1
|
Foley A, Lao N, Clarke C, Barron N. A complete workflow for single cell mtDNAseq in CHO cells, from cell culture to bioinformatic analysis. Front Bioeng Biotechnol 2024; 12:1304951. [PMID: 38440325 PMCID: PMC10910102 DOI: 10.3389/fbioe.2024.1304951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/09/2024] [Indexed: 03/06/2024] Open
Abstract
Chinese hamster ovary (CHO) cells have a long history in the biopharmaceutical industry and currently produce the vast majority of recombinant therapeutic proteins. A key step in controlling the process and product consistency is the development of a producer cell line derived from a single cell clone. However, it is recognized that genetic and phenotypic heterogeneity between individual cells in a clonal CHO population tends to arise over time. Previous bulk analysis of CHO cell populations revealed considerable variation within the mtDNA sequence (heteroplasmy), which could have implications for the performance of the cell line. By analyzing the heteroplasmy of single cells within the same population, this heterogeneity can be characterized with greater resolution. Such analysis may identify heterogeneity in the mitochondrial genome, which impacts the overall phenotypic performance of a producer cell population, and potentially reveal routes for genetic engineering. A critical first step is the development of robust experimental and computational methods to enable single cell mtDNA sequencing (termed scmtDNAseq). Here, we present a protocol from cell culture to bioinformatic analysis and provide preliminary evidence of significant mtDNA heteroplasmy across a small panel of single CHO cells.
Collapse
Affiliation(s)
- Alan Foley
- Cell Engineering Group, National Institute for Bioprocessing Research and Training, Dublin, Ireland
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, Ireland
| | - Nga Lao
- Cell Engineering Group, National Institute for Bioprocessing Research and Training, Dublin, Ireland
| | - Colin Clarke
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, Ireland
- Bioinformatics Group, National Institute for Bioprocessing Research and Training, Dublin, Ireland
| | - Niall Barron
- Cell Engineering Group, National Institute for Bioprocessing Research and Training, Dublin, Ireland
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Mertens J, Belva F, van Montfoort APA, Regin M, Zambelli F, Seneca S, Couvreu de Deckersberg E, Bonduelle M, Tournaye H, Stouffs K, Barbé K, Smeets HJM, Van de Velde H, Sermon K, Blockeel C, Spits C. Children born after assisted reproduction more commonly carry a mitochondrial genotype associating with low birthweight. Nat Commun 2024; 15:1232. [PMID: 38336715 PMCID: PMC10858059 DOI: 10.1038/s41467-024-45446-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Children conceived through assisted reproductive technologies (ART) have an elevated risk of lower birthweight, yet the underlying cause remains unclear. Our study explores mitochondrial DNA (mtDNA) variants as contributors to birthweight differences by impacting mitochondrial function during prenatal development. We deep-sequenced the mtDNA of 451 ART and spontaneously conceived (SC) individuals, 157 mother-child pairs and 113 individual oocytes from either natural menstrual cycles or after ovarian stimulation (OS) and find that ART individuals carried a different mtDNA genotype than SC individuals, with more de novo non-synonymous variants. These variants, along with rRNA variants, correlate with lower birthweight percentiles, independent of conception mode. Their higher occurrence in ART individuals stems from de novo mutagenesis associated with maternal aging and OS-induced oocyte cohort size. Future research will establish the long-term health consequences of these changes and how these findings will impact the clinical practice and patient counselling in the future.
Collapse
Affiliation(s)
- Joke Mertens
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Florence Belva
- Center for Medical Genetics, UZ Brussel, Brussels, Belgium
| | - Aafke P A van Montfoort
- Department of Obstetrics & Gynaecology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Marius Regin
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Sara Seneca
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Medical Genetics, UZ Brussel, Brussels, Belgium
| | - Edouard Couvreu de Deckersberg
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Herman Tournaye
- Brussels IVF, Center for Reproductive Medicine, UZ Brussel, Brussels, Belgium
- Research Group Biology of the Testis, Faculty of Medicine, Vrije Universiteit Brussel, Brussels, Belgium
| | - Katrien Stouffs
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Medical Genetics, UZ Brussel, Brussels, Belgium
| | - Kurt Barbé
- Interfaculty Center Data Processing & Statistics, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hubert J M Smeets
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands
- MHeNs School Institute for Mental Health and Neuroscience, GROW Institute for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Hilde Van de Velde
- Brussels IVF, Center for Reproductive Medicine, UZ Brussel, Brussels, Belgium
- Research Group Reproduction and Immunology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karen Sermon
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Christophe Blockeel
- Brussels IVF, Center for Reproductive Medicine, UZ Brussel, Brussels, Belgium
- Department of Obstetrics and Gynaecology, School of Medicine, University of Zagreb, Šalata 3, Zagreb, 10000, Croatia
| | - Claudia Spits
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
3
|
Shammas MK, Nie Y, Gilsrud A, Huang X, Narendra DP, Chinnery PF. CHCHD10 mutations induce tissue-specific mitochondrial DNA deletions with a distinct signature. Hum Mol Genet 2023; 33:91-101. [PMID: 37815936 PMCID: PMC10729859 DOI: 10.1093/hmg/ddad161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/11/2023] [Accepted: 09/19/2023] [Indexed: 10/12/2023] Open
Abstract
Mutations affecting the mitochondrial intermembrane space protein CHCHD10 cause human disease, but it is not known why different amino acid substitutions cause markedly different clinical phenotypes, including amyotrophic lateral sclerosis-frontotemporal dementia, spinal muscular atrophy Jokela-type, isolated autosomal dominant mitochondrial myopathy and cardiomyopathy. CHCHD10 mutations have been associated with deletions of mitochondrial DNA (mtDNA deletions), raising the possibility that these explain the clinical variability. Here, we sequenced mtDNA obtained from hearts, skeletal muscle, livers and spinal cords of WT and Chchd10 G58R or S59L knockin mice to characterise the mtDNA deletion signatures of the two mutant lines. We found that the deletion levels were higher in G58R and S59L mice than in WT mice in some tissues depending on the Chchd10 genotype, and the deletion burden increased with age. Furthermore, we observed that the spinal cord was less prone to the development of mtDNA deletions than the other tissues examined. Finally, in addition to accelerating the rate of naturally occurring deletions, Chchd10 mutations also led to the accumulation of a novel set of deletions characterised by shorter direct repeats flanking the deletion breakpoints. Our results indicate that Chchd10 mutations in mice induce tissue-specific deletions which may also contribute to the clinical phenotype associated with these mutations in humans.
Collapse
Affiliation(s)
- Mario K Shammas
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, United Kingdom
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, United Kingdom
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, MD 20892, United States
| | - Yu Nie
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, United Kingdom
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Alexandra Gilsrud
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, MD 20892, United States
| | - Xiaoping Huang
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, MD 20892, United States
| | - Derek P Narendra
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, MD 20892, United States
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, United Kingdom
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, United Kingdom
| |
Collapse
|
4
|
Mertens J, Regin M, De Munck N, Couvreu de Deckersberg E, Belva F, Sermon K, Tournaye H, Blockeel C, Van de Velde H, Spits C. Mitochondrial DNA variants segregate during human preimplantation development into genetically different cell lineages that are maintained postnatally. Hum Mol Genet 2022; 31:3629-3642. [PMID: 35285472 PMCID: PMC9616571 DOI: 10.1093/hmg/ddac059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 06/30/2024] Open
Abstract
Humans present remarkable diversity in their mitochondrial DNA (mtDNA) in terms of variants across individuals as well as across tissues and even cells within one person. We have investigated the timing of the first appearance of this variant-driven mosaicism. For this, we deep-sequenced the mtDNA of 254 oocytes from 85 donors, 158 single blastomeres of 25 day-3 embryos, 17 inner cell mass and trophectoderm samples of 7 day-5 blastocysts, 142 bulk DNA and 68 single cells of different adult tissues. We found that day-3 embryos present blastomeres that carry variants only detected in that cell, showing that mtDNA mosaicism arises very early in human development. We classified the mtDNA variants based on their recurrence or uniqueness across different samples. Recurring variants had higher heteroplasmic loads and more frequently resulted in synonymous changes or were located in non-coding regions than variants unique to one oocyte or single embryonic cell. These differences were maintained through development, suggesting that the mtDNA mosaicism arising in the embryo is maintained into adulthood. We observed a decline in potentially pathogenic variants between day 3 and day 5 of development, suggesting early selection. We propose a model in which closely clustered mitochondria carrying specific mtDNA variants in the ooplasm are asymmetrically distributed throughout the cell divisions of the preimplantation embryo, resulting in the earliest form of mtDNA mosaicism in human development.
Collapse
Affiliation(s)
- Joke Mertens
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Marius Regin
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Neelke De Munck
- Brussels IVF, Center for Reproductive Medicine, Universitair Ziekenhuis Brussel, 1090 Brussels, Belgium
| | - Edouard Couvreu de Deckersberg
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Florence Belva
- Center for Medical Genetics, Universitair Ziekenhuis Brussel, 1090 Brussels, Belgium
| | - Karen Sermon
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Herman Tournaye
- Brussels IVF, Center for Reproductive Medicine, Universitair Ziekenhuis Brussel, 1090 Brussels, Belgium
- Research Group Biology of the Testis, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
- Department of Obstetrics, Gynaecology, Perinatology and Reproduction, Institute of Professional Education, Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow 119992, Russia
| | - Christophe Blockeel
- Brussels IVF, Center for Reproductive Medicine, Universitair Ziekenhuis Brussel, 1090 Brussels, Belgium
| | - Hilde Van de Velde
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
- Brussels IVF, Center for Reproductive Medicine, Universitair Ziekenhuis Brussel, 1090 Brussels, Belgium
- Research Group Reproduction and Immunology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Claudia Spits
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| |
Collapse
|
5
|
Rius R, Compton AG, Baker NL, Welch AE, Coman D, Kava MP, Minoche AE, Cowley MJ, Thorburn DR, Christodoulou J. Application of Genome Sequencing from Blood to Diagnose Mitochondrial Diseases. Genes (Basel) 2021; 12:genes12040607. [PMID: 33924034 PMCID: PMC8072654 DOI: 10.3390/genes12040607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/23/2022] Open
Abstract
Mitochondrial diseases can be caused by pathogenic variants in nuclear or mitochondrial DNA-encoded genes that often lead to multisystemic symptoms and can have any mode of inheritance. Using a single test, Genome Sequencing (GS) can effectively identify variants in both genomes, but it has not yet been universally used as a first-line approach to diagnosing mitochondrial diseases due to related costs and challenges in data analysis. In this article, we report three patients with mitochondrial disease molecularly diagnosed through GS performed on DNA extracted from blood to demonstrate different diagnostic advantages of this technology, including the detection of a low-level heteroplasmic pathogenic variant, an intragenic nuclear DNA deletion, and a large mtDNA deletion. Current technical improvements and cost reductions are likely to lead to an expanded routine diagnostic usage of GS and of the complementary “Omic” technologies in mitochondrial diseases.
Collapse
Affiliation(s)
- Rocio Rius
- Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia; (R.R.); (A.G.C.); (N.L.B.) (A.E.W.); (D.R.T.)
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Alison G. Compton
- Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia; (R.R.); (A.G.C.); (N.L.B.) (A.E.W.); (D.R.T.)
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Naomi L. Baker
- Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia; (R.R.); (A.G.C.); (N.L.B.) (A.E.W.); (D.R.T.)
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
- Victorian Clinical Genetic Services, Melbourne, VIC 3052, Australia
| | - AnneMarie E. Welch
- Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia; (R.R.); (A.G.C.); (N.L.B.) (A.E.W.); (D.R.T.)
| | - David Coman
- Department of Metabolic Medicine, Queensland Children’s Hospital, Brisbane, QLD 4101, Australia;
- School of Clinical Medicine, University of Queensland, Brisbane, QLD 4072, Australia
- School of Medicine, Griffith University, Gold Coast, QLD 4222, Australia
| | - Maina P. Kava
- Department of Neurology, Perth Children’s Hospital, Perth, WA 6009, Australia;
- Department of Metabolic Medicine and Rheumatology, Perth Children’s Hospital, Perth, WA 6009, Australia
| | - Andre E. Minoche
- Kinghorn Centre for Clinical Genomics, Garvan Institute, University of New South Wales, Randwick, NSW 2010, Australia;
| | - Mark J. Cowley
- Precision Medicine Theme, Children’s Cancer Institute, Kensington, NSW 2750, Australia;
- School of Women’s and Children’s Health, University of New South Wales, Randwick, NSW 2031, Australia
| | - David R. Thorburn
- Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia; (R.R.); (A.G.C.); (N.L.B.) (A.E.W.); (D.R.T.)
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
- Victorian Clinical Genetic Services, Melbourne, VIC 3052, Australia
| | - John Christodoulou
- Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia; (R.R.); (A.G.C.); (N.L.B.) (A.E.W.); (D.R.T.)
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
- Victorian Clinical Genetic Services, Melbourne, VIC 3052, Australia
- Correspondence: ; Tel.: +61-39936-6353
| |
Collapse
|
6
|
Accurate mapping of mitochondrial DNA deletions and duplications using deep sequencing. PLoS Genet 2020; 16:e1009242. [PMID: 33315859 PMCID: PMC7769605 DOI: 10.1371/journal.pgen.1009242] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 12/28/2020] [Accepted: 11/02/2020] [Indexed: 12/21/2022] Open
Abstract
Deletions and duplications in mitochondrial DNA (mtDNA) cause mitochondrial disease and accumulate in conditions such as cancer and age-related disorders, but validated high-throughput methodology that can readily detect and discriminate between these two types of events is lacking. Here we establish a computational method, MitoSAlt, for accurate identification, quantification and visualization of mtDNA deletions and duplications from genomic sequencing data. Our method was tested on simulated sequencing reads and human patient samples with single deletions and duplications to verify its accuracy. Application to mouse models of mtDNA maintenance disease demonstrated the ability to detect deletions and duplications even at low levels of heteroplasmy.
Collapse
|
7
|
DNA typing from skeletal remains: a comparison between capillary electrophoresis and massively parallel sequencing platforms. Int J Legal Med 2020; 134:2029-2035. [DOI: 10.1007/s00414-020-02327-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/28/2020] [Indexed: 10/24/2022]
|
8
|
Hjelm BE, Rollins B, Morgan L, Sequeira A, Mamdani F, Pereira F, Damas J, Webb MG, Weber MD, Schatzberg AF, Barchas JD, Lee FS, Akil H, Watson SJ, Myers RM, Chao EC, Kimonis V, Thompson PM, Bunney WE, Vawter MP. Splice-Break: exploiting an RNA-seq splice junction algorithm to discover mitochondrial DNA deletion breakpoints and analyses of psychiatric disorders. Nucleic Acids Res 2019; 47:e59. [PMID: 30869147 PMCID: PMC6547454 DOI: 10.1093/nar/gkz164] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/28/2019] [Indexed: 12/20/2022] Open
Abstract
Deletions in the 16.6 kb mitochondrial genome have been implicated in numerous disorders that often display muscular and/or neurological symptoms due to the high-energy demands of these tissues. We describe a catalogue of 4489 putative mitochondrial DNA (mtDNA) deletions, including their frequency and relative read rate, using a combinatorial approach of mitochondria-targeted PCR, next-generation sequencing, bioinformatics, post-hoc filtering, annotation, and validation steps. Our bioinformatics pipeline uses MapSplice, an RNA-seq splice junction detection algorithm, to detect and quantify mtDNA deletion breakpoints rather than mRNA splices. Analyses of 93 samples from postmortem brain and blood found (i) the 4977 bp ‘common deletion’ was neither the most frequent deletion nor the most abundant; (ii) brain contained significantly more deletions than blood; (iii) many high frequency deletions were previously reported in MitoBreak, suggesting they are present at low levels in metabolically active tissues and are not exclusive to individuals with diagnosed mitochondrial pathologies; (iv) many individual deletions (and cumulative metrics) had significant and positive correlations with age and (v) the highest deletion burdens were observed in major depressive disorder brain, at levels greater than Kearns–Sayre Syndrome muscle. Collectively, these data suggest the Splice-Break pipeline can detect and quantify mtDNA deletions at a high level of resolution.
Collapse
Affiliation(s)
- Brooke E Hjelm
- Department of Psychiatry and Human Behavior, University of California-Irvine (UCI), Irvine, CA 92697, USA.,Department of Translational Genomics, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Brandi Rollins
- Department of Psychiatry and Human Behavior, University of California-Irvine (UCI), Irvine, CA 92697, USA
| | - Ling Morgan
- Department of Psychiatry and Human Behavior, University of California-Irvine (UCI), Irvine, CA 92697, USA
| | - Adolfo Sequeira
- Department of Psychiatry and Human Behavior, University of California-Irvine (UCI), Irvine, CA 92697, USA
| | - Firoza Mamdani
- Department of Psychiatry and Human Behavior, University of California-Irvine (UCI), Irvine, CA 92697, USA
| | - Filipe Pereira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos 4050-123, Portugal
| | - Joana Damas
- The Genome Center, University of California-Davis, Davis, CA 95616, USA
| | - Michelle G Webb
- Department of Translational Genomics, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Matthieu D Weber
- Department of Psychiatry and Human Behavior, University of California-Irvine (UCI), Irvine, CA 92697, USA
| | - Alan F Schatzberg
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Jack D Barchas
- Department of Psychiatry, Weill Cornell Medical College at Cornell University, New York, NY 10065, USA
| | - Francis S Lee
- Department of Psychiatry, Weill Cornell Medical College at Cornell University, New York, NY 10065, USA
| | - Huda Akil
- The Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stanley J Watson
- The Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Elizabeth C Chao
- Division of Genetics and Genomic Medicine, Department of Pediatrics, UCI, Irvine, CA, USA
| | - Virginia Kimonis
- Division of Genetics and Genomic Medicine, Department of Pediatrics, UCI, Irvine, CA, USA
| | - Peter M Thompson
- Southwest Brain Bank, Department of Psychiatry, Texas Tech University Health Sciences Center (TTUHSC), El Paso, TX 79905, USA
| | - William E Bunney
- Department of Psychiatry and Human Behavior, University of California-Irvine (UCI), Irvine, CA 92697, USA
| | - Marquis P Vawter
- Department of Psychiatry and Human Behavior, University of California-Irvine (UCI), Irvine, CA 92697, USA
| |
Collapse
|
9
|
Dierckxsens N, Mardulyn P, Smits G. Unraveling heteroplasmy patterns with NOVOPlasty. NAR Genom Bioinform 2019; 2:lqz011. [PMID: 33575563 PMCID: PMC7671380 DOI: 10.1093/nargab/lqz011] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/16/2019] [Accepted: 10/08/2019] [Indexed: 12/15/2022] Open
Abstract
Heteroplasmy, the existence of multiple mitochondrial haplotypes within an individual, has been studied across different scientific fields. Mitochondrial genome polymorphisms have been linked to multiple severe disorders and are of interest to evolutionary studies and forensic science. Before the development of massive parallel sequencing (MPS), most studies of mitochondrial genome variation were limited to short fragments and to heteroplasmic variants associated with a relatively high frequency (>10%). By utilizing ultra-deep sequencing, it has now become possible to uncover previously undiscovered patterns of intra-individual polymorphisms. Despite these technological advances, it is still challenging to determine the origin of the observed intra-individual polymorphisms. We therefore developed a new method that not only detects intra-individual polymorphisms within mitochondrial and chloroplast genomes more accurately, but also looks for linkage among polymorphic sites by assembling the sequence around each detected polymorphic site. Our benchmark study shows that this method is capable of detecting heteroplasmy more accurately than any method previously available and is the first tool that is able to completely or partially reconstruct the sequence for each mitochondrial haplotype (allele). The method is implemented in our open source software NOVOPlasty that can be downloaded at https://github.com/ndierckx/NOVOPlasty.
Collapse
Affiliation(s)
- Nicolas Dierckxsens
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Université Libre de Bruxelles and Vrije Universiteit Brussel, Triomflaan CP 263, 1050 Brussels, Belgium
| | - Patrick Mardulyn
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Université Libre de Bruxelles and Vrije Universiteit Brussel, Triomflaan CP 263, 1050 Brussels, Belgium.,Evolutionary Biology and Ecology, CP 160/12, Université Libre de Bruxelles, Av. F. D. Roosevelt 50, B-1050 Brussels, Belgium
| | - Guillaume Smits
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Université Libre de Bruxelles and Vrije Universiteit Brussel, Triomflaan CP 263, 1050 Brussels, Belgium.,Genetics, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, 1020 Brussels, Belgium.,Center for Human Genetics, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium
| |
Collapse
|
10
|
Mertens J, Zambelli F, Daneels D, Caljon B, Sermon K, Spits C. Detection of Heteroplasmic Variants in the Mitochondrial Genome through Massive Parallel Sequencing. Bio Protoc 2019; 9:e3283. [PMID: 33654798 DOI: 10.21769/bioprotoc.3283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 11/02/2022] Open
Abstract
Detecting heteroplasmies in the mitochondrial DNA (mtDNA) has been a challenge for many years. In the past, Sanger sequencing was the main option to perform this analysis, however, this method could not detect low frequency heteroplasmies. Massive Parallel Sequencing (MPS) provides the opportunity to study the mtDNA in depth, but a controlled pipeline is necessary to reliably retrieve and quantify the low frequency variants. It has been shown that differences in methods can significantly affect the number and frequency of the retrieved variants. In this protocol, we present a method involving both wet lab and bioinformatics that allows identifying and quantifying single nucleotide variants in the full mtDNA sequence, down to a heteroplasmic load of 1.5%. For this, we set up a PCR-based amplification of the mtDNA, followed by MPS using Illumina chemistry, and variant calling with two different algorithms, mtDNA server and Mutect. The PCR amplification is used to enrich the mitochondrial fraction, while the bioinformatic processing with two algorithms is used to discriminate the true heteroplasmies from background noise. The protocol described here allows for deep sequencing of the mitochondrial DNA in bulk DNA samples as well as single cells (both large cells such as human oocytes, and small-sized single cells such as human embryonic stem cells) with minor modifications to the protocol.
Collapse
Affiliation(s)
- Joke Mertens
- Research Group Reproduction and Genetics, Vrije Universiteit Brussel, Brussel, Belgium
| | | | - Dorien Daneels
- Center for Medical Genetics, UZ Brussel, Brussels, Belgium
| | - Ben Caljon
- Center for Medical Genetics, UZ Brussel, Brussels, Belgium
| | - Karen Sermon
- Research Group Reproduction and Genetics, Vrije Universiteit Brussel, Brussel, Belgium
| | - Claudia Spits
- Research Group Reproduction and Genetics, Vrije Universiteit Brussel, Brussel, Belgium
| |
Collapse
|
11
|
Zambelli F, Mertens J, Dziedzicka D, Sterckx J, Markouli C, Keller A, Tropel P, Jung L, Viville S, Van de Velde H, Geens M, Seneca S, Sermon K, Spits C. Random Mutagenesis, Clonal Events, and Embryonic or Somatic Origin Determine the mtDNA Variant Type and Load in Human Pluripotent Stem Cells. Stem Cell Reports 2018; 11:102-114. [PMID: 29910126 PMCID: PMC6117474 DOI: 10.1016/j.stemcr.2018.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/10/2018] [Accepted: 05/15/2018] [Indexed: 01/13/2023] Open
Abstract
In this study, we deep-sequenced the mtDNA of human embryonic and induced pluripotent stem cells (hESCs and hiPSCs) and their source cells and found that the majority of variants pre-existed in the cells used to establish the lines. Early-passage hESCs carried few and low-load heteroplasmic variants, similar to those identified in oocytes and inner cell masses. The number and heteroplasmic loads of these variants increased with prolonged cell culture. The study of 120 individual cells of early- and late-passage hESCs revealed a significant diversity in mtDNA heteroplasmic variants at the single-cell level and that the variants that increase during time in culture are always passenger to the appearance of chromosomal abnormalities. We found that early-passage hiPSCs carry much higher loads of mtDNA variants than hESCs, which single-fibroblast sequencing proved pre-existed in the source cells. Finally, we show that these variants are stably transmitted during short-term differentiation.
Collapse
Affiliation(s)
- Filippo Zambelli
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels 1090, Belgium; S.I.S.Me.R. Reproductive Medicine Unit, Via Mazzini 12, Bologna 40100, Italy
| | - Joke Mertens
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels 1090, Belgium
| | - Dominika Dziedzicka
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels 1090, Belgium
| | - Johan Sterckx
- Centre for Reproductive Medicine, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, Brussels, Belgium
| | - Christina Markouli
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels 1090, Belgium
| | - Alexander Keller
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels 1090, Belgium
| | | | - Laura Jung
- Institut de Parasitologie et Pathologie Tropicale, EA 7292, Fédérationde Médecine Translationelle, Université de Strasbourg, 3 rue Koeberlé, Strasbourg 67000, France
| | - Stephane Viville
- Institut de Parasitologie et Pathologie Tropicale, EA 7292, Fédérationde Médecine Translationelle, Université de Strasbourg, 3 rue Koeberlé, Strasbourg 67000, France; Laboratoire de Diagnostic Génétique, UF3472-génétique de l'infertilité, Hôpitaux Universitaires de Strasbourg, Strasbourg 67000, France
| | - Hilde Van de Velde
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels 1090, Belgium; Centre for Reproductive Medicine, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, Brussels, Belgium
| | - Mieke Geens
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels 1090, Belgium
| | - Sara Seneca
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels 1090, Belgium; Centre for Medical Genetics, UZ Brussel, Laarbeeklaan 101, Brussels, Belgium
| | - Karen Sermon
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels 1090, Belgium
| | - Claudia Spits
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels 1090, Belgium.
| |
Collapse
|