study. Oral Dis 2023; 29:3168-3172. [PMID: 36478500 DOI: 10.1111/odi.14459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/11/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Muscle segment homeobox gene 1 (MSX1) is widely expressed in craniofacial development and tooth formation. The aim of this study was to report a novel MSX1 mutation in a Chinese family with selective tooth agenesis and abnormal median maxillary labial frenum (MMLF). MATERIALS AND METHODS Mutation analysis was carried out by whole exome sequencing. The pMD18-T vector was used to verify the mutations. PubMed and Human Gene Mutation Database were searched to analyze the relationship between the mutations in MSX1 and related phenotypes. RESULTS A novel heterozygous mutation (c.75delG) in MSX1 was detected in the proband and her mother. They presented as oligodontia and lower attached hypertrophy median maxillary labial frenum. 60 MSX1 mutations from 39 reports did not declare malformed MMLF except our cases. Meanwhile, we found that the types and sites of MSX1 mutations may affect the selectivity of tooth agenesis and orofacial cleft. CONCLUSION This study suggests malformed MMLF as a new phenotype of MSX1 mutation and a specific relationship between MSX1 genotype and phenotype.
Collapse
Affiliation(s)
- Yulong Zhu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Disease; Shaanxi Key Laboratory of Stomatology; Department of Oral Biology, Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yanli Zhang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Disease; Shaanxi Key Laboratory of Stomatology; Department of Oral Biology, Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Jing Dong
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Disease; Shaanxi Key Laboratory of Stomatology; Department of Oral Biology, Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Wenyan Ruan
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Disease; Shaanxi Key Laboratory of Stomatology; Department of Oral Biology, Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Shaoqing Yang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Disease; Shaanxi Key Laboratory of Stomatology; Department of Oral Biology, Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Ping Huang
- Department of Clinical Laboratory, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Xiaohong Duan
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Disease; Shaanxi Key Laboratory of Stomatology; Department of Oral Biology, Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
11
|
Cheng X, Du F, Long X, Huang J. Genetic Inheritance Models of Non-Syndromic Cleft Lip with or without Palate: From Monogenic to Polygenic. Genes (Basel) 2023; 14:1859. [PMID: 37895208 PMCID: PMC10606748 DOI: 10.3390/genes14101859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Non-syndromic cleft lip with or without palate (NSCL/P) is a prevalent birth defect that affects 1/500-1/1400 live births globally. The genetic basis of NSCL/P is intricate and involves both genetic and environmental factors. In the past few years, various genetic inheritance models have been proposed to elucidate the underlying mechanisms of NSCL/P. These models range from simple monogenic inheritance to more complex polygenic inheritance. Here, we present a comprehensive overview of the genetic inheritance model of NSCL/P exemplified by representative genes and regions from both monogenic and polygenic perspectives. We also summarize existing association studies and corresponding loci of NSCL/P within the Chinese population and highlight the potential of utilizing polygenic risk scores for risk stratification of NSCL/P. The potential application of polygenic models offers promising avenues for improved risk assessment and personalized approaches in the prevention and management of NSCL/P individuals.
Collapse
Affiliation(s)
- Xi Cheng
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (X.C.); (F.D.); (X.L.)
| | - Fengzhou Du
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (X.C.); (F.D.); (X.L.)
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| | - Xiao Long
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (X.C.); (F.D.); (X.L.)
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| | - Jiuzuo Huang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (X.C.); (F.D.); (X.L.)
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| |
Collapse
|
12
|
Cooper RBV, Kim KB, Oliver DR, Armbrecht E, Behrents RG, Montaño AM. DLX6 and MSX1 from saliva samples as potential predictors of mandibular size: A cross-sectional study. Am J Orthod Dentofacial Orthop 2023; 163:368-377. [PMID: 36494218 DOI: 10.1016/j.ajodo.2021.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Morphologic features of the mandible are influenced by the genes of each individual. Mandible size is important to orthodontists because the mandible is the mechanism by which the lower face influences facial esthetics and dental function. To date, no biological marker has been identified that indicates eventual mandible size. This study aimed to correlate the expression of DLX5, DLX6, EDN1, HAND2, PRRX1, and MSX1 to mandible size. METHODS Fifty-nine orthodontic patients aged >6 years who had available cephalometric radiographs were studied. Patients were classified on the basis of condylion-to-gnathion measurements. Messenger RNA was isolated from saliva and subjected to real-time quantitative polymerase chain reaction. RESULTS Threshold cycle values for subjects with small mandibles (>1 standard deviation [SD] from the mean) had the least expression of DLX6 and MSX1. Threshold cycle values for subjects with large mandibles (>1 SD) had less expression of DLX6 and MSX1 than subjects within 1 SD but more than those with small mandibles. CONCLUSIONS DLX6 and MSX1 are related to mandible development and size. This finding could be used to improve treatment planning for medical and dental professionals seeking to understand the impact of genetics on bone growth.
Collapse
Affiliation(s)
- Rachel Bryn V Cooper
- Formerly, Department of Orthodontics, School of Medicine, Saint Louis University, St Louis, Mo currently, Private practice, Houston, Tex.
| | - Ki Beom Kim
- Department of Orthodontics, School of Medicine, Saint Louis University, St Louis, Mo
| | - Donald R Oliver
- Department of Orthodontics, School of Medicine, Saint Louis University, St Louis, Mo
| | - Eric Armbrecht
- Center for Health Outcomes Research, Saint Louis University, St Louis, Mo
| | - Rolf G Behrents
- Department of Orthodontics, School of Medicine, Saint Louis University, St Louis, Mo
| | - Adriana M Montaño
- Departments of Pediatrics and Biochemistry and Molecular Biology, School of Medicine, Saint Louis University, St Louis, Mo.
| |
Collapse
|
13
|
Kerekes-Máthé B, Mártha K, Bănescu C, O’Donnell MB, Brook AH. Genetic and Morphological Variation in Hypodontia of Maxillary Lateral Incisors. Genes (Basel) 2023; 14:231. [PMID: 36672972 PMCID: PMC9858681 DOI: 10.3390/genes14010231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
(1) Background: Hypodontia has a multifactorial aetiology, in which genetic factors are a major component. Associated with this congenital absence, the formed teeth may show differences in size and shape, which may vary with the specific genetic variants and with the location of the missing teeth. The aims of the present study were to investigate a specific variant of MSX1, derive morphometric tooth measurements in a sample of patients with isolated maxillary lateral incisor agenesis and matched controls, and model the findings. (2) Methods: Genotyping of the MSX1 rs8670 genetic variant and morphometric measurements with a 2D image analysis method were performed for 26 hypodontia patients and 26 matched controls. (3) Results: The risk of upper lateral incisor agenesis was 6.9 times higher when the T allele was present. The morphometric parameters showed significant differences between hypodontia patients and controls and between the unilateral and bilateral agenesis cases. The most affected crown dimension in the hypodontia patients was the bucco-lingual dimension. In crown shape there was significant variation the Carabelli trait in upper first molars. (4) Conclusions: The MSX1 rs8670 variant was associated with variations in morphological outcomes. The new findings for compensatory interactions between the maxillary incisors indicate that epigenetic and environmental factors interact with this genetic variant. A single-level directional complex interactive network model incorporates the variations seen in this study.
Collapse
Affiliation(s)
- Bernadette Kerekes-Máthé
- Department of Morphology of Teeth and Dental Arches, Faculty of Dentistry, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu-Mures, 540142 Targu-Mures, Romania
| | - Krisztina Mártha
- Department of Orthodontics, Faculty of Dentistry, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu-Mures, 540142 Targu-Mures, Romania
| | - Claudia Bănescu
- Genetics Laboratory, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu-Mures, 540142 Targu-Mures, Romania
| | | | - Alan H. Brook
- School of Dentistry, University of Adelaide, Adelaide, SA 5005, Australia
- Dental Institute, Barts and the London Medical Faculty, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
14
|
Herrmann S, Küchler EC, Reis CLB, Paddenberg E, Zbidat N, Mattos NHR, Schröder A, Proff P, Kirschneck C. Association of third molar agenesis and microdontia with genetic polymorphisms in vitamin-D-related genes. Ann Anat 2022; 244:151972. [PMID: 35738313 DOI: 10.1016/j.aanat.2022.151972] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
The present study aimed to evaluate if functional genetic polymorphisms in vitamin-D-related genes are associated with third molar agenesis and third molar microdontia in German orthodontic patients. Pre-orthodontic and follow-up treatment records were evaluated for phenotype definition. Saliva samples were collected for DNA extraction. Eight potential functional genetic polymorphisms in VDR [rs731236 (TaqI), rs7975232 (ApaI), rs2228570 (FokI), and rs1544410 (BsmI)], CYP27B1 (rs4646536), CYP24A1 (rs927650), GC (rs4588), and SEC23A (rs8018720) were evaluated using real-time PCR. Comparison among the groups were performed (third molar anomaly vs. control; third molar agenesis vs. control; and third molar microdontia vs. control) with an alpha of 5%. A total of 164 patients were analyzed. Forty-nine (29.9%) patients had at least one third molar anomaly. In the haplotype analysis, genetic polymorphisms in VDR and CYP27B1 were associated with third molar anomalies (p<0.05). The G allele in rs8018720 (SEC23A) was more frequent in microdontia cases. In the genotype distribution analysis, rs8018720 in SEC23A was associated with third molar microdontia in the co-dominant (p=0.034; Prevalence Ratio [PR]=5.91, 95% Confidence Interval [CI]= 1.14-30.66) and in the recessive (p=0.038; PR=5.29; 95% CI= 1.09-25.65) models. In conclusion, vitamin D-related genes could be involved in third molar anomalies.
Collapse
Affiliation(s)
- Susann Herrmann
- Department of Orthodontics, University of Regensburg. Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Erika Calvano Küchler
- Department of Orthodontics, University of Regensburg. Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany; School of Dentistry, Tuiuti University from Paraná, Curitiba, Paraná, Brazil
| | - Caio Luiz Bitencourt Reis
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo. Av. do Café S/N, 14040-904 Ribeirão Preto, Brazil
| | - Eva Paddenberg
- Department of Orthodontics, University of Regensburg. Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Nermien Zbidat
- Department of Orthodontics, University of Regensburg. Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | | | - Agnes Schröder
- Department of Orthodontics, University of Regensburg. Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Peter Proff
- Department of Orthodontics, University of Regensburg. Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Christian Kirschneck
- Department of Orthodontics, University of Regensburg. Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| |
Collapse
|
15
|
Generation of a MSX1 knockout human embryonic stem cell line using CRISPR/Cas9 technology. Stem Cell Res 2022; 60:102729. [PMID: 35247841 DOI: 10.1016/j.scr.2022.102729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/25/2022] [Indexed: 11/22/2022] Open
Abstract
The MSX1 gene encodes a transcriptional repressor and plays important roles in limb-pattern formation, craniofacial development, and odontogenesis during vertebrate embryogenesis. Previous studies demonstrated that human MSX1 mutations are associated with tooth agenesis, orofacial clefting, and nail dysplasia. Here, we generated a MSX1 knockout cell line from human embryonic stem cell (hESC) line (H9) by CRISPR/cas9-mediated gene targeting. This cell line may serve as a valuable in vitro cell model for MSX1 mutation-related diseases and help to gain more insight into the biological function of MSX1.
Collapse
|
16
|
Genome-Wide CRISPR/Cas9-Based Screening for Deubiquitinase Subfamily Identifies Ubiquitin-Specific Protease 11 as a Novel Regulator of Osteogenic Differentiation. Int J Mol Sci 2022; 23:ijms23020856. [PMID: 35055037 PMCID: PMC8778097 DOI: 10.3390/ijms23020856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 02/07/2023] Open
Abstract
The osteoblast differentiation capacity of mesenchymal stem cells must be tightly regulated, as inadequate bone mineralization can lead to osteoporosis, and excess bone formation can cause the heterotopic ossification of soft tissues. The balanced protein level of Msh homeobox 1 (MSX1) is critical during normal osteogenesis. To understand the factors that prevent MSX1 protein degradation, the identification of deubiquitinating enzymes (DUBs) for MSX1 is essential. In this study, we performed loss-of-function-based screening for DUBs regulating MSX1 protein levels using the CRISPR/Cas9 system. We identified ubiquitin-specific protease 11 (USP11) as a protein regulator of MSX1 and further demonstrated that USP11 interacts and prevents MSX1 protein degradation by its deubiquitinating activity. Overexpression of USP11 enhanced the expression of several osteogenic transcriptional factors in human mesenchymal stem cells (hMSCs). Additionally, differentiation studies revealed reduced calcification and alkaline phosphatase activity in USP11-depleted cells, while overexpression of USP11 enhanced the differentiation potential of hMSCs. These results indicate the novel role of USP11 during osteogenic differentiation and suggest USP11 as a potential target for bone regeneration.
Collapse
|
17
|
Liu Y, Williams SG, Jones HR, Keavney BD, Choy MK. A novel RNA-mediated mechanism causing down-regulation of insulating promoter interactions in human embryonic stem cells. Sci Rep 2021; 11:23233. [PMID: 34853328 PMCID: PMC8636647 DOI: 10.1038/s41598-021-02373-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 11/15/2021] [Indexed: 12/01/2022] Open
Abstract
The genome-wide promoter interactome is primarily maintained and regulated by architectural proteins such as CTCF and cohesin. However, some studies suggest a role for non-coding RNAs (ncRNAs) in this process. We aimed to characterise the regulatory role of RNA-mediated promoter interactions in the control of gene expression. We integrated genome-wide datasets of RNA-chromatin and promoter-genome interactions in human embryonic stem cells (hESCs) to identify putative RNA-mediated promoter interactions. We discovered that CTCF sites were enriched in RNA-PIRs (promoter interacting regions co-localising with RNA-chromatin interaction sites) and genes interacting with RNA-PIRs containing CTCF sites showed higher expression levels. One of the long noncoding RNAs (lncRNAs) expressed in hESCs, Syntaxin 18-Antisense 1 (STX18-AS1), appeared to be involved in an insulating promoter interaction with the neighbouring gene, MSX1. By knocking down STX18-AS1, the MSX1 promoter-PIR interaction was intensified and the target gene (MSX1) expression was down-regulated. Conversely, reduced MSX1 promoter-PIR interactions, resulting from CRISPR-Cas9 deletion of the PIR, increased the expression of MSX1. We conclude that STX18-AS1 RNA antagonised local CTCF-mediated insulating promoter interactions to augment gene expression. Such down-regulation of the insulating promoter interactions by this novel mechanism may explain the higher expression of genes interacting with RNA-PIRs linked to CTCF sites.
Collapse
Affiliation(s)
- Yingjuan Liu
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - Simon G Williams
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - Hayden R Jones
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - Bernard D Keavney
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, M13 9PT, UK
- Manchester Heart Institute, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Mun-Kit Choy
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
18
|
NKL-Code in Normal and Aberrant Hematopoiesis. Cancers (Basel) 2021; 13:cancers13081961. [PMID: 33921702 PMCID: PMC8073162 DOI: 10.3390/cancers13081961] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Gene codes represent expression patterns of closely related genes in particular tissues, organs or body parts. The NKL-code describes the activity of NKL homeobox genes in the hematopoietic system. NKL homeobox genes encode transcription factors controlling basic developmental processes. Therefore, aberrations of this code may contribute to deregulated hematopoiesis including leukemia and lymphoma. Normal and abnormal activities of NKL homeobox genes are described and mechanisms of (de)regulation, function, and diseases exemplified. Abstract We have recently described physiological expression patterns of NKL homeobox genes in early hematopoiesis and in subsequent lymphopoiesis and myelopoiesis, including terminally differentiated blood cells. We thereby systematized differential expression patterns of eleven such genes which form the so-called NKL-code. Due to the developmental impact of NKL homeobox genes, these data suggest a key role for their activity in normal hematopoietic differentiation processes. On the other hand, the aberrant overexpression of NKL-code-members or the ectopical activation of non-code members have been frequently reported in lymphoid and myeloid leukemia/lymphoma, revealing the oncogenic potential of these genes in the hematopoietic compartment. Here, I provide an overview of the NKL-code in normal hematopoiesis and instance mechanisms of deregulation and oncogenic functions of selected NKL genes in hematologic cancers. As well as published clinical studies, our conclusions are based on experimental work using hematopoietic cell lines which represent useful models to characterize the role of NKL homeobox genes in specific tumor types.
Collapse
|
19
|
Rjiba K, Ayech H, Kraiem O, Slimani W, Jelloul A, Ben Hadj Hmida I, Mahdhaoui N, Saad A, Mougou-Zerelli S. Disorders of sex development in Wolf-Hirschhorn syndrome: a genotype-phenotype correlation and MSX1 as candidate gene. Mol Cytogenet 2021; 14:12. [PMID: 33627176 PMCID: PMC7905666 DOI: 10.1186/s13039-021-00531-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/28/2021] [Indexed: 05/30/2023] Open
Abstract
BACKGROUND Wolf-Hirschhorn (WHS) is a set of congenital physical anomalies and mental retardation associated with a partial deletion of the short arm of chromosome 4. To establish a genotype-phenotype correlation; we carried out a molecular cytogenetic analysis on two Tunisian WHS patients. Patient 1 was a boy of 1-year-old, presented a typical WHS phenotype while patient 2, is a boy of 2 days presented an hypospadias, a micropenis and a cryptorchidie in addition to the typical WHS phenotype. Both the array comparative genomic hybridization and fluorescence in situ hybridization techniques were used. RESULTS Results of the analysis showed that patient 2 had a greater deletion size (4.8 Mb) of chromosome 4 than patient 1 (3.4 Mb). Here, we notice that the larger the deletion, the more genes are likely to be involved, and the more severe the phenotype is likely to be. If we analyze the uncommon deleted region between patient1 and patient 2 we found that the Muscle Segment Homeobox (MSX1) gene is included in this region. MSX1 is a critical transcriptional repressor factor, expressed in the ventral side of the developing anterior pituitary and implicated in gonadotrope differentiation. Msx1 acts as a negative regulatory pituitary development by repressing the gonadotropin releasing hormone (GnRH) genes during embryogenesis. We hypothesized that the deletion of MSX1 in our patient may deregulate the androgen synthesis. CONCLUSION Based on the MSX1 gene function, its absence might be indirectly responsible for the hypospadias phenotype by contributing to the spatiotemporal regulation of GnRH transcription during development.
Collapse
Affiliation(s)
- Khouloud Rjiba
- Laboratory of Human Cytogenetics, Molecular Genetics and Biology of Reproduction, Farhat Hached University Teaching Hospital, Sousse, Tunisia.,Higher Institute of Biotechnology, Monastir University, Monastir, Tunisia.,Unité de Services Communs en Génétique Humaine, Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisia
| | - Hédia Ayech
- Pediatric Department, Farhat Hached University Teaching Hospital, Sousse, Tunisia
| | - Olfa Kraiem
- Pediatric Department, Regional Hospital, Kairouan, Tunisia
| | - Wafa Slimani
- Laboratory of Human Cytogenetics, Molecular Genetics and Biology of Reproduction, Farhat Hached University Teaching Hospital, Sousse, Tunisia.,Higher Institute of Biotechnology, Monastir University, Monastir, Tunisia.,Unité de Services Communs en Génétique Humaine, Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisia
| | - Afef Jelloul
- Laboratory of Human Cytogenetics, Molecular Genetics and Biology of Reproduction, Farhat Hached University Teaching Hospital, Sousse, Tunisia
| | - Imen Ben Hadj Hmida
- Laboratory of Human Cytogenetics, Molecular Genetics and Biology of Reproduction, Farhat Hached University Teaching Hospital, Sousse, Tunisia
| | - Nabiha Mahdhaoui
- Pediatric Department, Farhat Hached University Teaching Hospital, Sousse, Tunisia
| | - Ali Saad
- Laboratory of Human Cytogenetics, Molecular Genetics and Biology of Reproduction, Farhat Hached University Teaching Hospital, Sousse, Tunisia.,Unité de Services Communs en Génétique Humaine, Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisia
| | - Soumaya Mougou-Zerelli
- Laboratory of Human Cytogenetics, Molecular Genetics and Biology of Reproduction, Farhat Hached University Teaching Hospital, Sousse, Tunisia. .,Unité de Services Communs en Génétique Humaine, Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisia.
| |
Collapse
|
20
|
Guida V, Calzari L, Fadda MT, Piceci-Sparascio F, Digilio MC, Bernardini L, Brancati F, Mattina T, Melis D, Forzano F, Briuglia S, Mazza T, Bianca S, Valente EM, Salehi LB, Prontera P, Pagnoni M, Tenconi R, Dallapiccola B, Iannetti G, Corsaro L, De Luca A, Gentilini D. Genome-Wide DNA Methylation Analysis of a Cohort of 41 Patients Affected by Oculo-Auriculo-Vertebral Spectrum (OAVS). Int J Mol Sci 2021; 22:ijms22031190. [PMID: 33530447 PMCID: PMC7866060 DOI: 10.3390/ijms22031190] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
Oculo-auriculo-vertebral-spectrum (OAVS; OMIM 164210) is a rare disorder originating from abnormal development of the first and second branchial arch. The clinical phenotype is extremely heterogeneous with ear anomalies, hemifacial microsomia, ocular defects, and vertebral malformations being the main features. MYT1, AMIGO2, and ZYG11B gene variants were reported in a few OAVS patients, but the etiology remains largely unknown. A multifactorial origin has been proposed, including the involvement of environmental and epigenetic mechanisms. To identify the epigenetic mechanisms contributing to OAVS, we evaluated the DNA-methylation profiles of 41 OAVS unrelated affected individuals by using a genome-wide microarray-based methylation approach. The analysis was first carried out comparing OAVS patients with controls at the group level. It revealed a moderate epigenetic variation in a large number of genes implicated in basic chromatin dynamics such as DNA packaging and protein-DNA organization. The alternative analysis in individual profiles based on the searching for Stochastic Epigenetic Variants (SEV) identified an increased number of SEVs in OAVS patients compared to controls. Although no recurrent deregulated enriched regions were found, isolated patients harboring suggestive epigenetic deregulations were identified. The recognition of a different DNA methylation pattern in the OAVS cohort and the identification of isolated patients with suggestive epigenetic variations provide consistent evidence for the contribution of epigenetic mechanisms to the etiology of this complex and heterogeneous disorder.
Collapse
Affiliation(s)
- Valentina Guida
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (F.P.-S.); (L.B.); (A.D.L.)
- Correspondence: (V.G.); (D.G.)
| | - Luciano Calzari
- Istituto Auxologico Italiano IRCCS, Bioinformatics and Statistical Genomics Unit, Cusano Milanino, 20095 Milano, Italy;
| | - Maria Teresa Fadda
- Department of Maxillofacial Surgery, Sapienza University of Rome, 00161 Rome, Italy; (M.T.F.); (M.P.); (G.I.)
| | - Francesca Piceci-Sparascio
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (F.P.-S.); (L.B.); (A.D.L.)
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Maria Cristina Digilio
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00165 Rome, Italy; (M.C.D.); (B.D.)
| | - Laura Bernardini
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (F.P.-S.); (L.B.); (A.D.L.)
| | - Francesco Brancati
- Department of Life, Health and Environmental Sciences, Unit of Medical Genetics University of L’Aquila, 67100 L’Aquila, Italy;
- IRCCS San Raffaele Pisana, 00163 Rome, Italy
| | - Teresa Mattina
- Medical Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95131 Catania, Italy;
| | - Daniela Melis
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Salerno, Italy;
| | - Francesca Forzano
- Clinical Genetics Department, Guy’s & St Thomas’ NHS Foundation Trust, London SE1 7EH, UK;
| | | | - Tommaso Mazza
- Unit of Bioinformatics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy;
| | - Sebastiano Bianca
- Centro di Consulenza Genetica e Teratologia della Riproduzione, Dipartimento Materno Infantile, ARNAS Garibaldi Nesima, 95123 Catania, Italy;
| | - Enza Maria Valente
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
- IRCCS Mondino Foundation, 27100 Pavia, Italy
| | | | - Paolo Prontera
- Medical Genetics Unit, University of Perugia Hospital SM della Misericordia, 06129 Perugia, Italy;
| | - Mario Pagnoni
- Department of Maxillofacial Surgery, Sapienza University of Rome, 00161 Rome, Italy; (M.T.F.); (M.P.); (G.I.)
| | - Romano Tenconi
- Department of Pediatrics, Clinical Genetics, Università di Padova, 35122 Padova, Italy;
| | - Bruno Dallapiccola
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00165 Rome, Italy; (M.C.D.); (B.D.)
| | - Giorgio Iannetti
- Department of Maxillofacial Surgery, Sapienza University of Rome, 00161 Rome, Italy; (M.T.F.); (M.P.); (G.I.)
| | - Luigi Corsaro
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Alessandro De Luca
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (F.P.-S.); (L.B.); (A.D.L.)
| | - Davide Gentilini
- Istituto Auxologico Italiano IRCCS, Bioinformatics and Statistical Genomics Unit, Cusano Milanino, 20095 Milano, Italy;
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
- Correspondence: (V.G.); (D.G.)
| |
Collapse
|
21
|
Novel MSX1 variants identified in families with nonsyndromic oligodontia. Int J Oral Sci 2021; 13:2. [PMID: 33419968 PMCID: PMC7794556 DOI: 10.1038/s41368-020-00106-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 11/08/2022] Open
Abstract
The goal of this study was to identify MSX1 gene variants in multiple Chinese families with nonsyndromic oligodontia and analyse the functional influence of these variants. Whole-exome sequencing (WES) and Sanger sequencing were performed to identify the causal gene variants in five families with nonsyndromic oligodontia, and a series of bioinformatics databases were used for variant confirmation and functional prediction. Phenotypic characterization of the members of these families was described, and an in vitro analysis was performed for functional evaluation. Five novel MSX1 heterozygous variants were identified: three missense variants [c.662A>C (p.Q221P), c.670C>T (p.R224C), and c.809C>T (p.S270L)], one nonsense variant [c.364G>T (p.G122*)], and one frameshift variant [c.277delG (p.A93Rfs*67)]. Preliminary in vitro studies demonstrated that the subcellular localization of MSX1 was abnormal with the p.Q221P, p.R224C, p.G122*, and p.A93Rfs*67 variants compared to the wild type. Three variants (p.Q221P, p.G122*, and p.A93Rfs*67) were classified as pathogenic or likely pathogenic, while p.S270L and p.R224C were of uncertain significance in the current data. Moreover, we summarized and analysed the MSX1-related tooth agenesis positions and found that the type and variant locus were not related to the severity of tooth loss. Our results expand the variant spectrum of nonsyndromic oligodontia and provide valuable information for genetic counselling.
Collapse
|
22
|
Höving AL, Sielemann K, Greiner JFW, Kaltschmidt B, Knabbe C, Kaltschmidt C. Transcriptome Analysis Reveals High Similarities between Adult Human Cardiac Stem Cells and Neural Crest-Derived Stem Cells. BIOLOGY 2020; 9:biology9120435. [PMID: 33271866 PMCID: PMC7761507 DOI: 10.3390/biology9120435] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022]
Abstract
For the identification of a stem cell population, the comparison of transcriptome data enables the simultaneous analysis of tens of thousands of molecular markers and thus enables the precise distinction of even closely related populations. Here, we utilized global gene expression profiling to compare two adult human stem cell populations, namely neural crest-derived inferior turbinate stem cells (ITSCs) of the nasal cavity and human cardiac stem cells (hCSCs) from the heart auricle. We detected high similarities between the transcriptomes of both stem cell populations, particularly including a range of neural crest-associated genes. However, global gene expression likewise reflected differences between the stem cell populations with regard to their niches of origin. In a broader analysis, we further identified clear similarities between ITSCs, hCSCs and other adherent stem cell populations compared to non-adherent hematopoietic progenitor cells. In summary, our observations reveal high similarities between adult human cardiac stem cells and neural crest-derived stem cells from the nasal cavity, which include a shared relation to the neural crest. The analyses provided here may help to understand underlying molecular regulators determining differences between adult human stem cell populations.
Collapse
Affiliation(s)
- Anna L. Höving
- Department of Cell Biology, Bielefeld University, 33615 Bielefeld, Germany; (J.F.W.G.); (B.K.)
- Heart and Diabetes Centre NRW, Institute for Laboratory and Transfusion Medicine, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany;
- Correspondence: (A.L.H.); (C.K.)
| | - Katharina Sielemann
- Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany;
- Graduate School DILS, Bielefeld Institute for Bioinformatics Infrastructure (BIBI), Bielefeld University, 33615 Bielefeld, Germany
| | - Johannes F. W. Greiner
- Department of Cell Biology, Bielefeld University, 33615 Bielefeld, Germany; (J.F.W.G.); (B.K.)
| | - Barbara Kaltschmidt
- Department of Cell Biology, Bielefeld University, 33615 Bielefeld, Germany; (J.F.W.G.); (B.K.)
- AG Molecular Neurobiology, Bielefeld University, 33615 Bielefeld, Germany
| | - Cornelius Knabbe
- Heart and Diabetes Centre NRW, Institute for Laboratory and Transfusion Medicine, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany;
| | - Christian Kaltschmidt
- Department of Cell Biology, Bielefeld University, 33615 Bielefeld, Germany; (J.F.W.G.); (B.K.)
- Correspondence: (A.L.H.); (C.K.)
| |
Collapse
|
23
|
Huang X, Chen Q, Luo W, Pakvasa M, Zhang Y, Zheng L, Li S, Yang Z, Zeng H, Liang F, Zhang F, Hu DA, Qin KH, Wang EJ, Qin DS, Reid RR, He TC, Athiviraham A, El Dafrawy M, Zhang H. SATB2: A versatile transcriptional regulator of craniofacial and skeleton development, neurogenesis and tumorigenesis, and its applications in regenerative medicine. Genes Dis 2020; 9:95-107. [PMID: 35005110 PMCID: PMC8720659 DOI: 10.1016/j.gendis.2020.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/30/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023] Open
Abstract
SATB2 (special AT-rich sequence-binding protein 2) is a member of the special AT-rich binding protein family. As a transcription regulator, SATB2 mainly integrates higher-order chromatin organization. SATB2 expression appears to be tissue- and stage-specific, and is governed by several cellular signaling molecules and mediators. Expressed in branchial arches and osteoblast-lineage cells, SATB2 plays a significant role in craniofacial pattern and skeleton development. In addition to regulating osteogenic differentiation, SATB2 also displays versatile functions in neural development and cancer progression. As an osteoinductive factor, SATB2 holds great promise in improving bone regeneration toward bone defect repair. In this review, we have summarized our current understanding of the physiological and pathological functions of SATB2 in craniofacial and skeleton development, neurogenesis, tumorigenesis and regenerative medicine.
Collapse
Affiliation(s)
- Xia Huang
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China
| | - Qiuman Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China
| | - Wenping Luo
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Mikhail Pakvasa
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,The Pritzker School of Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yuxin Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China
| | - Liwen Zheng
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China
| | - Shuang Li
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China
| | - Zhuohui Yang
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China
| | - Huan Zeng
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China
| | - Fang Liang
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China
| | - Fugui Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Daniel A Hu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Kevin H Qin
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Eric J Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - David S Qin
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Aravind Athiviraham
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Mostafa El Dafrawy
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hongmei Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, PR China
| |
Collapse
|
24
|
Yadav A, Vidal M, Luck K. Precision medicine - networks to the rescue. Curr Opin Biotechnol 2020; 63:177-189. [PMID: 32199228 PMCID: PMC7308189 DOI: 10.1016/j.copbio.2020.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 02/13/2020] [Indexed: 12/11/2022]
Abstract
Genetic variants are often not predictive of the phenotypic outcome. Individuals carrying the same pathogenic variant, associated with Mendelian or complex disease, can manifest to different extents, from severe-to-mild to no disease. Improving the accuracy of predicted clinical manifestations of genetic variants has emerged as one of the biggest challenges in precision medicine, which can only be addressed by understanding the mechanisms underlying genotype-phenotype relationships. Efforts to understand the molecular basis of these relationships have identified complex systems of interacting biomolecules that underlie cellular function. Here, we review recent advances in how modeling cellular systems as networks of interacting proteins has fueled identification of disease-associated processes, delineation of underlying molecular mechanisms, and prediction of the pathogenicity of variants. This review is intended to be inspiring for clinicians, geneticists, and network biologists alike who aim to jointly advance our understanding of human disease and accelerate progress toward precision medicine.
Collapse
Affiliation(s)
- Anupama Yadav
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Katja Luck
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Current address: Institute of Molecular Biology, Mainz, Germany.
| |
Collapse
|
25
|
Song J, Bae M, Kim J. Novel
TSPEAR
mutations in non‐syndromic oligodontia. Oral Dis 2020; 26:847-849. [DOI: 10.1111/odi.13316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Ji‐Soo Song
- Department of Pediatric Dentistry Seoul National University Dental Hospital Seoul Korea
| | - Miah Bae
- Department of Pediatric Dentistry & Dental Research Institute School of Dentistry Seoul National University Seoul Korea
| | - Jung‐Wook Kim
- Department of Pediatric Dentistry & Dental Research Institute School of Dentistry Seoul National University Seoul Korea
- Department of Molecular Genetics & Dental Research Institute School of Dentistry Seoul National University Seoul Korea
| |
Collapse
|
26
|
Maier V, Höll M, Dietze R, Mecha EO, Omwandho COA, Tinneberg HR, Meinhold-Heerlein I, Konrad L. Adenomyotic glands are highly related to endometrial glands. Reprod Biomed Online 2019; 40:769-778. [PMID: 32362572 DOI: 10.1016/j.rbmo.2019.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/01/2019] [Accepted: 11/21/2019] [Indexed: 12/22/2022]
Abstract
RESEARCH QUESTION How closely related are adenomyotic and endometrial glands? DESIGN In this study, the mRNA and protein database www.proteinatlas.org was searched for proteins expressed predominantly in the endometrial glands. Specificity was tested with tissue microarrays. Biopsy specimens of endometrial, adenomyotic tissue, or both, were collected after surgery from 21 women without endometriosis, 20 women with endometriosis, 18 women with adenomyosis together with endometriosis and 12 women with adenomyosis alone. Tissue expression was analysed by immunohistochemistry. RESULTS Two proteins were identified: calcyphosine (CAPS), and msh homeobox 1 (MSX1). A high abundance and good specificity in endometrial glands were found. Both proteins, CAPS and MSX1, showed a high specificity for endometrium and are both localized in the luminal cells and epithelial cells of the glandular and adenomyotic glands. No significant differences were found between CAPS- and MSX1-positive endometrial glands between cases with and without endometriosis. Also, no cycle-specific different expression was found. Furthermore, a close relationship between the adenomyotic glands and the endometrial glands for CAPS (range 63.0-98.3%) and for MSX1 (range 87.1-99.3%) could be demonstrated. Only 11.2% and 6.8% negative glands for CAPS and MSX1 were identified in all tissues from all patients, respectively; none were negative for both proteins. CONCLUSIONS Taken together, our results show that the protein expression pattern of adenomyosis is nearly identical to those of the endometrium with and without endometriosis, thus suggesting endometrial glands as the main source for adenomyotic glands.
Collapse
Affiliation(s)
- Veronica Maier
- Department of Gynecology and Obstetrics, Justus-Liebig-Universität Gießen, Feulgenstr. 10-12, Giessen 35392, Germany
| | - Matthias Höll
- Department of Gynecology and Obstetrics, Justus-Liebig-Universität Gießen, Feulgenstr. 10-12, Giessen 35392, Germany
| | - Raimund Dietze
- Department of Gynecology and Obstetrics, Justus-Liebig-Universität Gießen, Feulgenstr. 10-12, Giessen 35392, Germany
| | - Ezekiel Onyonka Mecha
- Department of Biochemistry, University of Nairobi P.O. Box 30197-00100, Nairobi 00100, Kenya
| | - Charles O A Omwandho
- Department of Biochemistry, University of Nairobi P.O. Box 30197-00100, Nairobi 00100, Kenya
| | | | - Ivo Meinhold-Heerlein
- Department of Gynecology and Obstetrics, Justus-Liebig-Universität Gießen, Feulgenstr. 10-12, Giessen 35392, Germany
| | - Lutz Konrad
- Department of Gynecology and Obstetrics, Justus-Liebig-Universität Gießen, Feulgenstr. 10-12, Giessen 35392, Germany.
| |
Collapse
|
27
|
Williams MA, Letra A. The Changing Landscape in the Genetic Etiology of Human Tooth Agenesis. Genes (Basel) 2018; 9:genes9050255. [PMID: 29772684 PMCID: PMC5977195 DOI: 10.3390/genes9050255] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/01/2018] [Accepted: 05/09/2018] [Indexed: 02/08/2023] Open
Abstract
Despite much progress in understanding the genetics of syndromic tooth agenesis (TA), the causes of the most common, isolated TA remain elusive. Recent studies have identified novel genes and variants contributing to the etiology of TA, and revealed new pathways in which tooth development genes belong. Further, the use of new research approaches including next-generation sequencing has provided increased evidence supporting an oligogenic inheritance model for TA, and may explain the phenotypic variability of the condition. In this review, we present current knowledge about the genetic mechanisms underlying syndromic and isolated TA in humans, and highlight the value of incorporating next-generation sequencing approaches to identify causative and/or modifier genes that contribute to the etiology of TA.
Collapse
Affiliation(s)
- Meredith A Williams
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
| | - Ariadne Letra
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
- Center for Craniofacial Research, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
- Pediatric Research Center, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA.
| |
Collapse
|
28
|
da Silva HPV, Oliveira GHDM, Ururahy MAG, Bezerra JF, de Souza KSC, Bortolin RH, Luchessi AD, Silbiger VN, Lima VMGDM, Leite GCP, Brito MEF, Ribeiro EM, Gil-da-Silva-Lopes VL, de Rezende AA. Application of high-resolution array platform for genome-wide copy number variation analysis in patients with nonsyndromic cleft lip and palate. J Clin Lab Anal 2018; 32:e22428. [PMID: 29512191 DOI: 10.1002/jcla.22428] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/09/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Although more than 14 loci may be involved in the development of nonsyndromic cleft lip and palate (NSCLP), the etiology has not been fully elucidated due to genetic and environmental risk factor interactions. Despite advances in identifying genes associated with the NSCLP development using traditional genetic mapping strategies of candidate genes, genome-wide studies, and epidemiologic and linkage analysis, microarray techniques have become important complementary tools in the search for potential causative oral clefts genes in genetic studies. Microarray hybridization enables scanning of the whole genome and detecting copy number variants (CNVs). Although common benign CNVs are often smaller, with sizes smaller than 20 kb, here we reveal small exonic CNVs based on the importance of the encompassed genes in cleft lip and palate phenotype. METHODS Microarray hybridization analysis was performed in 15 individuals with NSCLP. RESULTS We identified 11 exonic CNVs affecting at least one exon of the candidate genes. Thirteen candidate genes (COL11A1-1p21; IRF6-1q32.3; MSX1-4p16.2; TERT-5p15.33; MIR4457-5p15.33; CLPTM1L-5p15.33; ESR1-6q25.1; GLI3-7p13; FGFR-8p11.23; TBX1-22q11.21; OFD-Xp22; PHF8-Xp11.22; and FLNA-Xq28) overlapped with the CNVs identified. CONCLUSIONS Considering the importance to NSCLP, the microdeletions that encompass MSX1, microduplications over TERT, MIR4457, CLPTM1L, and microduplication of PHF8 have been identified as small CNVs related to sequence variants associated with oral clefts susceptibility. Our findings represent a preliminary study on the clinical significance of small CNVs and their relationship with genes implicated in NSCLP.
Collapse
Affiliation(s)
| | | | | | - João Felipe Bezerra
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Raul Hernandes Bortolin
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Brazil
| | - André Ducati Luchessi
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Vivian Nogueira Silbiger
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | | | | | | | | | - Adriana Augusto de Rezende
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
29
|
Tooth agenesis and orofacial clefting: genetic brothers in arms? Hum Genet 2016; 135:1299-1327. [PMID: 27699475 PMCID: PMC5065589 DOI: 10.1007/s00439-016-1733-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/21/2016] [Indexed: 12/16/2022]
Abstract
Tooth agenesis and orofacial clefts represent the most common developmental anomalies and their co-occurrence is often reported in patients as well in animal models. The aim of the present systematic review is to thoroughly investigate the current literature (PubMed, EMBASE) to identify the genes and genomic loci contributing to syndromic or non-syndromic co-occurrence of tooth agenesis and orofacial clefts, to gain insight into the molecular mechanisms underlying their dual involvement in the development of teeth and facial primordia. Altogether, 84 articles including phenotype and genotype description provided 9 genomic loci and 26 gene candidates underlying the co-occurrence of the two congenital defects: MSX1, PAX9, IRF6, TP63, KMT2D, KDM6A, SATB2, TBX22, TGFα, TGFβ3, TGFβR1, TGFβR2, FGF8, FGFR1, KISS1R, WNT3, WNT5A, CDH1, CHD7, AXIN2, TWIST1, BCOR, OFD1, PTCH1, PITX2, and PVRL1. The molecular pathways, cellular functions, tissue-specific expression and disease association were investigated using publicly accessible databases (EntrezGene, UniProt, OMIM). The Gene Ontology terms of the biological processes mediated by the candidate genes were used to cluster them using the GOTermMapper (Lewis-Sigler Institute, Princeton University), speculating on six super-clusters: (a) anatomical development, (b) cell division, growth and motility, (c) cell metabolism and catabolism, (d) cell transport, (e) cell structure organization and (f) organ/system-specific processes. This review aims to increase the knowledge on the mechanisms underlying the co-occurrence of tooth agenesis and orofacial clefts, to pave the way for improving targeted (prenatal) molecular diagnosis and finally to reflect on therapeutic or ultimately preventive strategies for these disabling conditions in the future.
Collapse
|