1
|
L’Estrange-Stranieri E, Gottschalk TA, Wright MD, Hibbs ML. The dualistic role of Lyn tyrosine kinase in immune cell signaling: implications for systemic lupus erythematosus. Front Immunol 2024; 15:1395427. [PMID: 39007135 PMCID: PMC11239442 DOI: 10.3389/fimmu.2024.1395427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Systemic lupus erythematosus (SLE, lupus) is a debilitating, multisystem autoimmune disease that can affect any organ in the body. The disease is characterized by circulating autoantibodies that accumulate in organs and tissues, which triggers an inflammatory response that can cause permanent damage leading to significant morbidity and mortality. Lyn, a member of the Src family of non-receptor protein tyrosine kinases, is highly implicated in SLE as remarkably both mice lacking Lyn or expressing a gain-of-function mutation in Lyn develop spontaneous lupus-like disease due to altered signaling in B lymphocytes and myeloid cells, suggesting its expression or activation state plays a critical role in maintaining tolerance. The past 30 years of research has begun to elucidate the role of Lyn in a duplicitous signaling network of activating and inhibitory immunoreceptors and related targets, including interactions with the interferon regulatory factor family in the toll-like receptor pathway. Gain-of-function mutations in Lyn have now been identified in human cases and like mouse models, cause severe systemic autoinflammation. Studies of Lyn in SLE patients have presented mixed findings, which may reflect the heterogeneity of disease processes in SLE, with impairment or enhancement in Lyn function affecting subsets of SLE patients that may be a means of stratification. In this review, we present an overview of the phosphorylation and protein-binding targets of Lyn in B lymphocytes and myeloid cells, highlighting the structural domains of the protein that are involved in its function, and provide an update on studies of Lyn in SLE patients.
Collapse
Affiliation(s)
- Elan L’Estrange-Stranieri
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Timothy A. Gottschalk
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Mark D. Wright
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Margaret L. Hibbs
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Tornillo G, Warrington L, Kendrick H, Higgins AT, Hay T, Beck S, Smalley MJ. Conditional in vivo deletion of LYN kinase has little effect on a BRCA1 loss-of-function-associated mammary tumour model. Dis Model Mech 2024; 17:dmm050211. [PMID: 38149669 PMCID: PMC10846530 DOI: 10.1242/dmm.050211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 12/15/2023] [Indexed: 12/28/2023] Open
Abstract
LYN kinase is expressed in BRCA1 loss-of-function-dependent mouse mammary tumours, in the cells of origin of such tumours, and in human breast cancer. Suppressing LYN kinase activity in BRCA1-defective cell lines as well as in in vitro cultures of Brca1-null mouse mammary tumours is deleterious to their growth. Here, we examined the interaction between LYN kinase and BRCA1 loss-of-function in an in vivo mouse mammary tumour model, using conditional knockout Brca1 and Lyn alleles. Comparison of Brca1 tumour cohorts showed little difference in mammary tumour formation between animals that were wild type, heterozygous or homozygous for the conditional Lyn allele, although this was confounded by factors including incomplete Lyn recombination in some tumours. RNA-sequencing analysis demonstrated that tumours with high levels of Lyn gene expression had a slower doubling time, but this was not correlated with levels of LYN staining in tumour cells themselves. Rather, high Lyn expression and slower tumour growth were likely a result of B-cell infiltration. The multifaceted role of LYN indicates that it is likely to present difficulties as a therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Giusy Tornillo
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Lauren Warrington
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Howard Kendrick
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Adam T. Higgins
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Trevor Hay
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Sam Beck
- Independent Anatomic Pathology Ltd, Calyx House, South Road, Taunton TA1 3DU, UK
| | - Matthew J. Smalley
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| |
Collapse
|
3
|
Kuai L, Luo Y, Qu K, Ru Y, Luo Y, Ding X, Xing M, Liu L, Sun X, Li X, Li B. Transcriptomic Analysis of the Mechanisms for Alleviating Psoriatic Dermatitis Using Taodan Granules in an Imiquimod-Induced Psoriasis-like Mouse Model. Front Pharmacol 2021; 12:632414. [PMID: 33995034 PMCID: PMC8114823 DOI: 10.3389/fphar.2021.632414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/11/2021] [Indexed: 01/04/2023] Open
Abstract
Taodan granules (TDGs) are clinically efficacious for treating psoriasis, buttheir specific mechanisms of action are unclear. In this study, we determined the concentrations of tanshinone IIA and curcumol using high-performance liquid chromatography (HPLC) to establish quality control parameters for assessing the mechanism of TDGs in treating psoriasis. Thereafter, a mouse model of psoriasis was treated with TDGs. TDGs attenuated imiquimod-induced typical erythema, scales, and thickening of the back and ear lesions in the psoriatic mouse model. Furthermore, PCNA and Ki67-positive cells were reduced in the epidermis of psoriatic lesions following TDG treatment. Finally, the sequencing results were verified using a multitude of methods, and the mechanism of action of TDGs against psoriasis was found to be via the upregulation of metabolic signaling pathways such as the Gly-Ser-Thr axis, the downregulation of immune and inflammatory pathways, and the decrease in Rac2 and Arhgdib concentrations. Overall, this study clarified the mechanism of TDG treatment for psoriasis and provided evidence for its clinical application.
Collapse
Affiliation(s)
- Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ying Luo
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Keshen Qu
- Department of Traditional Chinese Surgery, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Ru
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yue Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaojie Ding
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng Xing
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China.,Department of Dermatology, Shaanxi Hospital of Traditional Chinese Medicine, Xi`an, China
| | - Liu Liu
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoying Sun
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Xin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Bin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Dermatology, Shaanxi Hospital of Traditional Chinese Medicine, Xi`an, China.,Shanghai Dermatology Hospital, Tongji University, Shanghai, China
| |
Collapse
|
4
|
Tohyama M, Matsumoto A, Tsuda T, Dai X, Shiraishi K, Sayama K. Suppression of IL-17A-induced CCL20 production by cytokine inducible SH2-containing protein 1 in epidermal keratinocytes. J Dermatol Sci 2021; 101:202-209. [PMID: 33509657 DOI: 10.1016/j.jdermsci.2021.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/08/2021] [Accepted: 01/14/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Lesions of atopic dermatitis have fewer Th17 cells than those of psoriasis, resulting in frequent skin infections. Expression of CCL20, a chemokine that is important for recruiting Th17 cells, is suppressed in the lesions of atopic dermatitis. We previously reported that IL-4 induces the expression of cytokine-inducible SH2-containing protein 1 (CIS1), a member of the CIS/SOCS family, in epidermal keratinocytes. OBJECTIVE To investigate whether CIS1 influences CCL20 production in epidermal keratinocytes. METHODS Expression of CIS1 was examined in atopic dermatitis skin and in cultured keratinocytes. The effects of overexpression of CIS1 on CCL20 production by IL-17A, and on signaling pathways inhibited by CIS1, were assessed in vitro. RESULTS Expression of CIS1 was enhanced in the basal layer of the lesional epidermis of skin with atopic dermatitis. When CIS1 was expressed in keratinocytes using adenoviral vectors, IL-17A-induced CCL20 expression, but not HBD2 or S100A7 expression, was significantly suppressed. TNF-α/IL-1-induced CCL20 production was not altered by CIS1. Overexpression of CIS1 attenuated IL-17A-induced ERK phosphorylation. ERK phosphorylation was mediated by the Act1 and Src family kinase pathways. CIS1 overexpression suppressed Src phosphorylation. Among the Src family kinases, the Yes kinase may have an important role because knockdown of Yes in epidermal keratinocytes resulted in suppression of ERK phosphorylation and CCL20 mRNA expression by IL-17A. CONCLUSION CIS1 induced by Th2 cytokines has the ability to change the response of epidermal keratinocytes to IL-17A by suppression of Src family kinases.
Collapse
Affiliation(s)
- Mikiko Tohyama
- Department of Dermatology, National Hospital Organization Shikoku Cancer Center, Matsuyama, Ehime, Japan; Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan.
| | - Akira Matsumoto
- Department of Infection and Host Defenses, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Teruko Tsuda
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Xiuju Dai
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Ken Shiraishi
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Koji Sayama
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| |
Collapse
|
5
|
Bryja A, Latosiński G, Jankowski M, Angelova Volponi A, Mozdziak P, Shibli JA, Bryl R, Spaczyńska J, Piotrowska-Kempisty H, Krawiec K, Kempisty B, Dyszkiewicz-Konwińska M. Transcriptomic and Morphological Analysis of Cells Derived from Porcine Buccal Mucosa-Studies on an In Vitro Model. Animals (Basel) 2020; 11:ani11010015. [PMID: 33374146 PMCID: PMC7824432 DOI: 10.3390/ani11010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Domestic pigs express high phylogenetic similarity to humans and are often used as a compatible model in biomedical research. Porcine tissues are used as an accessible biomaterial in human skin transplants and tissue architecture reconstruction. We used transcriptional analysis to investigate the dynamics of complex biological system of the mucosa. Additionally, we performed computer analysis of microscopic images of cultured cells in vitro. Computer analysis of images identified epithelial cells and connective tissue cells in in vitro culture. Abstract Transcriptional analysis and live-cell imaging are a powerful tool to investigate the dynamics of complex biological systems. In vitro expanded porcine oral mucosal cells, consisting of populations of epithelial and connective lineages, are interesting and complex systems for study via microarray transcriptomic assays to analyze gene expression profile. The transcriptomic analysis included 56 ontological groups with particular focus on 7 gene ontology groups that are related to the processes of differentiation and development. Most analyzed genes were upregulated after 7 days and downregulated after 15 and 30 days of in vitro culture. The performed transcriptomic analysis was then extended to include automated analysis of differential interference contrast microscopy (DIC) images obtained during in vitro culture. The analysis of DIC imaging allowed to identify the different populations of keratinocytes and fibroblasts during seven days of in vitro culture, and it was possible to evaluate the proportion of these two populations of cells. Porcine mucosa may be a suitable model for reference research on human tissues. In addition, it can provide a reference point for research on the use of cells, scaffolds, or tissues derived from transgenic animals for applications in human tissues reconstruction.
Collapse
Affiliation(s)
- Artur Bryja
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (A.B.); (M.J.); (R.B.); (M.D.-K.)
| | - Grzegorz Latosiński
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznań, Poland; (G.L.); (K.K.)
| | - Maurycy Jankowski
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (A.B.); (M.J.); (R.B.); (M.D.-K.)
| | - Ana Angelova Volponi
- Department of Craniofacial Development and Stem Cell Biology, King’s College University of London, London WC2R 2LS, UK;
| | - Paul Mozdziak
- Graduate Physiology Program, North Carolina State University, Raleigh, NC 27695, USA;
| | - Jamil A. Shibli
- Department of Periodontology and Oral Implantology, Dental Research Division, University of Guarulhos, Guarulhos 07030-010, SP, Brazil;
| | - Rut Bryl
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (A.B.); (M.J.); (R.B.); (M.D.-K.)
| | - Julia Spaczyńska
- Department of Toxicology, Poznan University of Medical Sciences, 61-631 Poznań, Poland; (J.S.); (H.P.-K.)
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 61-631 Poznań, Poland; (J.S.); (H.P.-K.)
| | - Krzysztof Krawiec
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznań, Poland; (G.L.); (K.K.)
| | - Bartosz Kempisty
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (A.B.); (M.J.); (R.B.); (M.D.-K.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznań, Poland
- Department of Veterinary Surgery, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland
- Correspondence: ; Tel.: +48-61-8546418
| | - Marta Dyszkiewicz-Konwińska
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (A.B.); (M.J.); (R.B.); (M.D.-K.)
- Department of Biomaterials and Experimental Dentistry, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| |
Collapse
|
6
|
Irtegun-Kandemir S, Icen-Taskin I, Bozkurt M, Kalkanli-Tas S. mRNA Expression Profile of SFKs and Involvement of SFKs in the Regulation of LPS-Induced Erk1/2 Signaling in PBMCs of Active BD Patients. Endocr Metab Immune Disord Drug Targets 2019; 19:809-817. [PMID: 30659554 DOI: 10.2174/1871530319666190119101756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/06/2018] [Accepted: 01/02/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Behcet's Disease (BD) is a multisystemic inflammatory disorder affecting large vessels, lungs joints, gastrointestinal and neurological systems. The pathogenesis of BD remains poorly understood. Identifying the key signaling pathway is crucial for a complete understanding of the pathogenesis of BD. OBJECTIVE The aim of this study was to determine mRNA expression level of Src family kinases (SFKs) members and their involvement in lipopolysaccharide (LPS)-induced mitogen-activated protein kinases (MAPKs) regulation in peripheral blood mononuclear cells (PBMCs) of active BD patients. METHODS Twenty- five active BD patients and twenty-five healthy controls were included in the study. PBMCs were isolated from total blood by density gradient centrifugation. The mRNA expression levels of SFKs members were measured by real-time quantitative PCR (RT-qPCR). The effect of SFKs activity on LPS-induced activation MAPKs (Erk1/2, p38 and JNK) was examined by Western blot. RESULTS The mRNA expression levels of Hck, Src, Lyn, Yes and Fyn were found to be slightly decreased in active BD patients compared to the control subjects, but a slight change in mRNA level of SFKs members did not impact on protein levels and protein activity. LPS-induced Erk1/2 phosphorylation was significantly increased in the absence of SFKs activity in active BD patients. However, inhibition of SFKs activity had no effect on LPS-induced phosphorylation of p38 and JNK in both controls and active BD patients. CONCLUSION SFKs downregulate LPS-induced Erk1/2 phosphorylation in PBMCs of active BD patients.
Collapse
Affiliation(s)
- Sevgi Irtegun-Kandemir
- Department of Medical Biology, Faculty of Medicine, Dicle University, Diyarbakir, Turkey
| | - Irmak Icen-Taskin
- Department of Molecular Biology and Genetics, Faculty of Science and Art, Inonu University, Malatya, Turkey
| | - Mehtap Bozkurt
- Department of Physical Therapy and Rehabilitation, Faculty of Medicine, Dicle University, Diyarbakir, Turkey
| | - Sevgi Kalkanli-Tas
- Department of Immunology, Faculty of Medicine, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
7
|
Aira LE, Gonçalves D, Bossowski JP, Rubio-Patiño C, Chiche J, Paul-Bellon R, Mondragón L, Gesson M, Lecucq-Ottavi P, Obba S, Colosetti P, Luciano F, Bailly-Maitre B, Boyer L, Jacquel A, Robert G, Ricci JE, Ortonne JP, Passeron T, Lacour JP, Auberger P, Marchetti S. Caspase 1/11 Deficiency or Pharmacological Inhibition Mitigates Psoriasis-Like Phenotype in Mice. J Invest Dermatol 2018; 139:1306-1317. [PMID: 30571969 DOI: 10.1016/j.jid.2018.11.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 12/15/2022]
Abstract
Inflammatory caspases, activated within the inflammasome, are responsible for the maturation and secretion of IL-1β/IL-18. Although their expression in psoriasis was shown several years ago, little is known about the role of inflammatory caspases in the context of psoriasis. Here, we confirmed that caspases 1, 4, and 5 are activated in lesional skin from psoriasis patients. We showed in three psoriasis-like models that inflammatory caspases are activated, and accordingly, caspase 1/11 invalidation or pharmacological inhibition by Ac-YVAD-CMK (i.e., Ac-Tyr-Val-Ala-Asp-chloromethylketone) injection induced a decrease in ear thickness, erythema, scaling, inflammatory cytokine expression, and immune cell infiltration in mice. We observed that keratinocytes were primed to secrete IL-1β when cultured in conditions mimicking psoriasis. Generation of chimeric mice by bone marrow transplantation was carried out to decipher the respective contribution of keratinocytes and/or immune cells in the activation of inflammatory caspases during psoriasis-like inflammatory response. Our data showed that the presence of caspase 1/11 in the immune system is sufficient for a fully inflammatory response, whereas the absence of caspase 1/11 in keratinocytes/fibroblasts had no impact. In summary, our study indicates that inflammatory caspases activated in immune cells are implicated in psoriasis pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Maéva Gesson
- Université Côte d'Azur, INSERM, C3M, Nice, France
| | | | | | | | | | | | | | | | | | | | - Jean-Paul Ortonne
- Centre Hospitalier Universitaire de Nice, Service de Dermatologie, Hôpital Archet II, Nice, France
| | - Thierry Passeron
- Université Côte d'Azur, INSERM, C3M, Nice, France; Centre Hospitalier Universitaire de Nice, Service de Dermatologie, Hôpital Archet II, Nice, France
| | - Jean-Philippe Lacour
- Centre Hospitalier Universitaire de Nice, Service de Dermatologie, Hôpital Archet II, Nice, France
| | | | | |
Collapse
|
8
|
Eldeeb MA, Fahlman RP. The anti-apoptotic form of tyrosine kinase Lyn that is generated by proteolysis is degraded by the N-end rule pathway. Oncotarget 2015; 5:2714-22. [PMID: 24798867 PMCID: PMC4058039 DOI: 10.18632/oncotarget.1931] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The activation of apoptotic pathways results in the caspase cleavage of the Lyn tyrosine kinase to generate the N-terminal truncated LynΔN. This LynΔN fragment has been demonstrated to exert negative feedback on imatinib induced apoptosis in chronic myelogenous leukemia (CML) K562 cells. Our investigations focus on LynΔN stability and how reduced stability reduces imatinib resistance. As the proteolytical generated LynΔN has a leucine as an N-terminal amino acid, we hypothesized that LynΔN would be degraded by the N-end rule pathway. We demonstrated that LynΔN is unstable and that its stability is dependent on the identity of its N-terminus. Additionally we established that LynΔN degradation could be inhibited by either inhibiting the proteasome or knocking down the UBR1 and UBR2 ubiquitin E3 ligases. Importantly, we also demonstrate that LynΔN degradation by the N-end rule counters the imatinib resistance of K562 cells provided by LynΔN expression. Together our data suggest a possible mechanism for the N-end rule pathway having a link to imatinib resistance in CML. With LynΔN being an N-end rule substrate, it provides the first example that this pathway can also provide a pro-apoptotic function as previous reports have currently only demonstrated anti-apoptotic roles for the N-end rule pathway.
Collapse
Affiliation(s)
- Mohamed A Eldeeb
- Department of Biochemistry, University of Alberta, Edmonton Alberta Canada
| | | |
Collapse
|
9
|
Khalil H, Loukili N, Regamey A, Cuesta-Marban A, Santori E, Huber M, Widmann C. The caspase-3/p120 RasGAP module generates a NF-κB repressor in response to cellular stress. J Cell Sci 2015. [DOI: 10.1242/jcs.174409] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The NF-κB transcription factor is a master regulator of inflammation. Short-term NF-κB activation is generally beneficial. However, sustained NF-κB may be detrimental, directly causing apoptosis of cells or leading to a persistent damaging inflammatory response. NF-κB activity in stressed cells needs therefore to be controlled for homeostasis maintenance. Here we show that fragment N that is produced by the caspase-3/p120 RasGAP sensor in mildly stressed cells is a potent NF-κB inhibitor. Fragment N decreases the transcriptional activity of NF-κB by promoting its export from the nucleus. Cells unable to generate fragment N displayed increased NF-κB activation upon stress. Knock-in mice expressing the uncleavable RasGAP mutant showed exaggerated NF-κB activation when their epidermis was treated with anthralin, a drug used for the treatment of psoriasis. Our study provides biochemical and genetic evidence of the importance of the caspase-3/p120 RasGAP stress-sensing module in the control of stress-induced NF-κB activation.
Collapse
Affiliation(s)
- Hadi Khalil
- Department of Physiology, Biology and Medicine Faculty, University of Lausanne, Switzerland
| | - Noureddine Loukili
- Department of Physiology, Biology and Medicine Faculty, University of Lausanne, Switzerland
| | - Alexandre Regamey
- Department of Dermatology, Lausanne University Hospital, Lausanne, Switzerland
| | - Alvaro Cuesta-Marban
- Department of Physiology, Biology and Medicine Faculty, University of Lausanne, Switzerland
| | - Elettra Santori
- Department of Physiology, Biology and Medicine Faculty, University of Lausanne, Switzerland
| | - Marcel Huber
- Department of Dermatology, Lausanne University Hospital, Lausanne, Switzerland
| | - Christian Widmann
- Department of Physiology, Biology and Medicine Faculty, University of Lausanne, Switzerland
| |
Collapse
|
10
|
Tsantikos E, Gottschalk TA, Maxwell MJ, Hibbs ML. Role of the Lyn tyrosine kinase in the development of autoimmune disease. ACTA ACUST UNITED AC 2014. [DOI: 10.2217/ijr.14.44] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Rodríguez-Cerdeira C, Molares-Vila A, Sánchez-Blanco E, Sánchez-Blanco B. Study on Certain Biomarkers of Inflammation in Psoriasis Through "OMICS" Platforms. Open Biochem J 2014; 8:21-34. [PMID: 24688608 PMCID: PMC3970352 DOI: 10.2174/1874091x01408010021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 12/11/2013] [Accepted: 12/14/2013] [Indexed: 12/14/2022] Open
Abstract
Background: In recent years, research on psoriasis has focused on the identification of biomarkers for the diagnosis, pathogenesis, prognosis, or therapeutic response of the disease. These studies could provide insights into the susceptibility and natural history of psoriasis. The identification of biomarkers related to comorbidities in psoriasis, such as arthritis, cardiovascular disease, and the metabolic syndrome, is of special clinical interest. Materials and Methods: We performed an extensive review on psoriasis biomarkers, including cytokine and growth factors, in the literature published between 1997 and 2013, including cross-references of any retrieved articles. We also included some data from our own studies. Results: This review presents current knowledge of soluble biomarkers in psoriasis, including cytokines, chemokines, proangiogenic mediators, growth factors, antimicrobial proteins, neuropeptides, and oxidative stress markers. Conclusion: In conclusion, a number of studies have been conducted with the aim of establishing soluble biomarkers for psoriasis. Most of the biomarkers that have been studied do not meet the criteria for a clinically useful biomarker. Further work is needed to establish a role for soluble biomarkers in the diagnosis and treatment of psoriasis, with a special focus on biomarkers for psoriasis comorbidities, such as arthritis, cardiovascular disease, and the metabolic syndrome.
Collapse
Affiliation(s)
| | - A Molares-Vila
- Department of Analytical Chemistry, University of Vigo, Spain
| | | | - B Sánchez-Blanco
- Postgraduate researcher, Department of Emergency, CHUVI, Vigo, Spain
| |
Collapse
|
12
|
Turan H, Yaykasli KO, Soguktas H, Yaykasli E, Aliagaoglu C, Erdem T, Karkucak M, Kaya E, Ucgun T, Bahadir A. Omentin serum levels and omentin gene Val109Asp polymorphism in patients with psoriasis. Int J Dermatol 2013; 53:601-5. [PMID: 24321036 DOI: 10.1111/ijd.12306] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Psoriasis is a chronic inflammatory disease of uncertain pathogenesis. Omentin is a new adipokine with anti-inflammatory properties; however, the relationship between psoriasis and omentin has not been fully established yet. OBJECTIVES This study was designed to evaluate the relationship between psoriasis and omentin serum levels and Val109Asp polymorphism in exon 4 of the omentin gene. METHODS Forty-nine patients with plaque-type psoriasis and 39 healthy subjects were included in the study. Omentin concentrations were determined by using enzyme-linked immunosorbent assay. Val109Asp polymorphism in exon 4 of the omentin gene was assessed by the polymerase chain reaction-restriction fragment length polymorphism method. Genotypes were determined according to the bands formed in agarose electrophoresis gels. In the statistical analysis, the level of significance was set at P < 0.05. RESULTS The serum omentin levels of the patients with psoriasis (354.2 ± 152.0) were found to be significantly lower than those in the control group (488.7 ± 190.3) (P = 0.001). A moderate level negative correlation was determined between serum omentin level and body mass index and waist circumference. No significant differences were observed between the patient and control groups in terms of the genotype and allele frequency of Val109Asp polymorphism in exon 4 of the omentin gene (P > 0.05). CONCLUSIONS Omentin serum levels were determined to be low in patients with psoriasis. No significant difference was found regarding Val109Asp polymorphism of the omentin gene. To the best of our knowledge, our study is the first clinical study to examine the relationship between psoriasis and omentin in terms of serum and genomic levels.
Collapse
Affiliation(s)
- Hakan Turan
- Department of Dermatology, Duzce University Medical Faculty, Duzce, Turkey
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Belhacéne N, Gamas P, Gonçalvès D, Jacquin M, Beneteau M, Jacquel A, Colosetti P, Ricci JE, Wakkach A, Auberger P, Marchetti S. Severe thymic atrophy in a mouse model of skin inflammation accounts for impaired TNFR1 signaling. PLoS One 2012; 7:e47321. [PMID: 23071785 PMCID: PMC3469485 DOI: 10.1371/journal.pone.0047321] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 09/14/2012] [Indexed: 12/05/2022] Open
Abstract
Transgenic mice expressing the caspase-cleaved form of the tyrosine kinase Lyn (LynΔN) develop a TNFα-dependent skin disease that accurately recapitulates human psoriasis. Participation of lymphocytes in this disease was confirmed by backcrossing LynΔN mice on a Rag-1 deficient background. The present study was therefore conducted to analyze whether modification of lymphocyte homeostasis does occur and participate in the phenotype of LynΔN mice. We show here that LynΔN mice consistently exhibit thymic atrophy that correlates with both a net decrease in the CD4+/CD8+ Double Positive (DP) and an increase in Single Positive (SP) thymocyte sub-populations, but also display an increase of splenic mature B cell. Interestingly, a normal immune phenotype was rescued in a TNFR1 deficient background. Finally, none of these immune alterations was detected in newborn mice before the onset of inflammation. Therefore, we conclude that chronic inflammation can induce thymic atrophy and perturb spleen homeostasis in LynΔN mice through the increased production of TNFα, LTß and TNFR1 signaling.
Collapse
Affiliation(s)
- Nathalie Belhacéne
- Inserm, UMR 1065, Centre Méditerranéen de Médecine Moléculaire, Team «Cell death, differentiation, inflammation and cancer», Nice, France
- Université de Nice Sophia Antipolis, Faculté de Médecine, Nice, France
- Equipe labellisée par la Ligue Nationale Contre le Cancer 2011–2013, Paris, France
| | - Parvati Gamas
- Inserm, UMR 1065, Centre Méditerranéen de Médecine Moléculaire, Team «Cell death, differentiation, inflammation and cancer», Nice, France
- Université de Nice Sophia Antipolis, Faculté de Médecine, Nice, France
- Equipe labellisée par la Ligue Nationale Contre le Cancer 2011–2013, Paris, France
| | - Diogo Gonçalvès
- Inserm, UMR 1065, Centre Méditerranéen de Médecine Moléculaire, Team «Cell death, differentiation, inflammation and cancer», Nice, France
- Université de Nice Sophia Antipolis, Faculté de Médecine, Nice, France
- Equipe labellisée par la Ligue Nationale Contre le Cancer 2011–2013, Paris, France
| | - Marie Jacquin
- Inserm, UMR 1065, Centre Méditerranéen de Médecine Moléculaire, Team «Metabolic control of cell deaths», Nice, France
- Université de Nice Sophia Antipolis, Faculté de Médecine, Nice, France
| | - Marie Beneteau
- Inserm, UMR 1065, Centre Méditerranéen de Médecine Moléculaire, Team «Metabolic control of cell deaths», Nice, France
- Université de Nice Sophia Antipolis, Faculté de Médecine, Nice, France
| | - Arnaud Jacquel
- Inserm, UMR 1065, Centre Méditerranéen de Médecine Moléculaire, Team «Cell death, differentiation, inflammation and cancer», Nice, France
- Université de Nice Sophia Antipolis, Faculté de Médecine, Nice, France
- Equipe labellisée par la Ligue Nationale Contre le Cancer 2011–2013, Paris, France
| | - Pascal Colosetti
- Inserm, UMR 1065, Centre Méditerranéen de Médecine Moléculaire, Team «Cell death, differentiation, inflammation and cancer», Nice, France
- Université de Nice Sophia Antipolis, Faculté de Médecine, Nice, France
- Equipe labellisée par la Ligue Nationale Contre le Cancer 2011–2013, Paris, France
| | - Jean-Ehrland Ricci
- Inserm, UMR 1065, Centre Méditerranéen de Médecine Moléculaire, Team «Metabolic control of cell deaths», Nice, France
- Université de Nice Sophia Antipolis, Faculté de Médecine, Nice, France
| | - Abdellilah Wakkach
- CNRS, FRE 3472, LP2M, Nice, France
- Université de Nice Sophia Antipolis, Faculté de Médecine, Nice, France
| | - Patrick Auberger
- Inserm, UMR 1065, Centre Méditerranéen de Médecine Moléculaire, Team «Cell death, differentiation, inflammation and cancer», Nice, France
- Université de Nice Sophia Antipolis, Faculté de Médecine, Nice, France
- Equipe labellisée par la Ligue Nationale Contre le Cancer 2011–2013, Paris, France
| | - Sandrine Marchetti
- Inserm, UMR 1065, Centre Méditerranéen de Médecine Moléculaire, Team «Cell death, differentiation, inflammation and cancer», Nice, France
- Université de Nice Sophia Antipolis, Faculté de Médecine, Nice, France
- Equipe labellisée par la Ligue Nationale Contre le Cancer 2011–2013, Paris, France
- * E-mail:
| |
Collapse
|
14
|
Ingley E. Functions of the Lyn tyrosine kinase in health and disease. Cell Commun Signal 2012; 10:21. [PMID: 22805580 PMCID: PMC3464935 DOI: 10.1186/1478-811x-10-21] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 07/04/2012] [Indexed: 12/24/2022] Open
Abstract
Src family kinases such as Lyn are important signaling intermediaries, relaying and modulating different inputs to regulate various outputs, such as proliferation, differentiation, apoptosis, migration and metabolism. Intriguingly, Lyn can mediate both positive and negative signaling processes within the same or different cellular contexts. This duality is exemplified by the B-cell defect in Lyn-/- mice in which Lyn is essential for negative regulation of the B-cell receptor; conversely, B-cells expressing a dominant active mutant of Lyn (Lynup/up) have elevated activities of positive regulators of the B-cell receptor due to this hyperactive kinase. Lyn has well-established functions in most haematopoietic cells, viz. progenitors via influencing c-kit signaling, through to mature cell receptor/integrin signaling, e.g. erythrocytes, platelets, mast cells and macrophages. Consequently, there is an important role for this kinase in regulating hematopoietic abnormalities. Lyn is an important regulator of autoimmune diseases such as asthma and psoriasis, due to its profound ability to influence immune cell signaling. Lyn has also been found to be important for maintaining the leukemic phenotype of many different liquid cancers including acute myeloid leukaemia (AML), chronic myeloid leukaemia (CML) and B-cell lymphocytic leukaemia (BCLL). Lyn is also expressed in some solid tumors and here too it is establishing itself as a potential therapeutic target for prostate, glioblastoma, colon and more aggressive subtypes of breast cancer. LAY To relay information, a cell uses enzymes that put molecular markers on specific proteins so they interact with other proteins or move to specific parts of the cell to have particular functions. A protein called Lyn is one of these enzymes that regulate information transfer within cells to modulate cell growth, survival and movement. Depending on which type of cell and the source of the information input, Lyn can positively or negatively regulate the information output. This ability of Lyn to be able to both turn on and turn off the relay of information inside cells makes it difficult to fully understand its precise function in each specific circumstance. Lyn has important functions for cells involved in blood development, including different while blood cells as well as red blood cells, and in particular for the immune cells that produce antibodies (B-cells), as exemplified by the major B-cell abnormalities that mice with mutations in the Lyn gene display. Certain types of leukaemia and lymphoma appear to have too much Lyn activity that in part causes the characteristics of these diseases, suggesting it may be a good target to develop new anti-leukaemia drugs. Furthermore, some specific types, and even specific subtypes, of solid cancers, e.g. prostate, brain and breast cancer can also have abnormal regulation of Lyn. Consequently, targeting this protein in these cancers could also prove to be beneficial.
Collapse
Affiliation(s)
- Evan Ingley
- Cell Signalling Group, Laboratory for Cancer Medicine, Western Australian Institute for Medical Research, Centre for Medical Research, The University of Western Australia, Rear 50 Murray Street, Perth, WA, 6000, Australia.
| |
Collapse
|
15
|
The caspase 6 derived N-terminal fragment of DJ-1 promotes apoptosis via increased ROS production. Cell Death Differ 2012; 19:1769-78. [PMID: 22555455 DOI: 10.1038/cdd.2012.55] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In pathological conditions, the amount of DJ-1 determines whether a cell can survive or engage a cell death program. This is exemplified in epithelial cancers, in which DJ-1 expression is increased, while autosomal recessive early onset Parkinson's disease mutations of DJ-1 generally lead to decreased stability and expression of the protein. We have shown previously that DJ-1 is cleaved by caspase-6 during induction of apoptosis. We demonstrate here that the N-terminal cleaved fragment of DJ-1 (DJ-1 Nt) is specifically expressed in the nucleus and promotes apoptosis in SH-SY5Y neuroblastoma cell lines. In addition, overexpression of DJ-1 Nt in different cell lines leads to a loss of clonogenic potential and sensitizes to staurosporin and 1-methyl-4-phenylpyridinium (MPP+)-mediated caspase activation and apoptosis. Importantly, inhibition of endogenous DJ-1 expression with sh-RNA or DJ-1 deficiency mimics the effect of DJ-1 Nt on cell growth and apoptosis. Moreover, overexpression of DJ-1 Nt increases reactive oxygen species (ROS) production, and sensitizes to MPP+-mediated apoptosis and DJ-1 oxidation. Finally, specific exclusion of DJ-1 Nt from the nucleus abrogates its pro-apoptotic effect. Taken together, our findings identify an original pathway by which generation of a nuclear fragment of DJ-1 through caspase 6-mediated cleavage induces ROS-dependent amplification of apoptosis.
Collapse
|
16
|
Derakhshan N. NFκB inhibitors as a potential novel hypothesized treatment for psoriasis. SAO PAULO MED J 2011; 129:433-4. [PMID: 22249801 PMCID: PMC10868927 DOI: 10.1590/s1516-31802011000600011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Revised: 06/16/2011] [Accepted: 06/16/2011] [Indexed: 11/21/2022] Open
Affiliation(s)
- Nima Derakhshan
- MD. Research Associate, Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
17
|
Glycolysis inhibition sensitizes tumor cells to death receptors-induced apoptosis by AMP kinase activation leading to Mcl-1 block in translation. Oncogene 2009; 29:1641-52. [PMID: 19966861 DOI: 10.1038/onc.2009.448] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Most cancer cells exhibit increased glycolysis for generation of their energy supply. This specificity could be used to preferentially kill these cells. In this study, we identified the signaling pathway initiated by glycolysis inhibition that results in sensitization to death receptor (DR)-induced apoptosis. We showed, in several human cancer cell lines (such as Jurkat, HeLa, U937), that glucose removal or the use of nonmetabolizable form of glucose (2-deoxyglucose) dramatically enhances apoptosis induced by Fas or by tumor necrosis factor-related apoptosis-inducing ligand. This sensitization is controlled through the adenosine monophosphate (AMP)-activated protein kinase (AMPK), which is the central energy-sensing system of the cell. We established the fact that AMPK is activated upon glycolysis block resulting in mammalian target of rapamycin (mTOR) inhibition leading to Mcl-1 decrease, but no other Bcl-2 anti-apoptotic members. Interestingly, we determined that, upon glycolysis inhibition, the AMPK-mTOR pathway controlled Mcl-1 levels neither through transcriptional nor through posttranslational mechanism but rather by controlling its translation. Therefore, our results show a novel mechanism for the sensitization to DR-induced apoptosis linking glucose metabolism to Mcl-1 downexpression. In addition, this study provides a rationale for the combined use of DR ligands with AMPK activators or mTOR inhibitors in the treatment of human cancers.
Collapse
|