1
|
Arat Çelik HE, Yılmaz S, Akşahin İC, Kök Kendirlioğlu B, Çörekli E, Dal Bekar NE, Çelik ÖF, Yorguner N, Targıtay Öztürk B, İşlekel H, Özerdem A, Akan P, Ceylan D, Tuna G. Oxidatively-induced DNA base damage and base excision repair abnormalities in siblings of individuals with bipolar disorder DNA damage and repair in bipolar disorder. Transl Psychiatry 2024; 14:207. [PMID: 38789433 PMCID: PMC11126633 DOI: 10.1038/s41398-024-02901-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 05/26/2024] Open
Abstract
Previous evidence suggests elevated levels of oxidatively-induced DNA damage, particularly 8-hydroxy-2'-deoxyguanosine (8-OH-dG), and abnormalities in the repair of 8-OH-dG by the base excision repair (BER) in bipolar disorder (BD). However, the genetic disposition of these abnormalities remains unknown. In this study, we aimed to investigate the levels of oxidatively-induced DNA damage and BER mechanisms in individuals with BD and their siblings, as compared to healthy controls (HCs). 46 individuals with BD, 41 siblings of individuals with BD, and 51 HCs were included in the study. Liquid chromatography-tandem mass spectrometry was employed to evaluate the levels of 8-OH-dG in urine, which were then normalized based on urine creatinine levels. The real-time-polymerase chain reaction was used to measure the expression levels of 8-oxoguanine DNA glycosylase 1 (OGG1), apurinic/apyrimidinic endonuclease 1 (APE1), poly ADP-ribose polymerase 1 (PARP1), and DNA polymerase beta (POLβ). The levels of 8-OH-dG were found to be elevated in both individuals with BD and their siblings when compared to the HCs. The OGG1 and APE1 expressions were downregulated, while POLβ expressions were upregulated in both the patient and sibling groups compared to the HCs. Age, smoking status, and the number of depressive episodes had an impact on APE1 expression levels in the patient group while body mass index, smoking status, and past psychiatric history had an impact on 8-OH-dG levels in siblings. Both individuals with BD and unaffected siblings presented similar abnormalities regarding oxidatively-induced DNA damage and BER, suggesting a link between abnormalities in DNA damage/BER mechanisms and familial susceptibility to BD. Our findings suggest that targeting the oxidatively-induced DNA damage and BER pathway could offer promising therapeutic strategies for reducing the risk of age-related diseases and comorbidities in individuals with a genetic predisposition to BD.
Collapse
Affiliation(s)
| | - Selda Yılmaz
- Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - İzel Cemre Akşahin
- Graduate School of Health Sciences, Koc University, Istanbul, Turkey
- Research Center for Translational Medicine (KUTTAM), School of Medicine, Koc University, Istanbul, Turkey
| | | | - Esma Çörekli
- Department of Psychiatry, School of Medicine, Maltepe University, Istanbul, Turkey
| | - Nazlı Ecem Dal Bekar
- Chair of Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Ömer Faruk Çelik
- Department of Medical Biochemistry, Sancaktepe Sehit Prof. Dr. Ilhan Varank Training and Research Hospital, Istanbul, Turkey
| | - Neşe Yorguner
- Department of Psychiatry, School of Medicine, Marmara University, Istanbul, Turkey
| | | | - Hüray İşlekel
- Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
- Department of Medical Biochemistry, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Ayşegül Özerdem
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Pınar Akan
- Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
- BioIzmir - Izmir Health Technologies Development and Accelerator Research and Application Center, Dokuz Eylul University, Izmir, Turkey
| | - Deniz Ceylan
- Research Center for Translational Medicine (KUTTAM), School of Medicine, Koc University, Istanbul, Turkey.
- Department of Psychiatry, School of Medicine, Koc University, Istanbul, Turkey.
| | - Gamze Tuna
- Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
- BioIzmir - Izmir Health Technologies Development and Accelerator Research and Application Center, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
2
|
Kladova OA, Tyugashev TE, Yakimov DV, Mikushina ES, Novopashina DS, Kuznetsov NA, Kuznetsova AA. The Impact of SNP-Induced Amino Acid Substitutions L19P and G66R in the dRP-Lyase Domain of Human DNA Polymerase β on Enzyme Activities. Int J Mol Sci 2024; 25:4182. [PMID: 38673769 PMCID: PMC11050361 DOI: 10.3390/ijms25084182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Base excision repair (BER), which involves the sequential activity of DNA glycosylases, apurinic/apyrimidinic endonucleases, DNA polymerases, and DNA ligases, is one of the enzymatic systems that preserve the integrity of the genome. Normal BER is effective, but due to single-nucleotide polymorphisms (SNPs), the enzymes themselves-whose main function is to identify and eliminate damaged bases-can undergo amino acid changes. One of the enzymes in BER is DNA polymerase β (Polβ), whose function is to fill gaps in DNA. SNPs can significantly affect the catalytic activity of an enzyme by causing an amino acid substitution. In this work, pre-steady-state kinetic analyses and molecular dynamics simulations were used to examine the activity of naturally occurring variants of Polβ that have the substitutions L19P and G66R in the dRP-lyase domain. Despite the substantial distance between the dRP-lyase domain and the nucleotidyltransferase active site, it was found that the capacity to form a complex with DNA and with an incoming dNTP is significantly altered by these substitutions. Therefore, the lower activity of the tested polymorphic variants may be associated with a greater number of unrepaired DNA lesions.
Collapse
Affiliation(s)
- Olga A. Kladova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia (N.A.K.)
| | - Timofey E. Tyugashev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia (N.A.K.)
| | - Denis V. Yakimov
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Elena S. Mikushina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia (N.A.K.)
| | - Daria S. Novopashina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia (N.A.K.)
| | - Nikita A. Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia (N.A.K.)
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Aleksandra A. Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia (N.A.K.)
| |
Collapse
|
3
|
Sobol RW. Mouse models to explore the biological and organismic role of DNA polymerase beta. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65 Suppl 1:57-71. [PMID: 38619421 PMCID: PMC11027944 DOI: 10.1002/em.22593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/16/2024]
Abstract
Gene knock-out (KO) mouse models for DNA polymerase beta (Polβ) revealed that loss of Polβ leads to neonatal lethality, highlighting the critical organismic role for this DNA polymerase. While biochemical analysis and gene KO cell lines have confirmed its biochemical role in base excision repair and in TET-mediated demethylation, more long-lived mouse models continue to be developed to further define its organismic role. The Polb-KO mouse was the first of the Cre-mediated tissue-specific KO mouse models. This technology was exploited to investigate roles for Polβ in V(D)J recombination (variable-diversity-joining rearrangement), DNA demethylation, gene complementation, SPO11-induced DNA double-strand break repair, germ cell genome stability, as well as neuronal differentiation, susceptibility to genotoxin-induced DNA damage, and cancer onset. The revolution in knock-in (KI) mouse models was made possible by CRISPR/cas9-mediated gene editing directly in C57BL/6 zygotes. This technology has helped identify phenotypes associated with germline or somatic mutants of Polβ. Such KI mouse models have helped uncover the importance of key Polβ active site residues or specific Polβ enzyme activities, such as the PolbY265C mouse that develops lupus symptoms. More recently, we have used this KI technology to mutate the Polb gene with two codon changes, yielding the PolbL301R/V303R mouse. In this KI mouse model, the expressed Polβ protein cannot bind to its obligate heterodimer partner, Xrcc1. Although the expressed mutant Polβ protein is proteolytically unstable and defective in recruitment to sites of DNA damage, the homozygous PolbL301R/V303R mouse is viable and fertile, yet small in stature. We expect that this and additional targeted mouse models under development are poised to reveal new biological and organismic roles for Polβ.
Collapse
Affiliation(s)
- Robert W. Sobol
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912
| |
Collapse
|
4
|
Koczor CA, Thompson MK, Sharma N, Prakash A, Sobol RW. Polβ/XRCC1 heterodimerization dictates DNA damage recognition and basal Polβ protein levels without interfering with mouse viability or fertility. DNA Repair (Amst) 2023; 123:103452. [PMID: 36702010 PMCID: PMC9992099 DOI: 10.1016/j.dnarep.2023.103452] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/07/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
DNA Polymerase β (Polβ) performs two critical enzymatic steps during base excision repair (BER) - gap filling (nucleotidyl transferase activity) and gap tailoring (dRP lyase activity). X-ray repair cross complementing 1 (XRCC1) facilitates the recruitment of Polβ to sites of DNA damage through an evolutionarily conserved Polβ/XRCC1 interaction interface, the V303 loop. While previous work describes the importance of the Polβ/XRCC1 interaction for human Polβ protein stability and recruitment to sites of DNA damage, the impact of disrupting the Polβ/XRCC1 interface on animal viability, physiology, and fertility is unknown. Here, we characterized the effect of disrupting Polβ/XRCC1 heterodimerization in mice and mouse cells by complimentary approaches. First, we demonstrate, via laser micro-irradiation, that mouse Polβ amino acid residues L301 and V303 are critical to facilitating Polβ recruitment to sites of DNA damage. Next, we solved the crystal structures of mouse wild type Polβ and a mutant protein harboring alterations in residues L301 and V303 (L301R/V303R). Our structural analyses suggest that Polβ amino acid residue V303 plays a role in maintaining an interaction with the oxidized form of XRCC1. Finally, we created CRISPR/Cas9-modified Polb mice with homozygous L301R/V303R mutations (PolbL301R-V303R/L301R-V303R) that are fertile yet exhibit 15% reduced body weight at 17 weeks of age, as compared to heterozygous mice. Fibroblasts derived from PolbL301R-V303R/L301R-V303R mice demonstrate that mutation of mouse Polβ's XRCC1 interaction domain leads to an ∼85% decrease in Polβ protein levels. In all, these studies are consistent with a role for the oxidized form of XRCC1 in providing stability to the Polβ protein through Polβ/XRCC1 heterodimer formation.
Collapse
Affiliation(s)
- Christopher A Koczor
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Marlo K Thompson
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Nidhi Sharma
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Aishwarya Prakash
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA.
| | - Robert W Sobol
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
5
|
Huang Y, Roig I. Genetic control of meiosis surveillance mechanisms in mammals. Front Cell Dev Biol 2023; 11:1127440. [PMID: 36910159 PMCID: PMC9996228 DOI: 10.3389/fcell.2023.1127440] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Meiosis is a specialized cell division that generates haploid gametes and is critical for successful sexual reproduction. During the extended meiotic prophase I, homologous chromosomes progressively pair, synapse and desynapse. These chromosomal dynamics are tightly integrated with meiotic recombination (MR), during which programmed DNA double-strand breaks (DSBs) are formed and subsequently repaired. Consequently, parental chromosome arms reciprocally exchange, ultimately ensuring accurate homolog segregation and genetic diversity in the offspring. Surveillance mechanisms carefully monitor the MR and homologous chromosome synapsis during meiotic prophase I to avoid producing aberrant chromosomes and defective gametes. Errors in these critical processes would lead to aneuploidy and/or genetic instability. Studies of mutation in mouse models, coupled with advances in genomic technologies, lead us to more clearly understand how meiosis is controlled and how meiotic errors are linked to mammalian infertility. Here, we review the genetic regulations of these major meiotic events in mice and highlight our current understanding of their surveillance mechanisms. Furthermore, we summarize meiotic prophase genes, the mutations that activate the surveillance system leading to meiotic prophase arrest in mouse models, and their corresponding genetic variants identified in human infertile patients. Finally, we discuss their value for the diagnosis of causes of meiosis-based infertility in humans.
Collapse
Affiliation(s)
- Yan Huang
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Histology Unit, Department of Cell Biology, Physiology, and Immunology, Cytology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ignasi Roig
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Histology Unit, Department of Cell Biology, Physiology, and Immunology, Cytology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
6
|
The Role of Natural Polymorphic Variants of DNA Polymerase β in DNA Repair. Int J Mol Sci 2022; 23:ijms23042390. [PMID: 35216513 PMCID: PMC8877055 DOI: 10.3390/ijms23042390] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2022] Open
Abstract
DNA polymerase β (Polβ) is considered the main repair DNA polymerase involved in the base excision repair (BER) pathway, which plays an important part in the repair of damaged DNA bases usually resulting from alkylation or oxidation. In general, BER involves consecutive actions of DNA glycosylases, AP endonucleases, DNA polymerases, and DNA ligases. It is known that protein-protein interactions of Polβ with enzymes from the BER pathway increase the efficiency of damaged base repair in DNA. However natural single-nucleotide polymorphisms can lead to a substitution of functionally significant amino acid residues and therefore affect the catalytic activity of the enzyme and the accuracy of Polβ action. Up-to-date databases contain information about more than 8000 SNPs in the gene of Polβ. This review summarizes data on the in silico prediction of the effects of Polβ SNPs on DNA repair efficacy; available data on cancers associated with SNPs of Polβ; and experimentally tested variants of Polβ. Analysis of the literature indicates that amino acid substitutions could be important for the maintenance of the native structure of Polβ and contacts with DNA; others affect the catalytic activity of the enzyme or play a part in the precise and correct attachment of the required nucleotide triphosphate. Moreover, the amino acid substitutions in Polβ can disturb interactions with enzymes involved in BER, while the enzymatic activity of the polymorphic variant may not differ significantly from that of the wild-type enzyme. Therefore, investigation regarding the effect of Polβ natural variants occurring in the human population on enzymatic activity and protein-protein interactions is an urgent scientific task.
Collapse
|
7
|
Hua K, Wang L, Sun J, Zhou N, Zhang Y, Ji F, Jing L, Yang Y, Xia W, Hu Z, Pan F, Chen X, Yao B, Guo Z. Impairment of Pol β-related DNA base-excision repair leads to ovarian aging in mice. Aging (Albany NY) 2020; 12:25207-25228. [PMID: 33223510 PMCID: PMC7803579 DOI: 10.18632/aging.104123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/31/2020] [Indexed: 01/11/2023]
Abstract
The mechanism underlying the association between age and depletion of the human ovarian follicle reserves remains uncertain. Many identified that impaired DNA polymerase β (Pol β)-mediated DNA base-excision repair (BER) drives to mouse oocyte aging. With aging, DNA lesions accumulate in primordial follicles. However, the expression of most DNA BER genes, including APE1, OGG1, XRCC1, Ligase I, Ligase α, PCNA and FEN1, remains unchanged during aging in mouse oocytes. Also, the reproductive capacity of Pol β+/- heterozygote mice was impaired, and the primordial follicle counts were lower than that of wild type (wt) mice. The DNA lesions of heterozygous mice increased. Moreover, the Pol β knockdown leads to increased DNA damage in oocytes and decreased survival rate of oocytes. Oocytes over-expressing Pol β showed that the vitality of senescent cells enhances significantly. Furthermore, serum concentrations of anti-Müllerian hormone (AMH) indicated that the ovarian reserves of young mice with Pol β germline mutations were lower than those in wt. These data show that Pol β-related DNA BER efficiency is a major factor governing oocyte aging in mice.
Collapse
Affiliation(s)
- Ke Hua
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.,Center of Reproductive Medicine, Jiaxing Maternity and Child Health Care Hospital, College of Medicine, Jiaxing University, Jiaxing 314000, China
| | - Liping Wang
- Center of Reproductive Medicine, Jiaxing Maternity and Child Health Care Hospital, College of Medicine, Jiaxing University, Jiaxing 314000, China
| | - Junhua Sun
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Nanhai Zhou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yilan Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Feng Ji
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Li Jing
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yang Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Wen Xia
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Zhigang Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Feiyan Pan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Xi Chen
- School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Bing Yao
- Center of Reproductive Medicine, Jinling Hospital, Clinical School of Medical College, Nanjing University, Jiangsu 210002, China
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
8
|
Tu Z, Mu X, Chen X, Geng Y, Zhang Y, Li Q, Gao R, Liu T, Wang Y, He J. Dibutyl phthalate exposure disrupts the progression of meiotic prophase I by interfering with homologous recombination in fetal mouse oocytes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:388-398. [PMID: 31158667 DOI: 10.1016/j.envpol.2019.05.107] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/05/2019] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
Dibutyl phthalate (DBP), one of the most widely used plasticizers, is a known environmental endocrine disruptor that impairs male and female fertility. In this study, oral administration of DBP was given to pregnant mice on 14.5 days post coitus (dpc) for 3 days; and additionally, DBP was added into the culture of 14.5 dpc fetal ovaries for 3 days. DBP exposure during gestation disturbed the progression of meiotic prophase I of mouse oocytes, specifically from the zygotene to pachytene stages. Meanwhile, the DBP-exposed pachytene oocytes showed increased homologous recombination sites and unrepaired DNA damage. Furthermore, DBP caused DNA damage by increasing oxidative stress, decreased the expression of multiple critical meiotic regulators, and consequently induced oocyte apoptosis. Moreover, the effect of DBP on meiosis I prophase involved estrogen receptors α and β. Collectively, these results demonstrated a set of meiotic defects in DBP-exposed fetal oocytes. As aberrations in homologous recombination can result in aneuploid gametes and embryos, this study provides new support for the deleterious effects of phthalates.
Collapse
Affiliation(s)
- Zhihan Tu
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, PR China
| | - Xinyi Mu
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, PR China; College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Xuemei Chen
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yanqing Geng
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, PR China; College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yan Zhang
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, PR China
| | - Qingying Li
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, PR China; College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Rufei Gao
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, PR China
| | - Taihang Liu
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, PR China; College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yingxiong Wang
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, PR China; College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Junlin He
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
9
|
Arbel‐Eden A, Simchen G. Elevated Mutagenicity in Meiosis and Its Mechanism. Bioessays 2019; 41:e1800235. [DOI: 10.1002/bies.201800235] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/31/2019] [Indexed: 12/25/2022]
Affiliation(s)
| | - Giora Simchen
- Department of GeneticsThe Hebrew University of JerusalemJerusalem 91904 Israel
| |
Collapse
|
10
|
Khan MI, Mishra A, Jha PK, Abhishek K, Chaba R, Das P, Sinha KK. DNA polymerase β of Leishmania donovani is important for infectivity and it protects the parasite against oxidative damage. Int J Biol Macromol 2019; 124:291-303. [DOI: 10.1016/j.ijbiomac.2018.11.159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 01/22/2023]
|
11
|
Singh V, Jaiswal D, Singh K, Trivedi S, Agrawal NK, Gupta G, Rajender S, Singh K. Azoospermic infertility is associated with altered expression of DNA repair genes. DNA Repair (Amst) 2019; 75:39-47. [DOI: 10.1016/j.dnarep.2019.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 10/27/2022]
|
12
|
Repair of exogenous DNA double-strand breaks promotes chromosome synapsis in SPO11-mutant mouse meiocytes, and is altered in the absence of HORMAD1. DNA Repair (Amst) 2018; 63:25-38. [PMID: 29414051 DOI: 10.1016/j.dnarep.2018.01.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 11/22/2022]
Abstract
Repair of SPO11-dependent DNA double-strand breaks (DSBs) via homologous recombination (HR) is essential for stable homologous chromosome pairing and synapsis during meiotic prophase. Here, we induced radiation-induced DSBs to study meiotic recombination and homologous chromosome pairing in mouse meiocytes in the absence of SPO11 activity (Spo11YF/YF model), and in the absence of both SPO11 and HORMAD1 (Spo11/Hormad1 dko). Within 30 min after 5 Gy irradiation of Spo11YF/YF mice, 140-160 DSB repair foci were detected, which specifically localized to the synaptonemal complex axes. Repair of radiation-induced DSBs was incomplete in Spo11YF/YF compared to Spo11+/YF meiocytes. Still, repair of exogenous DSBs promoted partial recovery of chromosome pairing and synapsis in Spo11YF/YF meiocytes. This indicates that at least part of the exogenous DSBs can be processed in an interhomolog recombination repair pathway. Interestingly, in a seperate experiment, using 3 Gy of irradiation, we observed that Spo11/Hormad1 dko spermatocytes contained fewer remaining DSB repair foci at 48 h after irradiation compared to irradiated Spo11 knockout spermatocytes. Together, these results show that recruitment of exogenous DSBs to the synaptonemal complex, in conjunction with repair of exogenous DSBs via the homologous chromosome, contributes to homology recognition. In addition, the data suggest a role for HORMAD1 in DNA repair pathway choice in mouse meiocytes.
Collapse
|
13
|
Sihi S, Maiti S, Bakshi S, Nayak A, Chaudhuri S, Sengupta DN. Understanding the role of DNA polymerase λ gene in different growth and developmental stages of Oryza sativa L. indica rice cultivars. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 120:156-168. [PMID: 29031161 DOI: 10.1016/j.plaphy.2017.09.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 09/29/2017] [Accepted: 09/29/2017] [Indexed: 06/07/2023]
Abstract
DNA polymerase λ (Pol λ) is the only member of DNA polymerase family X present in plants. The enzyme is ddNTP sensitive as it contains the conserved C-terminal Pol β domain. The 1.1 kb partial coding sequence isolated spanned the whole 3' regions of the gene containing functionally important domains of the Pol λ gene. Comparative in silico studies from both indica and japonica cultivars involving homology modelling showed that the model for the partial Pol λ gene was stable and acceptable. The alignment of both the protein models showed a RMS value of 0.783. Apart from this, expression of Pol λ and its relative activity is studied during different development stages of three different indica rice cultivars (IR29, Nonabokra and N22). Enhanced accumulation and higher activity of Pol λ during the early seedling stage was detected. Higher expression and activity were observed in the anthers, which was probably necessary for DNA repair during microspore formation. However, during the maturation stage of seed development and plant growth, expression and the activity of Pol λ decreased due to slow metabolic activity and a reduced rate of cell division respectively. Furthermore, the expression and activity of Pol λ were found to be higher in IR29 in comparison to Nonabokra and N22. IR29 is a rice cultivar susceptible to environmental stresses and hence it encounters higher DNA damages. The enhanced presence and activity of the Pol λ enzyme in IR29 with respect to the other two cultivars, which are more tolerant to the environmental stresses during various developmental stages, is therefore explainable.
Collapse
Affiliation(s)
- Sayantani Sihi
- Division of Plant Biology, Bose Institute, 93/1 A.P.C. Road, Kolkata 700009, India
| | - Soumitra Maiti
- Division of Plant Biology, Bose Institute, 93/1 A.P.C. Road, Kolkata 700009, India
| | - Sankar Bakshi
- Vidyasagar College for Women, 39 Sankar Ghosh Lane Kolkata 700006, India
| | - Arup Nayak
- Division of Plant Biology, Bose Institute, 93/1 A.P.C. Road, Kolkata 700009, India
| | - Shubho Chaudhuri
- Division of Plant Biology, Bose Institute, P-1/12, C.I.T. Scheme VIIM, Kankurgachi, Kolkata 700054, West Bengal, India
| | | |
Collapse
|
14
|
Zafar MK, Eoff RL. Translesion DNA Synthesis in Cancer: Molecular Mechanisms and Therapeutic Opportunities. Chem Res Toxicol 2017; 30:1942-1955. [PMID: 28841374 DOI: 10.1021/acs.chemrestox.7b00157] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The genomic landscape of cancer is one marred by instability, but the mechanisms that underlie these alterations are multifaceted and remain a topic of intense research. Cellular responses to DNA damage and/or replication stress can affect genome stability in tumors and influence the response of patients to therapy. In addition to direct repair, DNA damage tolerance (DDT) is an element of genomic maintenance programs that contributes to the etiology of several types of cancer. DDT mechanisms primarily act to resolve replication stress, and this can influence the effectiveness of genotoxic drugs. Translesion DNA synthesis (TLS) is an important component of DDT that facilitates direct bypass of DNA adducts and other barriers to replication. The central role of TLS in the bypass of drug-induced DNA lesions, the promotion of tumor heterogeneity, and the involvement of these enzymes in the maintenance of the cancer stem cell niche presents an opportunity to leverage inhibition of TLS as a way of improving existing therapies. In the review that follows, we summarize mechanisms of DDT, misregulation of TLS in cancer, and discuss the potential for targeting these pathways as a means of improving cancer therapies.
Collapse
Affiliation(s)
- Maroof K Zafar
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| | - Robert L Eoff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| |
Collapse
|
15
|
Crichton JH, Playfoot CJ, MacLennan M, Read D, Cooke HJ, Adams IR. Tex19.1 promotes Spo11-dependent meiotic recombination in mouse spermatocytes. PLoS Genet 2017; 13:e1006904. [PMID: 28708824 PMCID: PMC5533463 DOI: 10.1371/journal.pgen.1006904] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 07/28/2017] [Accepted: 07/03/2017] [Indexed: 11/18/2022] Open
Abstract
Meiosis relies on the SPO11 endonuclease to generate the recombinogenic DNA double strand breaks (DSBs) required for homologous chromosome synapsis and segregation. The number of meiotic DSBs needs to be sufficient to allow chromosomes to search for and find their homologs, but not excessive to the point of causing genome instability. Here we report that the mammal-specific gene Tex19.1 promotes Spo11-dependent recombination in mouse spermatocytes. We show that the chromosome asynapsis previously reported in Tex19.1-/- spermatocytes is preceded by reduced numbers of recombination foci in leptotene and zygotene. Tex19.1 is required for normal levels of early Spo11-dependent recombination foci during leptotene, but not for upstream events such as MEI4 foci formation or accumulation of H3K4me3 at recombination hotspots. Furthermore, we show that mice carrying mutations in Ubr2, which encodes an E3 ubiquitin ligase that interacts with TEX19.1, phenocopy the Tex19.1-/- recombination defects. These data suggest that Tex19.1 and Ubr2 are required for mouse spermatocytes to accumulate sufficient Spo11-dependent recombination to ensure that the homology search is consistently successful, and reveal a hitherto unknown genetic pathway promoting meiotic recombination in mammals.
Collapse
Affiliation(s)
- James H. Crichton
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Christopher J. Playfoot
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Marie MacLennan
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - David Read
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Howard J. Cooke
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Ian R. Adams
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| |
Collapse
|
16
|
Li S, Shu FJ, Li Z, Jaafar L, Zhao S, Dynan WS. Cell-type specific role of the RNA-binding protein, NONO, in the DNA double-strand break response in the mouse testes. DNA Repair (Amst) 2017; 51:70-78. [PMID: 28209515 DOI: 10.1016/j.dnarep.2017.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/22/2016] [Accepted: 02/04/2017] [Indexed: 01/03/2023]
Abstract
The tandem RNA recognition motif protein, NONO, was previously identified as a candidate DNA double-strand break (DSB) repair factor in a biochemical screen for proteins with end-joining stimulatory activity. Subsequent work showed that NONO and its binding partner, SFPQ, have many of the properties expected for bona fide repair factors in cell-based assays. Their contribution to the DNA damage response in intact tissue in vivo has not, however, been demonstrated. Here we compare DNA damage sensitivity in the testes of wild-type mice versus mice bearing a null allele of the NONO homologue (Nono gt). In wild-type mice, NONO protein was present in Sertoli, peritubular myoid, and interstitial cells, with an increase in expression following induction of DNA damage. As expected for the product of an X-linked gene, NONO was not detected in germ cells. The Nono gt/0 mice had at most a mild testis developmental phenotype in the absence of genotoxic stress. However, following irradiation at sublethal, 2-4 Gy doses, Nono gt/0 mice displayed a number of indicators of radiosensitivity as compared to their wild-type counterparts. These included higher levels of persistent DSB repair foci, increased numbers of apoptotic cells in the seminiferous tubules, and partial degeneration of the blood-testis barrier. There was also an almost complete loss of germ cells at later times following irradiation, evidently arising as an indirect effect reflecting loss of stromal support. Results demonstrate a role for NONO protein in protection against direct and indirect biological effects of ionizing radiation in the whole animal.
Collapse
Affiliation(s)
- Shuyi Li
- Departments of Biochemistry and Radiation Oncology, Emory University School of Medicine, 4127 Rollins Research Center,1510 Clifton Rd. NE, Atlanta, GA 30322, USA.
| | - Feng-Jue Shu
- Departments of Biochemistry and Radiation Oncology, Emory University School of Medicine, 4127 Rollins Research Center,1510 Clifton Rd. NE, Atlanta, GA 30322, USA
| | - Zhentian Li
- Departments of Biochemistry and Radiation Oncology, Emory University School of Medicine, 4127 Rollins Research Center,1510 Clifton Rd. NE, Atlanta, GA 30322, USA
| | - Lahcen Jaafar
- Departments of Biochemistry and Radiation Oncology, Emory University School of Medicine, 4127 Rollins Research Center,1510 Clifton Rd. NE, Atlanta, GA 30322, USA
| | - Shourong Zhao
- Columbus Pathology,710 Center Street 101, Columbus, GA 31901, USA
| | - William S Dynan
- Departments of Biochemistry and Radiation Oncology, Emory University School of Medicine, 4127 Rollins Research Center,1510 Clifton Rd. NE, Atlanta, GA 30322, USA.
| |
Collapse
|
17
|
Wang Y, Chen X, Sun Q, Zang W, Li M, Dong Z, Zhao G. Overexpression of A613T and G462T variants of DNA polymerase β weakens chemotherapy sensitivity in esophageal cancer cell lines. Cancer Cell Int 2016; 16:85. [PMID: 27843412 PMCID: PMC5103481 DOI: 10.1186/s12935-016-0362-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 11/07/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human DNA polymerase β (polβ) is a small monomeric protein that is essential for short-patch base excision repair. It plays an important role in regulating the sensitivity of tumor cells to chemotherapy. METHODS We evaluated the mutation of polβ in a larger cohort of esophageal cancer (EC) patients by RT-PCR and sequencing analysis. The function of the mutation was evaluated by CCK-8, in vivo tumor growth, and flow cytometry assays. RESULTS There are 229 patients with the polβ mutation, 18 patients with A613T mutation, 12 patients with G462T mutation among 538 ECs. Analysis results of survival time showed that EC patients with A613T, G462T mutation had a shorter survival than the others (P < 0.05). CCK-8 and flow cytometry assays results showed the A613T, G462T EC9706 cells were less sensitive than WT cells to 5-FU and cisplatin (P < 0.05). Experiments results in vivo showed that the tumor sizes of A613T and G462T group were larger than WT and polβ-/- groups (P < 0.05). CONCLUSIONS In this study, we discovered A to T point mutation at nucleotide 613 (A613T) and G to T point mutation at nucleotide 462 (G462T) in the polβ gene through 538 EC patients cohort study. A613T and G462T variant of DNA polymerase β weaken chemotherapy sensitivity of esophageal cancer.
Collapse
Affiliation(s)
- Yuanyuan Wang
- School of Basic Medical Sciences, Zhengzhou University, No.100 Kexue Road, 450001 Zhengzhou, Henan China
| | - Xiaonan Chen
- School of Basic Medical Sciences, Zhengzhou University, No.100 Kexue Road, 450001 Zhengzhou, Henan China
| | - Qianqian Sun
- School of Basic Medical Sciences, Zhengzhou University, No.100 Kexue Road, 450001 Zhengzhou, Henan China
| | - Wenqiao Zang
- School of Basic Medical Sciences, Zhengzhou University, No.100 Kexue Road, 450001 Zhengzhou, Henan China
| | - Min Li
- School of Basic Medical Sciences, Zhengzhou University, No.100 Kexue Road, 450001 Zhengzhou, Henan China
| | - Ziming Dong
- School of Basic Medical Sciences, Zhengzhou University, No.100 Kexue Road, 450001 Zhengzhou, Henan China.,Collaborative Innovation Center of Cancer Chemoprevention of Henan, 450001 Zhengzhou, Henan China
| | - Guoqiang Zhao
- School of Basic Medical Sciences, Zhengzhou University, No.100 Kexue Road, 450001 Zhengzhou, Henan China.,Collaborative Innovation Center of Cancer Chemoprevention of Henan, 450001 Zhengzhou, Henan China
| |
Collapse
|
18
|
Zhang Y, Zang Q, Zhang H, Ban R, Yang Y, Iqbal F, Li A, Shi Q. DeAnnIso: a tool for online detection and annotation of isomiRs from small RNA sequencing data. Nucleic Acids Res 2016; 44:W166-75. [PMID: 27179030 PMCID: PMC4987950 DOI: 10.1093/nar/gkw427] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/05/2016] [Indexed: 12/19/2022] Open
Abstract
Small RNA (sRNA) Sequencing technology has revealed that microRNAs (miRNAs) are capable of exhibiting frequent variations from their canonical sequences, generating multiple variants: the isoforms of miRNAs (isomiRs). However, integrated tool to precisely detect and systematically annotate isomiRs from sRNA sequencing data is still in great demand. Here, we present an online tool, DeAnnIso (Detection and Annotation of IsomiRs from sRNA sequencing data). DeAnnIso can detect all the isomiRs in an uploaded sample, and can extract the differentially expressing isomiRs from paired or multiple samples. Once the isomiRs detection is accomplished, detailed annotation information, including isomiRs expression, isomiRs classification, SNPs in miRNAs and tissue specific isomiR expression are provided to users. Furthermore, DeAnnIso provides a comprehensive module of target analysis and enrichment analysis for the selected isomiRs. Taken together, DeAnnIso is convenient for users to screen for isomiRs of their interest and useful for further functional studies. The server is implemented in PHP + Perl + R and available to all users for free at: http://mcg.ustc.edu.cn/bsc/deanniso/ and http://mcg2.ustc.edu.cn/bsc/deanniso/.
Collapse
Affiliation(s)
- Yuanwei Zhang
- Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China Hefei Institute of Physical Science, China Academy of Science, Hefei 230027, China
| | - Qiguang Zang
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230027, China
| | - Huan Zhang
- Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Rongjun Ban
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230027, China
| | - Yifan Yang
- Department of statistics, University of Kentucky, Lexington, KY 40536, USA
| | - Furhan Iqbal
- Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Ao Li
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230027, China Research Centers for Biomedical Engineering, University of Science and Technology of China, Hefei 230027, China
| | - Qinghua Shi
- Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China Hefei Institute of Physical Science, China Academy of Science, Hefei 230027, China
| |
Collapse
|
19
|
Abstract
The study of homologous recombination has its historical roots in meiosis. In this context, recombination occurs as a programmed event that culminates in the formation of crossovers, which are essential for accurate chromosome segregation and create new combinations of parental alleles. Thus, meiotic recombination underlies both the independent assortment of parental chromosomes and genetic linkage. This review highlights the features of meiotic recombination that distinguish it from recombinational repair in somatic cells, and how the molecular processes of meiotic recombination are embedded and interdependent with the chromosome structures that characterize meiotic prophase. A more in-depth review presents our understanding of how crossover and noncrossover pathways of meiotic recombination are differentiated and regulated. The final section of this review summarizes the studies that have defined defective recombination as a leading cause of pregnancy loss and congenital disease in humans.
Collapse
Affiliation(s)
- Neil Hunter
- Howard Hughes Medical Institute, Department of Microbiology & Molecular Genetics, Department of Molecular & Cellular Biology, Department of Cell Biology & Human Anatomy, University of California Davis, Davis, California 95616
| |
Collapse
|
20
|
Wang Y, Sun Q, Guo W, Chen X, Du Y, Zang W, Dong Z, Zhao G. G648C variant of DNA polymerase β sensitizes esophageal cancer to chemotherapy. Tumour Biol 2015; 37:1941-7. [PMID: 26334617 DOI: 10.1007/s13277-015-3978-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 08/24/2015] [Indexed: 11/24/2022] Open
Abstract
Human DNA polymerase β (polβ) is a small monomeric protein that is essential for short-patch base excision repair. It plays an important role in regulating the sensitivity of tumor cells to chemotherapy. We have previously identified a G to C point mutation at nucleotide 648 (G648C) of polβ in esophageal cancer (EC). In this study, we evaluated the mutation of polβ in a larger cohort of EC patients by RT-PCR and sequencing analysis. The function of the mutation was evaluated by MTT, in vivo tumor growth, and flow cytometry assays. The G648C mutation occurred in 15 (3.45 %) of 435 EC patients. In addition, patients with this mutation had significantly longer survival time than those without, following postoperative chemotherapy. Cell lines with G648C mutation in polβ gene were more sensitive to treatment with 5-fluorouracil and cisplatin than those with wild-type polβ. These results suggest that polβ gene with G648C mutation in surgically resected esophagus may be clinically useful for predicting responsiveness to chemotherapy in patients with EC. The polβ gene alteration may serve as a prognostic biomarker for EC.
Collapse
Affiliation(s)
- Yuanyuan Wang
- College of Basic Medical Sciences, Zhengzhou University, No.100 Kexue Road, Zhengzhou, Henan, 450001, China.,Collaborative Innovation Center of Cancer Chemoprevention of Henan, Zhengzhou, Henan, 450001, China
| | - Qianqian Sun
- College of Basic Medical Sciences, Zhengzhou University, No.100 Kexue Road, Zhengzhou, Henan, 450001, China
| | - Wei Guo
- Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xiaonan Chen
- College of Basic Medical Sciences, Zhengzhou University, No.100 Kexue Road, Zhengzhou, Henan, 450001, China
| | - Yuwen Du
- College of Basic Medical Sciences, Zhengzhou University, No.100 Kexue Road, Zhengzhou, Henan, 450001, China
| | - Wenqiao Zang
- College of Basic Medical Sciences, Zhengzhou University, No.100 Kexue Road, Zhengzhou, Henan, 450001, China
| | - Ziming Dong
- College of Basic Medical Sciences, Zhengzhou University, No.100 Kexue Road, Zhengzhou, Henan, 450001, China.,Collaborative Innovation Center of Cancer Chemoprevention of Henan, Zhengzhou, Henan, 450001, China
| | - Guoqiang Zhao
- College of Basic Medical Sciences, Zhengzhou University, No.100 Kexue Road, Zhengzhou, Henan, 450001, China. .,Collaborative Innovation Center of Cancer Chemoprevention of Henan, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
21
|
Cell cycle regulation of human DNA repair and chromatin remodeling genes. DNA Repair (Amst) 2015; 30:53-67. [PMID: 25881042 DOI: 10.1016/j.dnarep.2015.03.007] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 03/03/2015] [Accepted: 03/20/2015] [Indexed: 01/10/2023]
Abstract
Maintenance of a genome requires DNA repair integrated with chromatin remodeling. We have analyzed six transcriptome data sets and one data set on translational regulation of known DNA repair and remodeling genes in synchronized human cells. These data are available through our new database: www.dnarepairgenes.com. Genes that have similar transcription profiles in at least two of our data sets generally agree well with known protein profiles. In brief, long patch base excision repair (BER) is enriched for S phase genes, whereas short patch BER uses genes essentially equally expressed in all cell cycle phases. Furthermore, most genes related to DNA mismatch repair, Fanconi anemia and homologous recombination have their highest expression in the S phase. In contrast, genes specific for direct repair, nucleotide excision repair, as well as non-homologous end joining do not show cell cycle-related expression. Cell cycle regulated chromatin remodeling genes were most frequently confined to G1/S and S. These include e.g. genes for chromatin assembly factor 1 (CAF-1) major subunits CHAF1A and CHAF1B; the putative helicases HELLS and ATAD2 that both co-activate E2F transcription factors central in G1/S-transition and recruit DNA repair and chromatin-modifying proteins and DNA double strand break repair proteins; and RAD54L and RAD54B involved in double strand break repair. TOP2A was consistently most highly expressed in G2, but also expressed in late S phase, supporting a role in regulating entry into mitosis. Translational regulation complements transcriptional regulation and appears to be a relatively common cell cycle regulatory mechanism for DNA repair genes. Our results identify cell cycle phases in which different pathways have highest activity, and demonstrate that periodically expressed genes in a pathway are frequently co-expressed. Furthermore, the data suggest that S phase expression and over-expression of some multifunctional chromatin remodeling proteins may set up feedback loops driving cancer cell proliferation.
Collapse
|
22
|
Enhancement of silencing DNA polymerase β on the radiotherapeutic sensitivity of human esophageal carcinoma cell lines. Tumour Biol 2014; 35:10067-74. [PMID: 25015190 DOI: 10.1007/s13277-014-2308-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/03/2014] [Indexed: 10/25/2022] Open
Abstract
Human DNA polymerase β (DNA polymeraseβ (polβ)) is a small monomeric protein which is essential for short-patch base excision repair (BER). It plays an important role in regulating the radiation sensitivity of tumor cells in the course of tumor radiation therapy. In this study, qRT-PCR and Western blot assays were used to quantify polβ expression levels in esophageal carcinoma (EC) cells that were transfected with polβ small interfering RNA (siRNA). Cell counting Kit-8 (CCK-8), flow cytometry, and Hoechst/PI stain assays were conducted to evaluate the effects of silencing polβ on the radiotherapeutic sensitivity of EC cells. We found that the expression levels of polβ in EC cells were significantly decreased after transfection with polβ siRNA. Then, we found that polβ silencing increased the sensitivity of EC cells to radiation therapy. In conclusion, our study paves the way for a better understanding of the mechanism of the polβ gene in DNA repair, and we propose that RNA interference technology will have important applications in gene therapy of EC and other cancers in the future.
Collapse
|
23
|
Ray S, Menezes MR, Senejani A, Sweasy JB. Cellular roles of DNA polymerase beta. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2013; 86:463-9. [PMID: 24348210 PMCID: PMC3848100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Since its discovery and purification in 1971, DNA polymerase ß (Pol ß) is one of the most well-studied DNA polymerases. Pol ß is a key enzyme in the base excision repair (BER) pathway that functions in gap filling DNA synthesis subsequent to the excision of damaged DNA bases. A major focus of our studies is on the cellular roles of Pol ß. We have shown that germline and tumor-associated variants of Pol ß catalyze aberrant BER that leads to genomic instability and cellular transformation. Our studies suggest that Pol ß is critical for the maintenance of genomic stability and that it is a tumor suppressor. We have also shown that Pol ß functions during Prophase I of meiosis. Pol ß localizes to the synaptonemal complex and is critical for removal of the Spo11 complex from the 5' ends of double-strand breaks. Studies with Pol ß mutant mice are currently being undertaken to more clearly understand the function of Pol ß during meiosis. In this review, we will highlight our contributions from our studies of Pol ß germline and cancer-associated variants.
Collapse
Affiliation(s)
| | | | | | - Joann B. Sweasy
- To whom all correspondence should be
addressed: Joann B. Sweasy, Department of Therapeutic Radiology, Yale School of
Medicine, 333 Cedar St., P.O. Box 208040, New Haven, CT 06520; Tele:
203-737-2626; Fax: 203-785-6309;
| |
Collapse
|
24
|
Baudat F, Imai Y, de Massy B. Meiotic recombination in mammals: localization and regulation. Nat Rev Genet 2013; 14:794-806. [PMID: 24136506 DOI: 10.1038/nrg3573] [Citation(s) in RCA: 398] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During meiosis, a programmed induction of DNA double-strand breaks (DSBs) leads to the exchange of genetic material between homologous chromosomes. These exchanges increase genome diversity and are essential for proper chromosome segregation at the first meiotic division. Recent findings have highlighted an unexpected molecular control of the distribution of meiotic DSBs in mammals by a rapidly evolving gene, PR domain-containing 9 (PRDM9), and genome-wide analyses have facilitated the characterization of meiotic DSB sites at unprecedented resolution. In addition, the identification of new players in DSB repair processes has allowed the delineation of recombination pathways that have two major outcomes, crossovers and non-crossovers, which have distinct mechanistic roles and consequences for genome evolution.
Collapse
Affiliation(s)
- Frédéric Baudat
- Institute of Human Genetics, Unité Propre de Recherche 1142, Centre National de la Recherche Scientifique, 141 rue de la Cardonille, 34396 Montpellier, France
| | | | | |
Collapse
|
25
|
Chary P, Stone MP, Lloyd RS. Sequence context modulation of polycyclic aromatic hydrocarbon-induced mutagenesis. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:652-658. [PMID: 23913516 PMCID: PMC4118935 DOI: 10.1002/em.21806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 06/13/2013] [Accepted: 06/19/2013] [Indexed: 06/02/2023]
Abstract
DNA structural perturbations that are induced by site specifically and stereospecifically defined benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE) adducts are directly correlated with mutagenesis, leading to cellular transformation. Although previous investigations had established that replication of DNAs containing N(6) -BPDE dA adducts at the second position in the N-ras codon 61(CAA) (61(2) ) resulted exclusively in A to G transitions, NMR analyses not only established the structural basis for this transition mutation but also predicted that if the adduct were positioned at the third position in the same codon, an expanded spectra of mutations was possible. To test this prediction, replication of DNAs containing C10 S-BPDE and C10 R-BPDE lesions linked through the N(6) position of adenine in the sequence context N-ras codon 61, position 3 (C10 S-BPDE and C10 R-BPDE at 61(3) ) was carried out in Escherichia coli, and these data revealed a wide mutation spectrum. In addition to A to G transitions produced by replication of both lesions, replication of the C10 S-BPDE and C10 R-BPDE adducts also yielded A to C and A to T transversions, respectively. Analyses of single nucleotide incorporation using Sequenase 2.0 and exonuclease-deficient E. coli Klenow fragment and pol II not only revealed high fidelity synthesis but also demonstrated the same hierarchy of preference opposite a particular lesion, independent of the sequence context. Primer extension assays with the two lesions at N-ras 61(3) resulted in truncated products, with the C10 S-BPDE adducts being more blocking than C10 R-BPDE lesions, and termination of synthesis was more pronounced at position 61(3) than at 61(2) for each of the lesions.
Collapse
Affiliation(s)
- Parvathi Chary
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, Portland, Oregon
| | - Michael P. Stone
- Department of Chemistry, Rm SC 7300 Stevenson Science Center, Vanderbilt University, Nashville, Tennessee
| | - R. Stephen Lloyd
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, Portland, Oregon
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
26
|
Sykora P, Wilson DM, Bohr VA. Base excision repair in the mammalian brain: implication for age related neurodegeneration. Mech Ageing Dev 2013; 134:440-8. [PMID: 23643943 PMCID: PMC3834072 DOI: 10.1016/j.mad.2013.04.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 04/17/2013] [Accepted: 04/17/2013] [Indexed: 12/30/2022]
Abstract
The repair of damaged DNA is essential to maintain longevity of an organism. The brain is a matrix of different neural cell types including proliferative astrocytes and post-mitotic neurons. Post-mitotic DNA repair is a version of proliferative DNA repair, with a reduced number of available pathways and most of these attenuated. Base excision repair (BER) is one pathway that remains robust in neurons; it is this pathway that resolves the damage due to oxidative stress. This oxidative damage is an unavoidable byproduct of respiration, and considering the high metabolic activity of neurons this type of damage is particularly pertinent in the brain. The accumulation of oxidative DNA damage over time is a central aspect of the theory of aging and repair of such chronic damage is of the highest importance. We review research conducted in BER mouse models to clarify the role of this pathway in the neural system. The requirement for BER in proliferating cells also correlates with high levels of many of the BER enzymes in neurogenesis after DNA damage. However, the pathway is also necessary for normal neural maintenance as larger infarct volumes after ischemic stroke are seen in some glycosylase deficient animals. Further, the requirement for DNA polymerase β in post-mitotic BER is potentially more important than in proliferating cells due to reduced levels of replicative polymerases. The BER response may have particular relevance for the onset and progression of many neurodegenerative diseases associated with an increase in oxidative stress including Alzheimer's.
Collapse
Affiliation(s)
- Peter Sykora
- Laboratory of Molecular Gerontology, National Institute on Aging Intramural Research Program, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, United States
| | | | | |
Collapse
|
27
|
Lyndaker AM, Vasileva A, Wolgemuth DJ, Weiss RS, Lieberman HB. Clamping down on mammalian meiosis. Cell Cycle 2013; 12:3135-45. [PMID: 24013428 DOI: 10.4161/cc.26061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The RAD9A-RAD1-HUS1 (9-1-1) complex is a PCNA-like heterotrimeric clamp that binds damaged DNA to promote cell cycle checkpoint signaling and DNA repair. While various 9-1-1 functions in mammalian somatic cells have been established, mounting evidence from lower eukaryotes predicts critical roles in meiotic germ cells as well. This was investigated in 2 recent studies in which the 9-1-1 complex was disrupted specifically in the mouse male germline through conditional deletion of Rad9a or Hus1. Loss of these clamp subunits led to severely impaired fertility and meiotic defects, including faulty DNA double-strand break repair. While 9-1-1 is critical for ATR kinase activation in somatic cells, these studies did not reveal major defects in ATR checkpoint pathway signaling in meiotic cells. Intriguingly, this new work identified separable roles for 9-1-1 subunits, namely RAD9A- and HUS1-independent roles for RAD1. Based on these studies and the high-level expression of the paralogous proteins RAD9B and HUS1B in testis, we propose a model in which multiple alternative 9-1-1 clamps function during mammalian meiosis to ensure genome maintenance in the germline.
Collapse
Affiliation(s)
- Amy M Lyndaker
- Department of Biomedical Sciences; Cornell University; Ithaca, NY USA
| | - Ana Vasileva
- Center for Radiological Research; College of Physicians and Surgeons; Columbia University Medical Center; New York, NY USA
| | - Debra J Wolgemuth
- Genetics & Development and Obstetrics & Gynecology; The Institute of Human Nutrition; Herbert Irving Comprehensive Cancer Center; Columbia University Medical Center; New York, NY USA
| | - Robert S Weiss
- Department of Biomedical Sciences; Cornell University; Ithaca, NY USA
| | - Howard B Lieberman
- Department of Environmental Health Sciences; Mailman School of Public Health; Columbia University Medical Center; New York, NY USA
| |
Collapse
|
28
|
An C, Beard WA, Chen D, Wilson SH, Makridakis NM. Understanding the loss-of-function in a triple missense mutant of DNA polymerase β found in prostate cancer. Int J Oncol 2013; 43:1131-40. [PMID: 23877444 PMCID: PMC3981039 DOI: 10.3892/ijo.2013.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/07/2013] [Indexed: 11/06/2022] Open
Abstract
Human DNA polymerase (pol) β is essential for base excision repair. We previously reported a triple somatic mutant of pol β (p.P261L/T292A/I298T) found in an early onset prostate tumor. This mutation abolishes polymerase activity, and the wild-type allele was not present in the tumor, indicating a complete deficiency in pol β function. The effect on polymerase activity is unexpected because the point mutations that comprise the triple mutant are not part of the active site. Herein, we demonstrate the mechanism of this loss-of-function. In order to understand the effect of the individual point mutations we biochemically analyzed all single and double mutants that comprise the triple mutant. We found that the p.I298T mutation is responsible for a marked instability of the triple mutant protein at 37°C. At room temperature the triple mutant’s low efficiency is also due to a decrease in the apparent binding affinity for the dNTP substrate, which is due to the p.T292A mutation. Furthermore, the triple mutant displays lower fidelity for transversions in vitro, due to the p.T292A mutation. We conclude that distinct mutations of the triple pol β mutant are responsible for the loss of activity, lower fidelity, and instability observed in vitro.
Collapse
Affiliation(s)
- Changlong An
- Department of Epidemiology and Tulane Cancer Center, Tulane University, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
29
|
Potential role of meiosis proteins in melanoma chromosomal instability. J Skin Cancer 2013; 2013:190109. [PMID: 23840955 PMCID: PMC3694528 DOI: 10.1155/2013/190109] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/21/2013] [Indexed: 12/05/2022] Open
Abstract
Melanomas demonstrate chromosomal instability (CIN). In fact, CIN can be used to differentiate melanoma from benign nevi. The exact molecular mechanisms that drive CIN in melanoma have yet to be fully elucidated. Cancer/testis antigens are a unique group of germ cell proteins that are found to be primarily expressed in melanoma as compared to benign nevi. The abnormal expression of these germ cell proteins, normally expected only in the testis and ovaries, in somatic cells may lead to interference with normal cellular pathways. Germ cell proteins that may be particularly critical in CIN are meiosis proteins. Here, we review pathways unique to meiosis with a focus on how the aberrant expression of meiosis proteins in normal mitotic cells “meiomitosis” could impact chromosomal instability in melanoma and other cancers.
Collapse
|
30
|
Conditional inactivation of the DNA damage response gene Hus1 in mouse testis reveals separable roles for components of the RAD9-RAD1-HUS1 complex in meiotic chromosome maintenance. PLoS Genet 2013; 9:e1003320. [PMID: 23468651 PMCID: PMC3585019 DOI: 10.1371/journal.pgen.1003320] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 12/29/2012] [Indexed: 12/16/2022] Open
Abstract
The RAD9-RAD1-HUS1 (9-1-1) complex is a heterotrimeric PCNA-like clamp that responds to DNA damage in somatic cells by promoting DNA repair as well as ATR-dependent DNA damage checkpoint signaling. In yeast, worms, and flies, the 9-1-1 complex is also required for meiotic checkpoint function and efficient completion of meiotic recombination; however, since Rad9, Rad1, and Hus1 are essential genes in mammals, little is known about their functions in mammalian germ cells. In this study, we assessed the meiotic functions of 9-1-1 by analyzing mice with germ cell-specific deletion of Hus1 as well as by examining the localization of RAD9 and RAD1 on meiotic chromosomes during prophase I. Hus1 loss in testicular germ cells resulted in meiotic defects, germ cell depletion, and severely compromised fertility. Hus1-deficient primary spermatocytes exhibited persistent autosomal γH2AX and RAD51 staining indicative of unrepaired meiotic DSBs, synapsis defects, an extended XY body domain often encompassing partial or whole autosomes, and an increase in structural chromosome abnormalities such as end-to-end X chromosome-autosome fusions and ruptures in the synaptonemal complex. Most of these aberrations persisted in diplotene-stage spermatocytes. Consistent with a role for the 9-1-1 complex in meiotic DSB repair, RAD9 localized to punctate, RAD51-containing foci on meiotic chromosomes in a Hus1-dependent manner. Interestingly, RAD1 had a broader distribution that only partially overlapped with RAD9, and localization of both RAD1 and the ATR activator TOPBP1 to the XY body and to unsynapsed autosomes was intact in Hus1 conditional knockouts. We conclude that mammalian HUS1 acts as a component of the canonical 9-1-1 complex during meiotic prophase I to promote DSB repair and further propose that RAD1 and TOPBP1 respond to unsynapsed chromatin through an alternative mechanism that does not require RAD9 or HUS1.
Collapse
|
31
|
Menezes MR, Sweasy JB. Mouse models of DNA polymerases. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:645-665. [PMID: 23001998 DOI: 10.1002/em.21731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 08/01/2012] [Accepted: 08/07/2012] [Indexed: 06/01/2023]
Abstract
In 1956, Arthur Kornberg discovered the mechanism of the biological synthesis of DNA and was awarded the Nobel Prize in Physiology or Medicine in 1959 for this contribution, which included the isolation and characterization of Escherichia coli DNA polymerase I. Now there are 15 known DNA polymerases in mammalian cells that belong to four different families. These DNA polymerases function in many different cellular processes including DNA replication, DNA repair, and damage tolerance. Several biochemical and cell biological studies have provoked a further investigation of DNA polymerase function using mouse models in which polymerase genes have been altered using gene-targeting techniques. The phenotypes of mice harboring mutant alleles reveal the prominent role of DNA polymerases in embryogenesis, prevention of premature aging, and cancer suppression.
Collapse
Affiliation(s)
- Miriam R Menezes
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
32
|
Li J, Luthra S, Wang XH, Chandran UR, Sobol RW. Transcriptional profiling reveals elevated Sox2 in DNA polymerase ß null mouse embryonic fibroblasts. Am J Cancer Res 2012; 2:699-713. [PMID: 23226616 DOI: 10.1158/1538-7445.am2012-699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 11/02/2012] [Indexed: 11/16/2022] Open
Abstract
There are over 150 human proteins that have been categorized as bona fide DNA repair proteins. These DNA repair proteins maintain the integrity of the genome, reducing the onset of cancer, disease and aging phenotypes. Variations in expression and/or function would therefore impact genome integrity as well as the cellular response to genotoxins. Global gene expression analysis is an effective approach to uncover defects in DNA repair gene expression and to discover cellular and/or organismal effects brought about by external stimuli such as environmental genotoxicants, chemotherapeutic regimens, viral infections as well as developmental and age-related stimuli. Given the significance of genome stability in cell survival and response to stimuli, we have hypothesized that cells may undergo transcriptional re-programming to accommodate defects in basal DNA repair capacity to promote survival. As a test of this hypothesis, we have compared the transcriptome in three DNA polymerase ß knockout (Polß-KO) mouse embryonic fibroblasts (MEFs) and the corresponding wild-type (WT) littermate control cell lines. Each Polß-KO cell line was found to have a range of genes up-regulated, when compared to its WT littermate control cell line. Interestingly, six (6) genes were commonly up regulated in all three Polß-KO cell lines, including Sox2, one of several genes associated with the induction of pluripotent stem cells. Herein, we present these findings and suggest that loss of DNA repair and the induction of cellular transcriptional re-programming may, in part, contribute to tumor formation and the cellular response to external stimuli.
Collapse
Affiliation(s)
- Jianfeng Li
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine Pittsburgh, PA 15213, USA ; University of Pittsburgh Cancer Institute, Hillman Cancer Center Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|
33
|
Blanco-Rodríguez J. Programmed phosphorylation of histone H2AX precedes a phase of DNA double-strand break-independent synapsis in mouse meiosis. Reproduction 2012; 144:699-712. [PMID: 23035256 DOI: 10.1530/rep-12-0326] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Accurate homologue synapsis during meiosis is essential for faithful chromosome segregation and formation of viable gametes. The finding of Spo11-dependent gamma-H2AX (γH2AX) formation during leptotene and data on mutant mice have led to the notion that synapsis in mammals depends on meiotic DNA double-stranded break (DSB) repair. A second wave of ataxia telangiectasia mutated (ATM) and Rad3-related (ATR)-dependent γH2AX formation has been observed in Atm-null mice during zygotene, suggesting that this wave of phosphorylation also occurs in normal mice. Here I aimed to confirm and to analyse in deep this wave of phosphorylation. Immunostaining of spread spermatocytes shows that γH2AX accumulates on the short last axis stretches to pair. This accumulation appears within all the nuclei undergoing a specific step of late zygotene and disappears from every spermatocyte immediately after pairing completion. This γH2AX signal co-localises with ATR, is Spo11-independent and does not co-localise with free DNA 3'-end labelling. I conclude that ATR/γH2AX asynapsis signalling at the end of zygotene belongs to a physiologically programmed pathway operating at a specific meiotic step, and I propose that this pathway is involved in the triggering of a phase of DSB-independent chromosome pairing that leads to synapsis completion in normal mouse meiosis.
Collapse
Affiliation(s)
- Josefa Blanco-Rodríguez
- Departamento de Biología Celular, Facultad de Medicina, Universidad de Valladolid, Ramón y Cajal 7, 47005 Valladolid, Spain.
| |
Collapse
|
34
|
Makridakis NM, Reichardt JKV. Translesion DNA polymerases and cancer. Front Genet 2012; 3:174. [PMID: 22973298 PMCID: PMC3434439 DOI: 10.3389/fgene.2012.00174] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 08/20/2012] [Indexed: 12/17/2022] Open
Abstract
DNA repair has been regarded as an important barrier to carcinogenesis. The newly discovered field of translesion synthesis (TLS) has made it apparent that mammalian cells need distinct polymerases to efficiently and accurately bypass DNA lesions. Perturbation of TLS polymerase activity by mutation, loss of expression, etc. is expected to result in the accumulation of mutations in cells exposed to specific carcinogens. Furthermore, several TLS polymerases can modulate cellular sensitivity to chemotherapeutic agents. TLS genes and TLS gene variations may thus be attractive pharmacologic and/or pharmacogenetic targets. We review herein current data with regards to the potential contribution of the primary TLS polymerase genes to cancer, their interaction with pharmacologic agents, and identify areas of interest for further research.
Collapse
Affiliation(s)
- Nick M Makridakis
- Tulane Cancer Center and Department of Epidemiology, Tulane University New Orleans, LA, USA
| | | |
Collapse
|
35
|
La Volpe A, Barchi M. Meiotic double strand breaks repair in sexually reproducing eukaryotes: We are not all equal. Exp Cell Res 2012; 318:1333-9. [DOI: 10.1016/j.yexcr.2012.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/14/2012] [Accepted: 03/14/2012] [Indexed: 11/16/2022]
|
36
|
Cordelli E, Eleuteri P, Grollino MG, Benassi B, Blandino G, Bartoleschi C, Pardini MC, Di Caprio EV, Spanò M, Pacchierotti F, Villani P. Direct and delayed X-ray-induced DNA damage in male mouse germ cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:429-439. [PMID: 22730201 DOI: 10.1002/em.21703] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 04/18/2012] [Accepted: 04/19/2012] [Indexed: 06/01/2023]
Abstract
Sperm DNA integrity is essential for the accurate transmission of paternal genetic information. Various stages of spermatogenesis are characterized by large differences in radiosensitivity. Differentiating spermatogonia are susceptible to radiation-induced cell killing, but some of them can repair DNA damage and progress through differentiation. In this study, we applied the neutral comet assay, immunodetection of phosphorylated H2AX (γ-H2AX) and the Sperm Chromatin Structure Assay (SCSA) to detect DNA strand breaks in testicular cells and spermatozoa at different times following in vivo X-ray irradiation. Radiation produced DNA strand breaks in testicular cells that were repaired within the first few hours after exposure. Spermatozoa were resistant to the induction of DNA damage, but non-targeted DNA lesions were detected in spermatozoa derived from surviving irradiated spermatogonia. These lesions formed while round spermatids started to elongate within the testicular seminiferous tubules. The transcription of pro-apoptotic genes at this time was also enhanced, suggesting that an apoptotic-like process was involved in DNA break production. Our results suggest that proliferating spermatogonia retain a memory of the radiation insult that is recognized at a later developmental stage and activates a process leading to DNA fragmentation.
Collapse
|
37
|
Goellner EM, Svilar D, Almeida KH, Sobol RW. Targeting DNA polymerase ß for therapeutic intervention. Curr Mol Pharmacol 2012; 5:68-87. [PMID: 22122465 PMCID: PMC3894524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Revised: 01/10/2011] [Accepted: 01/15/2011] [Indexed: 05/31/2023]
Abstract
DNA damage plays a causal role in numerous disease processes. Hence, it is suggested that DNA repair proteins, which maintain the integrity of the nuclear and mitochondrial genomes, play a critical role in reducing the onset of multiple diseases, including cancer, diabetes and neurodegeneration. As the primary DNA polymerase involved in base excision repair, DNA polymerase ß (Polß) has been implicated in multiple cellular processes, including genome maintenance and telomere processing and is suggested to play a role in oncogenic transformation, cell viability following stress and the cellular response to radiation, chemotherapy and environmental genotoxicants. Therefore, Polß inhibitors may prove to be effective in cancer treatment. However, Polß has a complex and highly regulated role in DNA metabolism. This complicates the development of effective Polß-specific inhibitors useful for improving chemotherapy and radiation response without impacting normal cellular function. With multiple enzymatic activities, numerous binding partners and complex modes of regulation from post-translational modifications, there are many opportunities for Polß inhibition that have yet to be resolved. To shed light on the varying possibilities and approaches of targeting Polß for potential therapeutic intervention, we summarize the reported small molecule inhibitors of Polß and discuss the genetic, biochemical and chemical studies that implicate additional options for Polß inhibition. Further, we offer suggestions on possible inhibitor combinatorial approaches and the potential for tumor specificity for Polß-inhibitors.
Collapse
Affiliation(s)
- Eva M. Goellner
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - David Svilar
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Karen H. Almeida
- Department of Physical Sciences, Rhode Island College, 600 Mt. Pleasant Ave, Providence, RI 02908-1991, USA
| | - Robert W. Sobol
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
| |
Collapse
|
38
|
Kodera H, Takeuchi R, Uchiyama Y, Takakusagi Y, Iwabata K, Miwa H, Hanzawa N, Sugawara F, Sakaguchi K. Characterization of marine X-family DNA polymerases and comparative analysis of base excision repair proteins. Biochem Biophys Res Commun 2011; 415:193-9. [PMID: 22033415 DOI: 10.1016/j.bbrc.2011.10.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 10/11/2011] [Indexed: 02/08/2023]
Abstract
While mammalian DNA polymerase β (Pol β), which is a member of the Pol X family, play important roles in base excision repair (BER) that efficiently removes DNA base lesions arising from both endogenous and exogenous agents, this protein has been found only a subset of animals. To understand natural evolution of this enzyme, we isolated and characterized Pol β from jellyfish Aurelia sp.1. (AsPol β). Despite of phylogenetic distance and environmental differences between jellyfish and mammals, in vitro assays showed biochemical characteristics of AsPol β were very similar to those of a mammalian counterpart. We also searched two other homologs of mammalian genes that were involved in short patch (sp) BER in the nucleotide sequence database, and found that both of these homologs were encoded in the genomes of a lineage from Cnidarians through mammals and Arthropods. This study suggests that a DNA repair mechanism resembling mammalian sp-BER may be largely limited to a subset of animals. On the basis of our findings and previous reports, we discuss possible evolutional model of Pol β and the other members of the Pol X family.
Collapse
Affiliation(s)
- Hirofumi Kodera
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba-ken 278-8510, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Murphy DL, Jaeger J, Sweasy JB. A triad interaction in the fingers subdomain of DNA polymerase beta controls polymerase activity. J Am Chem Soc 2011; 133:6279-87. [PMID: 21452873 DOI: 10.1021/ja111099b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA polymerase beta (pol beta) is the main polymerase involved in the base excision repair pathway responsible for repairing damaged bases in the DNA. Previous studies on the H285D mutant of pol beta suggested that the C-terminal region of the polymerase is important for polymerase function. In this study, the C-terminal region of pol beta was mutated to assess its role in polymerization. Kinetic experiments showed that the C-terminal region is required for wild-type polymerase activity. Additionally, an interaction between the fingers and palm subdomain revealed itself to be required for polymerase activity. The E316R mutant of pol beta was shown to have a 29,000-fold reduction in polymerization rate with no reduction in nucleotide binding, suggesting that there exists a noncovalent mechanistic step between nucleotide binding and nucleophilic attack of the primer 3'-hydroxyl group on the α-PO(4) of the nucleotide. Molecular modeling studies of the E316R mutant demonstrate that disrupting the interaction between Arg182 and Glu316 disrupts the packing of side chains in the hydrophobic hinge region and may be hampering the conformational change during polymerization. Taken together, these data demonstrate that the triad interaction of Arg182, Glu316, and Arg333 is crucial for polymerase function.
Collapse
Affiliation(s)
- Drew L Murphy
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
40
|
An CL, Chen D, Makridakis NM. Systematic biochemical analysis of somatic missense mutations in DNA polymerase β found in prostate cancer reveal alteration of enzymatic function. Hum Mutat 2011; 32:415-23. [PMID: 21305655 DOI: 10.1002/humu.21465] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 01/03/2011] [Indexed: 11/11/2022]
Abstract
DNA polymerase β is essential for short-patch base excision repair. We have previously identified 20 somatic pol β mutations in prostate tumors, many of them missense. In the current article we describe the effect of all of these somatic missense pol β mutations (p.K27N, p.E123K, p.E232K, p.P242R, p.E216K, p.M236L, and the triple mutant p.P261L/T292A/I298T) on the biochemical properties of the polymerase in vitro, following bacterial expression and purification of the respective enzymatic variants. We report that all missense somatic pol β mutations significantly affect enzyme function. Two of the pol β variants reduce catalytic efficiency, while the remaining five missense mutations alter the fidelity of DNA synthesis. Thus, we conclude that a significant proportion (9 out of 26; 35%) of prostate cancer patients have functionally important somatic mutations of pol β. Many of these missense mutations are clonal in the tumors, and/or are associated with loss of heterozygosity and microsatellite instability. These results suggest that interfering with normal polymerase β function may be a frequent mechanism of prostate tumor progression. Furthermore, the availability of detailed structural information for pol β allows understanding of the potential mechanistic effects of these mutants on polymerase function.
Collapse
Affiliation(s)
- Chang Long An
- Department of Epidemiology and Tulane Cancer Center, Tulane University, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|
41
|
Kidane D, Dalal S, Keh A, Liu Y, Zelterman D, Sweasy JB. DNA polymerase beta is critical for genomic stability of sperm cells. DNA Repair (Amst) 2011; 10:390-7. [PMID: 21333614 DOI: 10.1016/j.dnarep.2011.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 01/03/2011] [Accepted: 01/04/2011] [Indexed: 10/18/2022]
Abstract
Maintaining genome integrity in germ cells is important, given that the germ cells produce the next generation of offspring. Base excision repair is a DNA repair pathway that is responsible for the repair of most endogenous DNA damage. A key enzyme that functions in this repair pathway is DNA polymerase beta (Pol β). We previously used conditional gene targeting to engineer mice with sperm deleted of the Pol B gene, which encodes Pol β. We characterized mutagenesis in the sperm of these mice and compared it to wild-type and mice heterozygous for the Pol B gene. We found that sperm obtained that were heterozygously or homozygously deleted of the Pol B gene exhibited increased mutation frequencies compared to wild-type sperm. We identified an increase in transition mutations in both heterozygously and homozygously deleted sperm, and the types of mutations induced suggest that a polymerase other than Pol β functions in its absence. Interestingly, most of the transversions we observed were induced only in heterozygous, compared with wild-type sperm. Our results suggest that haploinsufficiency of Pol β leads to increased frequencies and varieties of mutations. Our study also shows that Pol β is critical for genome stability in the germline.
Collapse
Affiliation(s)
- Dawit Kidane
- Department of Therapeutic Radiology, The Yale Comprehensive Cancer Center, 333 Cedar Street, New Haven, CT 06520, USA
| | | | | | | | | | | |
Collapse
|
42
|
Kopanja D, Roy N, Stoyanova T, Hess RA, Bagchi S, Raychaudhuri P. Cul4A is essential for spermatogenesis and male fertility. Dev Biol 2011; 352:278-87. [PMID: 21291880 DOI: 10.1016/j.ydbio.2011.01.028] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 01/20/2011] [Accepted: 01/24/2011] [Indexed: 02/04/2023]
Abstract
The mammalian Cul4 genes, Cul4A and Cul4B, encode the scaffold components of the cullin-based E3 ubiquitin ligases. The two Cul4 genes are functionally redundant. Recent study indicated that mice expressing a truncated CUL4A that fails to interact with its functional partner ROC1 exhibit no developmental phenotype. We generated a Cul4A-/- strain lacking exons 4-8 that does not express any detectable truncated protein. In this strain, the male mice are infertile and exhibit severe deficiencies in spermatogenesis. The primary spermatocytes are deficient in progression through late prophase I, a time point when expression of the X-linked Cul4B gene is silenced due to meiotic sex chromosome inactivation. Testes of the Cul4A-/- mice exhibit extensive apoptosis. Interestingly, the pachytene spermatocytes exhibit persistent double stranded breaks, suggesting a deficiency in homologous recombination. Also, we find that CUL4A localizes to the double stranded breaks generated in pre-pachytene spermatocytes. The observations identify a novel function of CUL4A in meiotic recombination and demonstrate an essential role of CUL4A in spermatogenesis.
Collapse
Affiliation(s)
- Dragana Kopanja
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois, College of Medicine, 900 S. Ashland Ave, Chicago, IL-60607, USA
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
There are 15 different DNA polymerases encoded in mammalian genomes, which are specialized for replication, repair or the tolerance of DNA damage. New evidence is emerging for lesion-specific and tissue-specific functions of DNA polymerases. Many point mutations that occur in cancer cells arise from the error-generating activities of DNA polymerases. However, the ability of some of these enzymes to bypass DNA damage may actually defend against chromosome instability in cells, and at least one DNA polymerase, Pol ζ, is a suppressor of spontaneous tumorigenesis. Because DNA polymerases can help cancer cells tolerate DNA damage, some of these enzymes might be viable targets for therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Richard D. Wood
- Correspondence to: 1808 Park Road 1C, P.O. Box 389, Smithville, TX, USA, 78957 Tel: (512) 237-9431 Fax: (512) 237-6532
| |
Collapse
|
44
|
Hashimoto JG, Forquer MR, Tanchuck MA, Finn DA, Wiren KM. Importance of genetic background for risk of relapse shown in altered prefrontal cortex gene expression during abstinence following chronic alcohol intoxication. Neuroscience 2010; 173:57-75. [PMID: 21081154 DOI: 10.1016/j.neuroscience.2010.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 10/21/2010] [Accepted: 11/05/2010] [Indexed: 11/19/2022]
Abstract
Alcoholism is a relapsing disorder associated with excessive consumption after periods of abstinence. Neuroadaptations in brain structure, plasticity and gene expression occur with chronic intoxication but are poorly characterized. Here we report identification of pathways altered during abstinence in prefrontal cortex, a brain region associated with cognitive dysfunction and damage in alcoholics. To determine the influence of genetic differences, an animal model was employed with widely divergent responses to alcohol withdrawal, the Withdrawal Seizure-Resistant (WSR) and Withdrawal Seizure-Prone (WSP) lines. Mice were chronically exposed to highly intoxicating concentrations of ethanol and withdrawn, then left abstinent for 21 days. Transcriptional profiling by microarray analyses identified a total of 562 genes as significantly altered during abstinence. Hierarchical cluster analysis revealed that the transcriptional response correlated with genotype/withdrawal phenotype rather than sex. Gene Ontology category overrepresentation analysis identified thyroid hormone metabolism, glutathione metabolism, axon guidance and DNA damage response as targeted classes of genes in low response WSR mice, with acetylation and histone deacetylase complex as highly dimorphic between WSR and WSP mice. Confirmation studies in WSR mice revealed both increased neurotoxicity by histopathologic examination and elevated triidothyronine (T3) levels. Most importantly, relapse drinking was reduced by inhibition of thyroid hormone synthesis in dependent WSR mice compared to controls. These findings provide in vivo physiological and behavioral validation of the pathways identified. Combined, these results indicate a fundamentally distinct neuroadaptive response during abstinence in mice genetically selected for divergent withdrawal severity. Identification of pathways altered in abstinence may aid development of novel therapeutics for targeted treatment of relapse in abstinent alcoholics.
Collapse
Affiliation(s)
- J G Hashimoto
- Research Service, Portland Veterans Affairs Medical Center, Portland, OR 97239, USA
| | | | | | | | | |
Collapse
|