1
|
Łopusińska A, Farhat M, Cieśla M. Functional suppression of a yeast maf1 deletion mutant by overdose of the N-terminal fragment of the largest RNA polymerase III subunit, C160. Gene 2024; 930:148839. [PMID: 39142551 DOI: 10.1016/j.gene.2024.148839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/20/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Maf1 is a general and global negative regulator of RNA polymerase III (Pol III) transcription. Under repressive conditions, Maf1 binds directly to the Pol III complex and sequesters Pol III elements that are involved in transcription initiation. To further understand Pol III regulation, we searched for genetic bypass suppressors of a maf1 deletion mutant (maf1Δ) of Saccharomyces cerevisiae. Strains that carried maf1Δ were temperature-sensitive on media that contained nonfermentable carbon sources and showed the antisuppressor phenotype. Suppressors allowed colonies to grow at the restrictive temperature on glycerol media and partially complemented the antisuppressor phenotype of maf1Δ. DNA plasmids that were identified as overdose suppressors encoded N-terminal fragments of the largest Pol III subunit, C160 of various lengths. The shortest fragment, 372 amino acids long, the overdose of which partially complemented the antisuppressor phenotype and temperature-sensitive respiratory growth of maf1Δ, was named C160-NTF. In this study, we showed that the expression of HA-tagged C160-NTF resulted in accumulation of approximately 40 kDa protein that was distributed throughout the yeast cell, in the cytoplasm and nucleus. The overdose of C160-NTF led to decrease of tRNA transcription in maf1Δ mutant cells, demonstrating functional suppression. Levels of newly synthesized individual tRNAs and Pol III occupancies on tRNA genes were decreased by C160-NTF in the maf1Δ mutant. Additionally, we analyzed the effect of C160-NTF overproduction and the presence of Maf1 on the associations among Pol III subunits. Previous structural analyzes of Pol III have indicated that the N-terminal region of C160 interacts with the C82-34-31 heterotrimeric Pol III subcomplex. We suggest that the negative effect of C160-NTF overdose on tRNA transcription is related to defective Pol III assembly, because overproduction of C160-NTF altered C160 interactions with C34 and C82 in the maf1Δ mutant.
Collapse
Affiliation(s)
- Aleksandra Łopusińska
- Laboratory of tRNA Transcription, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Malak Farhat
- Laboratory of tRNA Transcription, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Małgorzata Cieśla
- Laboratory of tRNA Transcription, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
2
|
Shekhar AC, Wu WJ, Chen HT. Mutational and biophysical analyses reveal a TFIIIC binding region in the TFIIF-related Rpc53 subunit of RNA polymerase III. J Biol Chem 2023; 299:104859. [PMID: 37230389 PMCID: PMC10404625 DOI: 10.1016/j.jbc.2023.104859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
The TFIIF-like Rpc53/Rpc37 heterodimer of RNA polymerase (pol) III is involved in various stages of transcription. The C-terminal region of Rpc53 dimerizes with Rpc37 to anchor on the lobe domain of the pol III cleft. However, structural and functional features of the Rpc53 N-terminal region had not been characterized previously. Here, we conducted site-directed alanine replacement mutagenesis on the Rpc53 N-terminus, generating yeast strains that exhibited a cold-sensitive growth defect and severely compromised pol III transcriptional activity. Circular dichroism and NMR spectroscopy revealed a highly disordered 57-amino acid polypeptide in the Rpc53 N-terminus. This polypeptide is a versatile protein-binding module displaying nanomolar-level binding affinities for Rpc37 and the Tfc4 subunit of the transcription initiation factor TFIIIC. Accordingly, we denote this Rpc53 N-terminus polypeptide as the TFIIIC-binding region or CBR. Alanine replacements in the CBR significantly reduced its binding affinity for Tfc4, highlighting its functional importance to cell growth and transcription in vitro. Our study reveals the functional basis for Rpc53's CBR in assembly of the pol III transcription initiation complex.
Collapse
Affiliation(s)
- Arvind Chandra Shekhar
- Molecular and Cell Biology, Taiwan International Graduate Program, Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, R.O.C.; Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, R.O.C
| | - Wen-Jin Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, R.O.C
| | - Hung-Ta Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, R.O.C..
| |
Collapse
|
3
|
Shekhar AC, Sun YE, Khoo SK, Lin YC, Malau E, Chang WH, Chen HT. Site-directed biochemical analyses reveal that the switchable C-terminus of Rpc31 contributes to RNA polymerase III transcription initiation. Nucleic Acids Res 2023; 51:4223-4236. [PMID: 36484109 PMCID: PMC10201443 DOI: 10.1093/nar/gkac1163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/14/2022] [Accepted: 11/23/2022] [Indexed: 08/23/2023] Open
Abstract
Rpc31 is a subunit in the TFIIE-related Rpc82/34/31 heterotrimeric subcomplex of Saccharomyces cerevisiae RNA polymerase III (pol III). Structural analyses of pol III have indicated that the N-terminal region of Rpc31 anchors on Rpc82 and further interacts with the polymerase core and stalk subcomplex. However, structural and functional information for the C-terminal region of Rpc31 is sparse. We conducted a mutational analysis on Rpc31, which uncovered a functional peptide adjacent to the highly conserved Asp-Glu-rich acidic C-terminus. This C-terminal peptide region, termed 'pre-acidic', is important for optimal cell growth, tRNA synthesis, and stable association of Rpc31 in the pre-initiation complex (PIC). Our site-directed photo-cross-linking to map protein interactions within the PIC reveal that this pre-acidic region specifically targets Rpc34 during transcription initiation, but also interacts with the DNA entry surface in free pol III. Thus, we have uncovered a switchable Rpc31 C-terminal region that functions in an initiation-specific protein interaction for pol III transcription.
Collapse
Affiliation(s)
| | - Yuan-En Sun
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, R.O.C
| | - Seok-Kooi Khoo
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, R.O.C
| | - Yu-Chun Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, R.O.C
| | | | - Wei-Hau Chang
- Institute of Chemistry, Academia Sinica, Taiwan, R.O.C
| | - Hung-Ta Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, R.O.C
| |
Collapse
|
4
|
Nguyen PQ, Huecas S, Asif-Laidin A, Plaza-Pegueroles A, Capuzzi B, Palmic N, Conesa C, Acker J, Reguera J, Lesage P, Fernández-Tornero C. Structural basis of Ty1 integrase tethering to RNA polymerase III for targeted retrotransposon integration. Nat Commun 2023; 14:1729. [PMID: 36977686 PMCID: PMC10050235 DOI: 10.1038/s41467-023-37109-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
The yeast Ty1 retrotransposon integrates upstream of genes transcribed by RNA polymerase III (Pol III). Specificity of integration is mediated by an interaction between the Ty1 integrase (IN1) and Pol III, currently uncharacterized at the atomic level. We report cryo-EM structures of Pol III in complex with IN1, revealing a 16-residue segment at the IN1 C-terminus that contacts Pol III subunits AC40 and AC19, an interaction that we validate by in vivo mutational analysis. Binding to IN1 associates with allosteric changes in Pol III that may affect its transcriptional activity. The C-terminal domain of subunit C11, involved in RNA cleavage, inserts into the Pol III funnel pore, providing evidence for a two-metal mechanism during RNA cleavage. Additionally, ordering next to C11 of an N-terminal portion from subunit C53 may explain the connection between these subunits during termination and reinitiation. Deletion of the C53 N-terminal region leads to reduced chromatin association of Pol III and IN1, and a major fall in Ty1 integration events. Our data support a model in which IN1 binding induces a Pol III configuration that may favor its retention on chromatin, thereby improving the likelihood of Ty1 integration.
Collapse
Affiliation(s)
- Phong Quoc Nguyen
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040, Madrid, Spain
- Aix-Marseille Université, CNRS, AFMB UMR 7257, 13288, Marseille, France
| | - Sonia Huecas
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040, Madrid, Spain
| | - Amna Asif-Laidin
- Université Paris Cité, IRSL, Inserm, U944, CNRS, UMR7212, 75010, Paris, France
| | | | - Beatrice Capuzzi
- Université Paris Cité, IRSL, Inserm, U944, CNRS, UMR7212, 75010, Paris, France
| | - Noé Palmic
- Université Paris Cité, IRSL, Inserm, U944, CNRS, UMR7212, 75010, Paris, France
| | - Christine Conesa
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Joël Acker
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Juan Reguera
- Aix-Marseille Université, CNRS, AFMB UMR 7257, 13288, Marseille, France
- INSERM, AFMB UMR7257, 13288, Marseille, France
| | - Pascale Lesage
- Université Paris Cité, IRSL, Inserm, U944, CNRS, UMR7212, 75010, Paris, France.
| | | |
Collapse
|
5
|
Wang Y, Li Q, Tian P, Tan T. Charting the landscape of RNA polymerases to unleash their potential in strain improvement. Biotechnol Adv 2021; 54:107792. [PMID: 34216775 DOI: 10.1016/j.biotechadv.2021.107792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/28/2021] [Accepted: 06/26/2021] [Indexed: 11/19/2022]
Abstract
One major mission of microbial cell factory is overproduction of desired chemicals. To this end, it is necessary to orchestrate enzymes that affect metabolic fluxes. However, only modification of a small number of enzymes in most cases cannot maximize desired metabolites, and global regulation is required. Of myriad enzymes influencing global regulation, RNA polymerase (RNAP) may be the most versatile enzyme in biological realm because it not only serves as the workhorse of central dogma but also participates in a plethora of biochemical events. In fact, recent years have witnessed extensive exploitation of RNAPs for phenotypic engineering. While a few impressive reviews showcase the structures and functionalities of RNAPs, this review not only summarizes the state-of-the-art advance in the structures of RNAPs but also points out their enormous potentials in metabolic engineering and synthetic biology. This review aims to provide valuable insights for strain improvement.
Collapse
Affiliation(s)
- Ye Wang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Qingyang Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Pingfang Tian
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Tianwei Tan
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
6
|
Molecular Cloning, Purification and Characterization of Mce1R of Mycobacterium tuberculosis. Mol Biotechnol 2021; 63:200-220. [PMID: 33423211 DOI: 10.1007/s12033-020-00293-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2020] [Indexed: 10/22/2022]
Abstract
The mce1 operon of Mycobacterium tuberculosis, important for lipid metabolism/transport, host cell invasion, modulation of host immune response and pathogenicity, is under the transcriptional control of Mce1R. Hence characterizing Mce1R is an important step for novel anti-tuberculosis drug discovery. The present study reports functional and in silico characterization of Mce1R. In this work, we have computationally modeled the structure of Mce1R and have validated the structure by computational and experimental methods. Mce1R has been shown to harbor the canonical VanR-like structure with a flexible N-terminal 'arm', carrying conserved positively charged residues, most likely involved in the operator DNA binding. The mce1R gene has been cloned, expressed, purified and its DNA-binding activity has been measured in vitro. The Kd value for Mce1R-operator DNA interaction has been determined to be 0.35 ± 0.02 µM which implies that Mce1R binds to DNA with moderate affinity compared to the other FCD family of regulators. So far, this is the first report for measuring the DNA-binding affinity of any VanR-type protein. Despite significant sequence similarity at the N-terminal domain, the wHTH motif of Mce1R exhibits poor conservancy of amino acid residues, critical for DNA-binding, thus results in moderate DNA-binding affinity. The N-terminal DNA-binding domain is structurally dynamic while the C-terminal domain showed significant stability and such profile of structural dynamics is most likely to be preserved in the structural orthologs of Mce1R. In addition to this, a cavity has been detected in the C-terminal domain of Mce1R which contains a few conserved residues. Comparison with other FCD family of regulators suggests that most of the conserved residues might be critical for binding to specific ligand. The max pKd value and drug score for the cavity are estimated to be 9.04 and 109 respectively suggesting that the cavity represents a suitable target site for novel anti-tuberculosis drug discovery approaches.
Collapse
|
7
|
Liko D, Mitchell L, Campbell KJ, Ridgway RA, Jones C, Dudek K, King A, Bryson S, Stevenson D, Blyth K, Strathdee D, Morton JP, Bird TG, Knight JRP, Willis AE, Sansom OJ. Brf1 loss and not overexpression disrupts tissues homeostasis in the intestine, liver and pancreas. Cell Death Differ 2019; 26:2535-2550. [PMID: 30858608 PMCID: PMC6861133 DOI: 10.1038/s41418-019-0316-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 01/18/2019] [Accepted: 02/13/2019] [Indexed: 12/22/2022] Open
Abstract
RNA polymerase III (Pol-III) transcribes tRNAs and other small RNAs essential for protein synthesis and cell growth. Pol-III is deregulated during carcinogenesis; however, its role in vivo has not been studied. To address this issue, we manipulated levels of Brf1, a Pol-III transcription factor that is essential for recruitment of Pol-III holoenzyme at tRNA genes in vivo. Knockout of Brf1 led to embryonic lethality at blastocyst stage. In contrast, heterozygous Brf1 mice were viable, fertile and of a normal size. Conditional deletion of Brf1 in gastrointestinal epithelial tissues, intestine, liver and pancreas, was incompatible with organ homeostasis. Deletion of Brf1 in adult intestine and liver induced apoptosis. However, Brf1 heterozygosity neither had gross effects in these epithelia nor did it modify tumorigenesis in the intestine or pancreas. Overexpression of BRF1 rescued the phenotypes of Brf1 deletion in intestine and liver but was unable to initiate tumorigenesis. Thus, Brf1 and Pol-III activity are absolutely essential for normal homeostasis during development and in adult epithelia. However, Brf1 overexpression or heterozygosity are unable to modify tumorigenesis, suggesting a permissive, but not driving role for Brf1 in the development of epithelial cancers of the pancreas and gut.
Collapse
Affiliation(s)
- Dritan Liko
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Louise Mitchell
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Kirsteen J Campbell
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Rachel A Ridgway
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Carolyn Jones
- MRC Toxicology Unit, Hodgkin Building Lancaster Road, Leicester, LE1 9HN, UK
| | - Kate Dudek
- MRC Toxicology Unit, Hodgkin Building Lancaster Road, Leicester, LE1 9HN, UK
| | - Ayala King
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Sheila Bryson
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - David Stevenson
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Karen Blyth
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Douglas Strathdee
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Jennifer P Morton
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Thomas G Bird
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - John R P Knight
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
| | - Anne E Willis
- MRC Toxicology Unit, Hodgkin Building Lancaster Road, Leicester, LE1 9HN, UK
| | - Owen J Sansom
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK.
| |
Collapse
|
8
|
Khoo SK, Wu CC, Lin YC, Chen HT. The TFIIE-related Rpc82 subunit of RNA polymerase III interacts with the TFIIB-related transcription factor Brf1 and the polymerase cleft for transcription initiation. Nucleic Acids Res 2019; 46:1157-1166. [PMID: 29177422 PMCID: PMC5814912 DOI: 10.1093/nar/gkx1179] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 11/16/2017] [Indexed: 11/13/2022] Open
Abstract
Rpc82 is a TFIIE-related subunit of the eukaryotic RNA polymerase III (pol III) complex. Rpc82 contains four winged-helix (WH) domains and a C-terminal coiled-coil domain. Structural resolution of the pol III complex indicated that Rpc82 anchors on the clamp domain of the pol III cleft to interact with the duplex DNA downstream of the transcription bubble. However, whether Rpc82 interacts with a transcription factor is still not known. Here, we report that a structurally disordered insertion in the third WH domain of Rpc82 is important for cell growth and in vitro transcription activity. Site-specific photo-crosslinking analysis indicated that the WH3 insertion interacts with the TFIIB-related transcription factor Brf1 within the pre-initiation complex (PIC). Moreover, crosslinking and hydroxyl radical probing analyses revealed Rpc82 interactions with the upstream DNA and the protrusion and wall domains of the pol III cleft. Our genetic and biochemical analyses thus provide new molecular insights into the function of Rpc82 in pol III transcription.
Collapse
Affiliation(s)
- Seok-Kooi Khoo
- Institute of Molecular Biology, Academia Sinica, 128 Sec. 2 Academia Rd., Taipei 115, Taiwan, R.O.C
| | - Chih-Chien Wu
- Institute of Molecular Biology, Academia Sinica, 128 Sec. 2 Academia Rd., Taipei 115, Taiwan, R.O.C
| | - Yu-Chun Lin
- Institute of Molecular Biology, Academia Sinica, 128 Sec. 2 Academia Rd., Taipei 115, Taiwan, R.O.C
| | - Hung-Ta Chen
- Institute of Molecular Biology, Academia Sinica, 128 Sec. 2 Academia Rd., Taipei 115, Taiwan, R.O.C
| |
Collapse
|
9
|
Genetic analyses led to the discovery of a super-active mutant of the RNA polymerase I. PLoS Genet 2019; 15:e1008157. [PMID: 31136569 PMCID: PMC6555540 DOI: 10.1371/journal.pgen.1008157] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 06/07/2019] [Accepted: 04/25/2019] [Indexed: 01/08/2023] Open
Abstract
Most transcriptional activity of exponentially growing cells is carried out by the RNA Polymerase I (Pol I), which produces a ribosomal RNA (rRNA) precursor. In budding yeast, Pol I is a multimeric enzyme with 14 subunits. Among them, Rpa49 forms with Rpa34 a Pol I-specific heterodimer (homologous to PAF53/CAST heterodimer in human Pol I), which might be responsible for the specific functions of the Pol I. Previous studies provided insight in the involvement of Rpa49 in initiation, elongation, docking and releasing of Rrn3, an essential Pol I transcription factor. Here, we took advantage of the spontaneous occurrence of extragenic suppressors of the growth defect of the rpa49 null mutant to better understand the activity of Pol I. Combining genetic approaches, biochemical analysis of rRNA synthesis and investigation of the transcription rate at the individual gene scale, we characterized mutated residues of the Pol I as novel extragenic suppressors of the growth defect caused by the absence of Rpa49. When mapped on the Pol I structure, most of these mutations cluster within the jaw-lobe module, at an interface formed by the lobe in Rpa135 and the jaw made up of regions of Rpa190 and Rpa12. In vivo, the suppressor allele RPA135-F301S restores normal rRNA synthesis and increases Pol I density on rDNA genes when Rpa49 is absent. Growth of the Rpa135-F301S mutant is impaired when combined with exosome mutation rrp6Δ and it massively accumulates pre-rRNA. Moreover, Pol I bearing Rpa135-F301S is a hyper-active RNA polymerase in an in vitro tailed-template assay. We conclude that RNA polymerase I can be engineered to produce more rRNA in vivo and in vitro. We propose that the mutated area undergoes a conformational change that supports the DNA insertion into the cleft of the enzyme resulting in a super-active form of Pol I. The nuclear genome of eukaryotic cells is transcribed by three RNA polymerases. RNA polymerase I (Pol I) is a multimeric enzyme specialized in the synthesis of ribosomal RNA. Deregulation of the Pol I function is linked to the etiology of a broad range of human diseases. Understanding the Pol I activity and regulation represents therefore a major challenge. We chose the budding yeast Saccharomyces cerevisiae as a model, because Pol I transcription apparatus is genetically amenable in this organism. Analyses of phenotypic consequences of deletion/truncation of Pol I subunits-coding genes in yeast indeed provided insights into the activity and regulation of the enzyme. Here, we characterized mutations in Pol I that can alleviate the growth defect caused by the absence of Rpa49, one of the subunits composing this multi-protein enzyme. We mapped these mutations on the Pol I structure and found that they all cluster in a well-described structural element, the jaw-lobe module. Combining genetic and biochemical approaches, we showed that Pol I bearing one of these mutations in the Rpa135 subunit is able to produce more ribosomal RNA in vivo and in vitro. We propose that this super-activity is explained by structural rearrangement of the Pol I jaw/lobe interface.
Collapse
|
10
|
Hanske J, Sadian Y, Müller CW. The cryo-EM resolution revolution and transcription complexes. Curr Opin Struct Biol 2018; 52:8-15. [PMID: 30015202 PMCID: PMC6302067 DOI: 10.1016/j.sbi.2018.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 06/25/2018] [Accepted: 07/02/2018] [Indexed: 01/22/2023]
Abstract
Direct electron detector technology combined with improved imaging processing procedures has dramatically increased the resolution that can be obtained by single-particle cryo-electron microscopy and cryo-electron tomography. These developments-often referred to as the `resolution revolution' in cryo-EM-have had a profound impact on the structural biology of transcription as they allow the determination of atomic or near-atomic resolution structures of very large, flexible and often transient transcription complexes that in many cases had resisted crystal structure determination for decades. In this review, we will discuss recent advances and breakthroughs in the structural biology of transcription complexes enabled by the revolution in cryo-electron microscopy with particular focus on eukaryotic RNA polymerases and their pre-initiation complexes, but also chromatin remodelers and epigenetic regulators.
Collapse
Affiliation(s)
- Jonas Hanske
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Yashar Sadian
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Christoph W Müller
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| |
Collapse
|
11
|
Engel C, Neyer S, Cramer P. Distinct Mechanisms of Transcription Initiation by RNA Polymerases I and II. Annu Rev Biophys 2018; 47:425-446. [DOI: 10.1146/annurev-biophys-070317-033058] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RNA polymerases I and II (Pol I and Pol II) are the eukaryotic enzymes that catalyze DNA-dependent synthesis of ribosomal RNA and messenger RNA, respectively. Recent work shows that the transcribing forms of both enzymes are similar and the fundamental mechanisms of RNA chain elongation are conserved. However, the mechanisms of transcription initiation and its regulation differ between Pol I and Pol II. Recent structural studies of Pol I complexes with transcription initiation factors provided insights into how the polymerase recognizes its specific promoter DNA, how it may open DNA, and how initiation may be regulated. Comparison with the well-studied Pol II initiation system reveals a distinct architecture of the initiation complex and visualizes promoter- and gene-class-specific aspects of transcription initiation. On the basis of new structural studies, we derive a model of the Pol I transcription cycle and provide a molecular movie of Pol I transcription that can be used for teaching.
Collapse
Affiliation(s)
- Christoph Engel
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
- Current affiliation: Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Simon Neyer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| |
Collapse
|
12
|
Functions of the TFIIE-Related Tandem Winged-Helix Domain of Rpc34 in RNA Polymerase III Initiation and Elongation. Mol Cell Biol 2018; 38:MCB.00105-17. [PMID: 29180511 DOI: 10.1128/mcb.00105-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 11/22/2017] [Indexed: 12/18/2022] Open
Abstract
Rpc34 is a subunit of the Rpc82/34/31 subcomplex residing on the DNA-binding cleft of RNA polymerase (Pol) III. Rpc34 contains a structurally flexible N-terminal tandem winged-helix (tWH) domain related to the TFIIE transcription factor. While the second WH (WH2) fold of the tWH domain is known to function in DNA melting activity during transcription initiation, the functional role of the WH1 fold is unknown. In this study, we generated a series of new Rpc34 tWH mutants conferring a cold-sensitive growth phenotype. We found that the tWH mutations severely compromised in vitro transcription activity due to destabilization of the preinitiation complex (PIC). Site-specific protein photo-cross-linking analysis indicated that the tWH domain persistently interacts with protein subunits of the Pol III cleft in the PIC and the ternary elongation complex (TEC). Furthermore, purified Pol III proteins with tWH mutations also showed reduced efficiency in RNA elongation. Our study results suggest that the tWH domain is an important protein module above the Pol III cleft that integrates protein and nucleic acid interactions for initiation and elongation.
Collapse
|
13
|
Cramer P. Structural Molecular Biology-A Personal Reflection on the Occasion of John Kendrew's 100th Birthday. J Mol Biol 2017; 429:2603-2610. [PMID: 28501586 DOI: 10.1016/j.jmb.2017.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 05/08/2017] [Indexed: 10/19/2022]
Abstract
Here, I discuss the development and future of structural molecular biology, concentrating on the eukaryotic transcription machinery and reflecting on John Kendrew's legacy from a personal perspective.
Collapse
Affiliation(s)
- Patrick Cramer
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
14
|
Khatter H, Vorländer MK, Müller CW. RNA polymerase I and III: similar yet unique. Curr Opin Struct Biol 2017; 47:88-94. [PMID: 28743025 DOI: 10.1016/j.sbi.2017.05.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/22/2017] [Indexed: 01/03/2023]
Abstract
The majority of non-protein-coding RNAs present in eukaryotic cells comprises rRNAs, tRNAs and U6 snRNA that are involved in protein biosynthesis and are synthesized by DNA-dependent-RNA polymerase I and III. The transcription cycle (initiation, elongation and termination) has similar principles in all three nuclear RNA polymerases with specific features that are reflected back in their structures. Recently, owing to the 'resolution revolution' in electron cryo-microscopy, there has been a significant advancement in the understanding of these molecular machines. Here, we highlight the structure-function adaptation in specificity and activity of these molecular machines and present parallels and distinctions between their transcription mechanisms.
Collapse
Affiliation(s)
- Heena Khatter
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Matthias K Vorländer
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Christoph W Müller
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
15
|
Hantsche M, Cramer P. Strukturelle Grundlage der Transkription: 10 Jahre nach dem Chemie-Nobelpreis. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201608066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Merle Hantsche
- Abteilung für Molekularbiologie; Max-Planck-Institut für biophysikalische Chemie; Am Fassberg 11 37077 Göttingen Deutschland
| | - Patrick Cramer
- Abteilung für Molekularbiologie; Max-Planck-Institut für biophysikalische Chemie; Am Fassberg 11 37077 Göttingen Deutschland
| |
Collapse
|
16
|
Hantsche M, Cramer P. The Structural Basis of Transcription: 10 Years After the Nobel Prize in Chemistry. Angew Chem Int Ed Engl 2016; 55:15972-15981. [DOI: 10.1002/anie.201608066] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Merle Hantsche
- Abteilung für Molekularbiologie; Max Planck Institut für biophysikalische Chemie; Am Fassberg 11 37077 Göttingen Germany
| | - Patrick Cramer
- Abteilung für Molekularbiologie; Max Planck Institut für biophysikalische Chemie; Am Fassberg 11 37077 Göttingen Germany
| |
Collapse
|
17
|
Rijal K, Maraia RJ. Active Center Control of Termination by RNA Polymerase III and tRNA Gene Transcription Levels In Vivo. PLoS Genet 2016; 12:e1006253. [PMID: 27518095 PMCID: PMC4982682 DOI: 10.1371/journal.pgen.1006253] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/21/2016] [Indexed: 01/18/2023] Open
Abstract
The ability of RNA polymerase (RNAP) III to efficiently recycle from termination to reinitiation is critical for abundant tRNA production during cellular proliferation, development and cancer. Yet understanding of the unique termination mechanisms used by RNAP III is incomplete, as is its link to high transcription output. We used two tRNA-mediated suppression systems to screen for Rpc1 mutants with gain- and loss- of termination phenotypes in S. pombe. 122 point mutation mutants were mapped to a recently solved 3.9 Å structure of yeast RNAP III elongation complex (EC); they cluster in the active center bridge helix and trigger loop, as well as the pore and funnel, the latter of which indicate involvement of the RNA cleavage domain of the C11 subunit in termination. Purified RNAP III from a readthrough (RT) mutant exhibits increased elongation rate. The data strongly support a kinetic coupling model in which elongation rate is inversely related to termination efficiency. The mutants exhibit good correlations of terminator RT in vitro and in vivo, and surprisingly, amounts of transcription in vivo. Because assessing in vivo transcription can be confounded by various parameters, we used a tRNA reporter with a processing defect and a strong terminator. By ruling out differences in RNA decay rates, the data indicate that mutants with the RT phenotype synthesize more RNA than wild type cells, and than can be accounted for by their increased elongation rate. Finally, increased activity by the mutants appears unrelated to the RNAP III repressor, Maf1. The results show that the mobile elements of the RNAP III active center, including C11, are key determinants of termination, and that some of the mutations activate RNAP III for overall transcription. Similar mutations in spontaneous cancer suggest this as an unforeseen mechanism of RNAP III activation in disease.
Collapse
Affiliation(s)
- Keshab Rijal
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Richard J. Maraia
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
18
|
Turowski TW, Leśniewska E, Delan-Forino C, Sayou C, Boguta M, Tollervey D. Global analysis of transcriptionally engaged yeast RNA polymerase III reveals extended tRNA transcripts. Genome Res 2016; 26:933-44. [PMID: 27206856 PMCID: PMC4937561 DOI: 10.1101/gr.205492.116] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/20/2016] [Indexed: 01/25/2023]
Abstract
RNA polymerase III (RNAPIII) synthesizes a range of highly abundant small stable RNAs, principally pre-tRNAs. Here we report the genome-wide analysis of nascent transcripts attached to RNAPIII under permissive and restrictive growth conditions. This revealed strikingly uneven polymerase distributions across transcription units, generally with a predominant 5' peak. This peak was higher for more heavily transcribed genes, suggesting that initiation site clearance is rate-limiting during RNAPIII transcription. Down-regulation of RNAPIII transcription under stress conditions was found to be uneven; a subset of tRNA genes showed low response to nutrient shift or loss of the major transcription regulator Maf1, suggesting potential "housekeeping" roles. Many tRNA genes were found to generate long, 3'-extended forms due to read-through of the canonical poly(U) terminators. The degree of read-through was anti-correlated with the density of U-residues in the nascent tRNA, and multiple, functional terminators can be located far downstream. The steady-state levels of 3'-extended pre-tRNA transcripts are low, apparently due to targeting by the nuclear surveillance machinery, especially the RNA binding protein Nab2, cofactors for the nuclear exosome, and the 5'-exonuclease Rat1.
Collapse
Affiliation(s)
- Tomasz W Turowski
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland; Institute of Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | - Ewa Leśniewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Clementine Delan-Forino
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland
| | - Camille Sayou
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland
| | - Magdalena Boguta
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - David Tollervey
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland
| |
Collapse
|
19
|
Hoffmann NA, Sadian Y, Tafur L, Kosinski J, Müller CW. Specialization versus conservation: How Pol I and Pol III use the conserved architecture of the pre-initiation complex for specialized transcription. Transcription 2016; 7:127-32. [PMID: 27327079 PMCID: PMC4984676 DOI: 10.1080/21541264.2016.1203628] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Here, we discuss the overall architecture of the RNA polymerase I (Pol I) and III (Pol III) core enzymes and their associated general transcription factors in the context of models of the Pol I and Pol III pre-initiation complexes, thereby highlighting potential functional adaptations of the Pol I and Pol III enzymes to their respective transcription tasks. Several new insights demonstrate the great degree of specialization of each of the eukaryotic RNA polymerases that is only beginning to be revealed as the structural and functional characterization of all eukaryotic RNA polymerases and their pre-initiation complexes progresses.
Collapse
Affiliation(s)
- Niklas A Hoffmann
- a European Molecular Biology Laboratory (EMBL) , Structural and Computational Biology Unit , Heidelberg , Germany
| | - Yashar Sadian
- a European Molecular Biology Laboratory (EMBL) , Structural and Computational Biology Unit , Heidelberg , Germany
| | - Lucas Tafur
- a European Molecular Biology Laboratory (EMBL) , Structural and Computational Biology Unit , Heidelberg , Germany
| | - Jan Kosinski
- a European Molecular Biology Laboratory (EMBL) , Structural and Computational Biology Unit , Heidelberg , Germany
| | - Christoph W Müller
- a European Molecular Biology Laboratory (EMBL) , Structural and Computational Biology Unit , Heidelberg , Germany
| |
Collapse
|
20
|
Hoffmann NA, Jakobi AJ, Vorländer MK, Sachse C, Müller CW. Transcribing RNA polymerase III observed by electron cryomicroscopy. FEBS J 2016; 283:2811-9. [PMID: 27059519 PMCID: PMC5053293 DOI: 10.1111/febs.13732] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 03/26/2016] [Accepted: 04/04/2016] [Indexed: 12/21/2022]
Abstract
Electron cryomicroscopy reconstructions of elongating RNA polymerase (Pol) III at 3.9 Å resolution and of unbound Pol III (apo Pol III) in two distinct conformations at 4.6 Å and 4.7 Å resolution allow the construction of complete atomic models of Pol III and provide new functional insights into the adaption of Pol III to fulfill its specific transcription tasks.
Collapse
Affiliation(s)
- Niklas A Hoffmann
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany
| | - Arjen J Jakobi
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany
| | - Matthias K Vorländer
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany
| | - Carsten Sachse
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany
| | - Christoph W Müller
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany
| |
Collapse
|
21
|
Automated structure modeling of large protein assemblies using crosslinks as distance restraints. Nat Methods 2016; 13:515-20. [PMID: 27111507 DOI: 10.1038/nmeth.3838] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/19/2016] [Indexed: 11/08/2022]
Abstract
Crosslinking mass spectrometry is increasingly used for structural characterization of multisubunit protein complexes. Chemical crosslinking captures conformational heterogeneity, which typically results in conflicting crosslinks that cannot be satisfied in a single model, making detailed modeling a challenging task. Here we introduce an automated modeling method dedicated to large protein assemblies ('XL-MOD' software is available at http://aria.pasteur.fr/supplementary-data/x-links) that (i) uses a form of spatial restraints that realistically reflects the distribution of experimentally observed crosslinked distances; (ii) automatically deals with ambiguous and/or conflicting crosslinks and identifies alternative conformations within a Bayesian framework; and (iii) allows subunit structures to be flexible during conformational sampling. We demonstrate our method by testing it on known structures and available crosslinking data. We also crosslinked and modeled the 17-subunit yeast RNA polymerase III at atomic resolution; the resulting model agrees remarkably well with recently published cryoelectron microscopy structures and provides additional insights into the polymerase structure.
Collapse
|
22
|
Hoffmann NA, Jakobi AJ, Moreno-Morcillo M, Glatt S, Kosinski J, Hagen WJH, Sachse C, Müller CW. Molecular structures of unbound and transcribing RNA polymerase III. Nature 2015; 528:231-6. [PMID: 26605533 PMCID: PMC4681132 DOI: 10.1038/nature16143] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/13/2015] [Indexed: 12/11/2022]
Abstract
Transcription of genes encoding small structured RNAs such as transfer RNAs, spliceosomal U6 small nuclear RNA and ribosomal 5S RNA is carried out by RNA polymerase III (Pol III), the largest yet structurally least characterized eukaryotic RNA polymerase. Here we present the cryo-electron microscopy structures of the Saccharomyces cerevisiae Pol III elongating complex at 3.9 Å resolution and the apo Pol III enzyme in two different conformations at 4.6 and 4.7 Å resolution, respectively, which allow the building of a 17-subunit atomic model of Pol III. The reconstructions reveal the precise orientation of the C82-C34-C31 heterotrimer in close proximity to the stalk. The C53-C37 heterodimer positions residues involved in transcription termination close to the non-template DNA strand. In the apo Pol III structures, the stalk adopts different orientations coupled with closed and open conformations of the clamp. Our results provide novel insights into Pol III-specific transcription and the adaptation of Pol III towards its small transcriptional targets.
Collapse
Affiliation(s)
- Niklas A. Hoffmann
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Arjen J. Jakobi
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, Notkestr. 85, 22607 Hamburg, Germany
| | - Maria Moreno-Morcillo
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Sebastian Glatt
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Jan Kosinski
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Wim J. H. Hagen
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Carsten Sachse
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Correspondence and requests for materials should be addressed to C.S. () or C.W.M. ()
| | - Christoph W. Müller
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Correspondence and requests for materials should be addressed to C.S. () or C.W.M. ()
| |
Collapse
|
23
|
Affiliation(s)
- Richard J Maraia
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland 20892-2425, USA
| | - Keshab Rijal
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland 20892-2425, USA
| |
Collapse
|
24
|
Arimbasseri AG, Rijal K, Maraia RJ. Comparative overview of RNA polymerase II and III transcription cycles, with focus on RNA polymerase III termination and reinitiation. Transcription 2015; 5:e27639. [PMID: 25764110 DOI: 10.4161/trns.27369] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In eukaryotes, RNA polymerase (RNAP) III transcribes hundreds of genes for tRNAs and 5S rRNA, among others, which share similar promoters and stable transcription initiation complexes (TIC), which support rapid RNAP III recycling. In contrast, RNAP II transcribes a large number of genes with highly variable promoters and interacting factors, which exert fine regulatory control over TIC lability and modifications of RNAP II at different transitional points in the transcription cycle. We review data that illustrate a relatively smooth continuity of RNAP III initiation-elongation-termination and reinitiation toward its function to produce high levels of tRNAs and other RNAs that support growth and development.
Collapse
Affiliation(s)
- Aneeshkumar G Arimbasseri
- a Intramural Research Program; Eunice Kennedy Shriver National Institute of Child Health and Human Development; National Institutes of Health; Bethesda, MD USA
| | | | | |
Collapse
|
25
|
Boissier F, Dumay-Odelot H, Teichmann M, Fribourg S. Structural analysis of human RPC32β-RPC62 complex. J Struct Biol 2015; 192:313-319. [PMID: 26394183 DOI: 10.1016/j.jsb.2015.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 01/22/2023]
Abstract
Transcription initiation by eukaryotic RNA polymerase (Pol) III relies on the subcomplex RPC62/RPC39/RPC32. Two distinct isoforms of RPC32 are encoded in the human genome. RPC32α expression is highly regulated and found only in stem cells and transformed cells, whereas RPC32β is ubiquitously expressed in tissues. Here we identify a core-interacting domain of RPC32 sufficient for the interaction with RPC62. We present the crystal structure of a complex of RPC62 and the RPC32β core domain. RPC32β associates with the extended winged helix 1 and 2 and the coiled coil domain of RPC62 qualifying RPC32 as a molecular bridge in between RPC62 domains. The RPC62-RPC32 complex fit into EM data suggests a bi-functional role for RPC32 through interactions with the largest Pol III subunit and through solvent exposed residues. RPC32 positioning into Pol III suggests that subunit-specific contacts at the surface of the Pol III holoenzyme are critical for its function.
Collapse
Affiliation(s)
- Fanny Boissier
- Université de Bordeaux, Institut Européen de Chimie et Biologie, ARNA Laboratory, F-33607 Pessac, France; Institut National de la Santé Et de la Recherche Médicale, INSERM - U869, ARNA Laboratory, F-33000 Bordeaux, France
| | - Hélène Dumay-Odelot
- Université de Bordeaux, Institut Européen de Chimie et Biologie, ARNA Laboratory, F-33607 Pessac, France; INSERM, U869, ARNA Laboratory, Equipe Labellisée Contre le Cancer, F-33076 Bordeaux, France
| | - Martin Teichmann
- Université de Bordeaux, Institut Européen de Chimie et Biologie, ARNA Laboratory, F-33607 Pessac, France; INSERM, U869, ARNA Laboratory, Equipe Labellisée Contre le Cancer, F-33076 Bordeaux, France
| | - Sébastien Fribourg
- Université de Bordeaux, Institut Européen de Chimie et Biologie, ARNA Laboratory, F-33607 Pessac, France; Institut National de la Santé Et de la Recherche Médicale, INSERM - U869, ARNA Laboratory, F-33000 Bordeaux, France.
| |
Collapse
|
26
|
A Region of Bdp1 Necessary for Transcription Initiation That Is Located within the RNA Polymerase III Active Site Cleft. Mol Cell Biol 2015; 35:2831-40. [PMID: 26055328 DOI: 10.1128/mcb.00263-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/01/2015] [Indexed: 02/02/2023] Open
Abstract
The RNA polymerase III (Pol III)-specific transcription factor Bdp1 is crucial to Pol III recruitment and promoter opening in transcription initiation, yet structural information is sparse. To examine its protein-binding targets within the preinitiation complex at the residue level, photoreactive amino acids were introduced into Saccharomyces cerevisiae Bdp1. Mutations within the highly conserved SANT domain cross-linked to the transcription factor IIB (TFIIB)-related transcription factor Brf1, consistent with the findings of previous studies. In addition, we identified an essential N-terminal region that cross-linked with the Pol III catalytic subunit C128 as well as Brf1. Closer examination revealed that this region interacted with the C128 N-terminal region, the N-terminal half of Brf1, and the C-terminal domain of the C37 subunit, together positioning this region within the active site cleft of the preinitiation complex. With our functional data, our analyses identified an essential region of Bdp1 that is positioned within the active site cleft of Pol III and necessary for transcription initiation.
Collapse
|
27
|
Serruya R, Orlovetskie N, Reiner R, Dehtiar-Zilber Y, Wesolowski D, Altman S, Jarrous N. Human RNase P ribonucleoprotein is required for formation of initiation complexes of RNA polymerase III. Nucleic Acids Res 2015; 43:5442-50. [PMID: 25953854 PMCID: PMC4477669 DOI: 10.1093/nar/gkv447] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 04/24/2015] [Indexed: 12/12/2022] Open
Abstract
Human RNase P is implicated in transcription of small non-coding RNA genes by RNA polymerase III (Pol III), but the precise role of this ribonucleoprotein therein remains unknown. We here show that targeted destruction of HeLa nuclear RNase P inhibits transcription of 5S rRNA genes in whole cell extracts, if this precedes the stage of initiation complex formation. Biochemical purification analyses further reveal that this ribonucleoprotein is recruited to 5S rRNA genes as a part of proficient initiation complexes and the activity persists at reinitiation. Knockdown of RNase P abolishes the assembly of initiation complexes by preventing the formation of the initiation sub-complex of Pol III. Our results demonstrate that the structural intactness, but not the endoribonucleolytic activity per se, of RNase P is critical for the function of Pol III in cells and in extracts.
Collapse
Affiliation(s)
- Raphael Serruya
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Natalie Orlovetskie
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Robert Reiner
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Yana Dehtiar-Zilber
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Donna Wesolowski
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Sidney Altman
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Nayef Jarrous
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| |
Collapse
|
28
|
Rbs1, a new protein implicated in RNA polymerase III biogenesis in yeast Saccharomyces cerevisiae. Mol Cell Biol 2015; 35:1169-81. [PMID: 25605335 DOI: 10.1128/mcb.01230-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Little is known about the RNA polymerase III (Pol III) complex assembly and its transport to the nucleus. We demonstrate that a missense cold-sensitive mutation, rpc128-1007, in the sequence encoding the C-terminal part of the second largest Pol III subunit, C128, affects the assembly and stability of the enzyme. The cellular levels and nuclear concentration of selected Pol III subunits were decreased in rpc128-1007 cells, and the association between Pol III subunits as evaluated by coimmunoprecipitation was also reduced. To identify the proteins involved in Pol III assembly, we performed a genetic screen for suppressors of the rpc128-1007 mutation and selected the Rbs1 gene, whose overexpression enhanced de novo tRNA transcription in rpc128-1007 cells, which correlated with increased stability, nuclear concentration, and interaction of Pol III subunits. The rpc128-1007 rbs1Δ double mutant shows a synthetic growth defect, indicating that rpc128-1007 and rbs1Δ function in parallel ways to negatively regulate Pol III assembly. Rbs1 physically interacts with a subset of Pol III subunits, AC19, AC40, and ABC27/Rpb5. Additionally, Rbs1 interacts with the Crm1 exportin and shuttles between the cytoplasm and nucleus. We postulate that Rbs1 binds to the Pol III complex or subcomplex and facilitates its translocation to the nucleus.
Collapse
|
29
|
Duttke SHC. Meeting report: 11th EMBL conference on transcription and chromatin - August 23-26, 2014 - Heidelberg, Germany. Epigenetics 2014; 9:1317-21. [PMID: 25437046 DOI: 10.4161/15592294.2014.967590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Sascha H C Duttke
- a Section of Molecular Biology ; University of California ; San Diego , CA USA
| |
Collapse
|
30
|
Rijal K, Maraia RJ, Arimbasseri AG. A methods review on use of nonsense suppression to study 3' end formation and other aspects of tRNA biogenesis. Gene 2014; 556:35-50. [PMID: 25447915 DOI: 10.1016/j.gene.2014.11.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 12/26/2022]
Abstract
Suppressor tRNAs bear anticodon mutations that allow them to decode premature stop codons in metabolic marker gene mRNAs, that can be used as in vivo reporters of functional tRNA biogenesis. Here, we review key components of a suppressor tRNA system specific to Schizosaccharomyces pombe and its adaptations for use to study specific steps in tRNA biogenesis. Eukaryotic tRNA biogenesis begins with transcription initiation by RNA polymerase (pol) III. The nascent pre-tRNAs must undergo folding, 5' and 3' processing to remove the leader and trailer, nuclear export, and splicing if applicable, while multiple complex chemical modifications occur throughout the process. We review evidence that precursor-tRNA processing begins with transcription termination at the oligo(T) terminator element, which forms a 3' oligo(U) tract on the nascent RNA, a sequence-specific binding site for the RNA chaperone, La protein. The processing pathway bifurcates depending on a poorly understood property of pol III termination that determines the 3' oligo(U) length and therefore the affinity for La. We thus review the pol III termination process and the factors involved including advances using gene-specific random mutagenesis by dNTP analogs that identify key residues important for transcription termination in certain pol III subunits. The review ends with a 'technical approaches' section that includes a parts lists of suppressor-tRNA alleles, strains and plasmids, and graphic examples of its diverse uses.
Collapse
Affiliation(s)
- Keshab Rijal
- Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Richard J Maraia
- Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| | - Aneeshkumar G Arimbasseri
- Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
31
|
Moreno-Morcillo M, Taylor NMI, Gruene T, Legrand P, Rashid UJ, Ruiz FM, Steuerwald U, Müller CW, Fernández-Tornero C. Solving the RNA polymerase I structural puzzle. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:2570-82. [PMID: 25286842 PMCID: PMC4188003 DOI: 10.1107/s1399004714015788] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/06/2014] [Indexed: 11/28/2022]
Abstract
Knowing the structure of multi-subunit complexes is critical to understand basic cellular functions. However, when crystals of these complexes can be obtained they rarely diffract beyond 3 Å resolution, which complicates X-ray structure determination and refinement. The crystal structure of RNA polymerase I, an essential cellular machine that synthesizes the precursor of ribosomal RNA in the nucleolus of eukaryotic cells, has recently been solved. Here, the crucial steps that were undertaken to build the atomic model of this multi-subunit enzyme are reported, emphasizing how simple crystallographic experiments can be used to extract relevant biological information. In particular, this report discusses the combination of poor molecular replacement and experimental phases, the application of multi-crystal averaging and the use of anomalous scatterers as sequence markers to guide tracing and to locate the active site. The methods outlined here will likely serve as a reference for future structural determination of large complexes at low resolution.
Collapse
Affiliation(s)
- María Moreno-Morcillo
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Nicholas M. I. Taylor
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Tim Gruene
- Department of Structural Chemistry, Georg-August-University, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Pierre Legrand
- SOLEIL Synchrotron, L’Orme de Merisiers, Saint Aubin, Gif-sur-Yvette, France
| | - Umar J. Rashid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Federico M. Ruiz
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ulrich Steuerwald
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Christoph W. Müller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Carlos Fernández-Tornero
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
32
|
Fernández-Tornero C, Moreno-Morcillo M, Rashid UJ, Taylor NMI, Ruiz FM, Gruene T, Legrand P, Steuerwald U, Müller CW. Crystal structure of the 14-subunit RNA polymerase I. Nature 2013; 502:644-9. [PMID: 24153184 DOI: 10.1038/nature12636] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 09/04/2013] [Indexed: 01/21/2023]
Abstract
Protein biosynthesis depends on the availability of ribosomes, which in turn relies on ribosomal RNA production. In eukaryotes, this process is carried out by RNA polymerase I (Pol I), a 14-subunit enzyme, the activity of which is a major determinant of cell growth. Here we present the crystal structure of Pol I from Saccharomyces cerevisiae at 3.0 Å resolution. The Pol I structure shows a compact core with a wide DNA-binding cleft and a tightly anchored stalk. An extended loop mimics the DNA backbone in the cleft and may be involved in regulating Pol I transcription. Subunit A12.2 extends from the A190 jaw to the active site and inserts a transcription elongation factor TFIIS-like zinc ribbon into the nucleotide triphosphate entry pore, providing insight into the role of A12.2 in RNA cleavage and Pol I insensitivity to α-amanitin. The A49-A34.5 heterodimer embraces subunit A135 through extended arms, thereby contacting and potentially regulating subunit A12.2.
Collapse
Affiliation(s)
- Carlos Fernández-Tornero
- 1] Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain [2]
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
RNA polymerase I structure and transcription regulation. Nature 2013; 502:650-5. [DOI: 10.1038/nature12712] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 09/24/2013] [Indexed: 01/25/2023]
|
34
|
Ikegami K, Lieb JD. Integral nuclear pore proteins bind to Pol III-transcribed genes and are required for Pol III transcript processing in C. elegans. Mol Cell 2013; 51:840-9. [PMID: 24011592 DOI: 10.1016/j.molcel.2013.08.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 06/27/2013] [Accepted: 07/31/2013] [Indexed: 11/15/2022]
Abstract
Nuclear pores associate with active protein-coding genes in yeast and have been implicated in transcriptional regulation. Here, we show that in addition to transcriptional regulation, key components of C. elegans nuclear pores are required for processing of a subset of small nucleolar RNAs (snoRNAs) and tRNAs transcribed by RNA polymerase (Pol) III. Chromatin immunoprecipitation of NPP-13 and NPP-3, two integral nuclear pore components, and importin-β IMB-1 provides strong evidence that this requirement is direct. All three proteins associate specifically with tRNA and snoRNA genes undergoing Pol III transcription. These pore components bind immediately downstream of the Pol III preinitiation complex but are not required for Pol III recruitment. Instead, NPP-13 is required for cleavage of tRNA and snoRNA precursors into mature RNAs, whereas Pol II transcript processing occurs normally. Our data suggest that integral nuclear pore proteins act to coordinate transcription and processing of Pol III transcripts in C. elegans.
Collapse
Affiliation(s)
- Kohta Ikegami
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
35
|
Taylor NMI, Baudin F, von Scheven G, Müller CW. RNA polymerase III-specific general transcription factor IIIC contains a heterodimer resembling TFIIF Rap30/Rap74. Nucleic Acids Res 2013; 41:9183-96. [PMID: 23921640 PMCID: PMC3799434 DOI: 10.1093/nar/gkt664] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Transcription of tRNA-encoding genes by RNA polymerase (Pol) III requires the six-subunit general transcription factor IIIC that uses subcomplexes τA and τB to recognize two gene-internal promoter elements named A- and B-box. The Schizosaccharomyces pombe τA subcomplex comprises subunits Sfc1, Sfc4 and Sfc7. The crystal structure of the Sfc1/Sfc7 heterodimer reveals similar domains and overall domain architecture to the Pol II-specific general transcription factor TFIIF Rap30/Rap74. The N-terminal Sfc1/Sfc7 dimerization module consists of a triple β-barrel similar to the N-terminal TFIIF Rap30/Rap74 dimerization module, whereas the C-terminal Sfc1 DNA-binding domain contains a winged-helix domain most similar to the TFIIF Rap30 C-terminal winged-helix domain. Sfc1 DNA-binding domain recognizes single and double-stranded DNA by an unknown mechanism. Several features observed for A-box recognition by τA resemble the recognition of promoters by bacterial RNA polymerase, where σ factor unfolds double-stranded DNA and stabilizes the non-coding DNA strand in an open conformation. Such a function has also been proposed for TFIIF, suggesting that the observed structural similarity between Sfc1/Sfc7 and TFIIF Rap30/Rap74 might also reflect similar functions.
Collapse
Affiliation(s)
- Nicholas M I Taylor
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany and UJF-EMBL-CNRS UMI 3265, Unit of Virus Host-Cell Interactions, 38042 Grenoble Cedex 9, France
| | | | | | | |
Collapse
|
36
|
He Y, Fang J, Taatjes DJ, Nogales E. Structural visualization of key steps in human transcription initiation. Nature 2013; 495:481-6. [PMID: 23446344 PMCID: PMC3612373 DOI: 10.1038/nature11991] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 02/07/2013] [Indexed: 01/22/2023]
Abstract
Eukaryotic transcription initiation requires the assembly of general transcription factors into a pre-initiation complex that ensures the accurate loading of RNA polymerase II (Pol II) at the transcription start site. The molecular mechanism and function of this assembly have remained elusive due to lack of structural information. Here we have used an in vitro reconstituted system to study the stepwise assembly of human TBP, TFIIA, TFIIB, Pol II, TFIIF, TFIIE and TFIIH onto promoter DNA using cryo-electron microscopy. Our structural analyses provide pseudo-atomic models at various stages of transcription initiation that illuminate critical molecular interactions, including how TFIIF engages Pol II and promoter DNA to stabilize both the closed pre-initiation complex and the open-promoter complex, and to regulate start--initiation complexes, combined with the localization of the TFIIH helicases XPD and XPB, support a DNA translocation model of XPB and explain its essential role in promoter opening.
Collapse
Affiliation(s)
- Yuan He
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Jie Fang
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
| | - Dylan J. Taatjes
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80303
| | - Eva Nogales
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720,Howard Hughes Medical Institute, University of California, Berkeley, CA 94720,QB3 Institute and Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720,Correspondence:
| |
Collapse
|
37
|
Arimbasseri AG, Rijal K, Maraia RJ. Transcription termination by the eukaryotic RNA polymerase III. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1829:318-30. [PMID: 23099421 PMCID: PMC3568203 DOI: 10.1016/j.bbagrm.2012.10.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/15/2012] [Accepted: 10/16/2012] [Indexed: 01/22/2023]
Abstract
RNA polymerase (pol) III transcribes a multitude of tRNA and 5S rRNA genes as well as other small RNA genes distributed through the genome. By being sequence-specific, precise and efficient, transcription termination by pol III not only defines the 3' end of the nascent RNA which directs subsequent association with the stabilizing La protein, it also prevents transcription into downstream DNA and promotes efficient recycling. Each of the RNA polymerases appears to have evolved unique mechanisms to initiate the process of termination in response to different types of termination signals. However, in eukaryotes much less is known about the final stage of termination, destabilization of the elongation complex with release of the RNA and DNA from the polymerase active center. By comparison to pols I and II, pol III exhibits the most direct coupling of the initial and final stages of termination, both of which occur at a short oligo(dT) tract on the non-template strand (dA on the template) of the DNA. While pol III termination is autonomous involving the core subunits C2 and probably C1, it also involves subunits C11, C37 and C53, which act on the pol III catalytic center and exhibit homology to the pol II elongation factor TFIIS and TFIIFα/β respectively. Here we compile knowledge of pol III termination and associate mutations that affect this process with structural elements of the polymerase that illustrate the importance of C53/37 both at its docking site on the pol III lobe and in the active center. The models suggest that some of these features may apply to the other eukaryotic pols. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
|
38
|
Distinguishing core and holoenzyme mechanisms of transcription termination by RNA polymerase III. Mol Cell Biol 2013; 33:1571-81. [PMID: 23401852 DOI: 10.1128/mcb.01733-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transcription termination by RNA polymerase (Pol) III serves multiple purposes; it delimits interference with downstream genes, forms 3' oligo(U) binding sites for the posttranscriptional processing factor, La protein, and resets the polymerase complex for reinitiation. Although an interplay of several Pol III subunits is known to collectively control these activities, how they affect molecular function of the active center during termination is incompletely understood. We have approached this using immobilized Pol III-nucleic acid scaffolds to examine the two major components of termination, transcription pausing and RNA release. This allowed us to distinguish two mechanisms of termination by isolated Saccharomyces cerevisiae Pol III. A core mechanism can operate in the absence of C53/37 and C11 subunits but requires synthesis of 8 or more 3' U nucleotides, apparently reflecting inherent sensitivity to an oligo(rU·dA) hybrid that is the termination signal proper. The holoenzyme mechanism requires fewer U nucleotides but uses C53/37 and C11 to slow elongation and prevent terminator arrest. N-terminal truncation of C53 or point mutations that disable the cleavage activity of C11 impair their antiarrest activities. The data are consistent with a model in which C53, C37, and C11 activities are functionally integrated with the active center of Pol III during termination.
Collapse
|
39
|
Abstract
In recent years, emerging structural information on the aRNAP (archaeal RNA polymerase) apparatus has shown its strong evolutionary relationship with the eukaryotic counterpart, RNA Pol (polymerase) II. A novel atomic model of SshRNAP (Sulfolobus shibatae RNAP) in complex with dsDNA (double-stranded DNA) constitutes a new piece of information helping the understanding of the mechanisms for DNA stabilization at the position downstream of the catalytic site during transcription. In Archaea, in contrast with Eukarya, downstream DNA stabilization is universally mediated by the jaw domain and, in some species, by the additional presence of the Rpo13 subunit. Biochemical and biophysical data, combined with X-ray structures of apo- and DNA-bound aRNAP, have demonstrated the capability of the Rpo13 C-terminus to bind in a sequence-independent manner to downstream DNA. In the present review, we discuss the recent findings on the aRNAP and focus on the mechanisms by which the RNAP stabilizes the bound DNA during transcription.
Collapse
|
40
|
Maf1, a general negative regulator of RNA polymerase III in yeast. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012. [PMID: 23201230 DOI: 10.1016/j.bbagrm.2012.11.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
tRNA synthesis by yeast RNA polymerase III (Pol III) is down-regulated under growth-limiting conditions. This control is mediated by Maf1, a global negative regulator of Pol III transcription. Conserved from yeast to man, Maf1 was originally discovered in Saccharomyces cerevisiae by a genetic approach. Details regarding the molecular basis of Pol III repression by Maf1 are now emerging from the recently reported structural and biochemical data on Pol III and Maf1. The phosphorylation status of Maf1 determines its nuclear localization and interaction with the Pol III complex and several Maf1 kinases have been identified to be involved in Pol III control. Moreover, Maf1 indirectly affects tRNA maturation and decay. Here I discuss the current understanding of the mechanisms that oversee the Maf1-mediated regulation of Pol III activity and the role of Maf1 in the control of tRNA biosynthesis in yeast. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
|
41
|
Sentenac A, Riva M. Odd RNA polymerases or the A(B)C of eukaryotic transcription. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:251-7. [PMID: 23142548 DOI: 10.1016/j.bbagrm.2012.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 10/29/2012] [Accepted: 10/30/2012] [Indexed: 02/08/2023]
Abstract
Pioneering studies on eukaryotic transcription were undertaken with the bacterial system in mind. Will the bacterial paradigm apply to eukaryotes? Are there promoter sites scattered in the eukaryotic genome, and sigma-like proteins? Why three forms of RNA polymerase in eukaryotic cells? Why are they structurally so complex, in particular RNA polymerases I and III, compared to the bacterial enzyme? These questions and others that were raised along the way are evoked in this short historical survey of odd RNA polymerases studies, with some emphasis on the contribution of these studies to our global understanding of eukaryotic transcription systems. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
Affiliation(s)
- André Sentenac
- CEA-Saclay, iBiTecS, F-91191 Gif-sur-Yvette cedex, France.
| | | |
Collapse
|
42
|
RNA polymerase III subunit architecture and implications for open promoter complex formation. Proc Natl Acad Sci U S A 2012; 109:19232-7. [PMID: 23132938 DOI: 10.1073/pnas.1211665109] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Transcription initiation by eukaryotic RNA polymerase (Pol) III relies on the TFIIE-related subcomplex C82/34/31. Here we combine cross-linking and hydroxyl radical probing to position the C82/34/31 subcomplex around the Pol III active center cleft. The extended winged helix (WH) domains 1 and 4 of C82 localize to the polymerase domains clamp head and clamp core, respectively, and the two WH domains of C34 span the polymerase cleft from the coiled-coil region of the clamp to the protrusion. The WH domains of C82 and C34 apparently cooperate with other mobile regions flanking the cleft during promoter DNA binding, opening, and loading. Together with published data, our results complete the subunit architecture of Pol III and indicate that all TFIIE-related components of eukaryotic and archaeal transcription systems adopt an evolutionarily conserved location in the upper part of the cleft that supports their functions in open promoter complex formation and stabilization.
Collapse
|
43
|
Dieci G, Bosio MC, Fermi B, Ferrari R. Transcription reinitiation by RNA polymerase III. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:331-41. [PMID: 23128323 DOI: 10.1016/j.bbagrm.2012.10.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/19/2012] [Accepted: 10/23/2012] [Indexed: 01/11/2023]
Abstract
The retention of transcription proteins at an actively transcribed gene contributes to maintenance of the active transcriptional state and increases the rate of subsequent transcription cycles relative to the initial cycle. This process, called transcription reinitiation, generates the abundant RNAs in living cells. The persistence of stable preinitiation intermediates on activated genes representing at least a subset of basal transcription components has long been recognized as a shared feature of RNA polymerase (Pol) I, II and III-dependent transcription in eukaryotes. Studies of the Pol III transcription machinery and its target genes in eukaryotic genomes over the last fifteen years, has uncovered multiple details on transcription reinitiation. In addition to the basal transcription factors that recruit the polymerase, Pol III itself can be retained on the same gene through multiple transcription cycles by a facilitated recycling pathway. The molecular bases for facilitated recycling are progressively being revealed with advances in structural and functional studies. At the same time, progress in our understanding of Pol III transcriptional regulation in response to different environmental cues points to the specific mechanism of Pol III reinitiation as a key target of signaling pathway regulation of cell growth. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
Affiliation(s)
- Giorgio Dieci
- Dipartimento di Bioscienze, Università degli Studi di Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy.
| | | | | | | |
Collapse
|
44
|
Rijal K, Maraia RJ. RNA polymerase III mutants in TFIIFα-like C37 that cause terminator readthrough with no decrease in transcription output. Nucleic Acids Res 2012; 41:139-55. [PMID: 23093604 PMCID: PMC3592421 DOI: 10.1093/nar/gks985] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
How eukaryotic RNA polymerases switch from elongation to termination is unknown. Pol III subunits Rpc53 and Rpc37 (C53/37) form a heterodimer homologous to TFIIFβ/α. C53/37 promotes efficient termination and together with C11 also mediates pol III recycling in vitro. We previously developed Schizosaccharomyces pombe strains that report on two pol III termination activities: RNA oligo(U) 3′-end cleavage, and terminator readthrough. We randomly mutagenized C53 and C37 and isolated many C37 mutants with terminator readthrough but no comparable C53 mutants. The majority of C37 mutants have strong phenotypes with up to 40% readthrough and map to a C-terminal tract previously localized near Rpc2p in the pol III active center while a minority represent a distinct class with weaker phenotype, less readthrough and 3′-oligo(U) lengthening. Nascent pre-tRNAs released from a terminator by C37 mutants have shorter 3′-oligo(U) tracts than in cleavage-deficient C11 double mutants indicating RNA 3′-end cleavage during termination. We asked whether termination deficiency affects transcription output in the mutants in vivo both by monitoring intron-containing nascent transcript levels and 14C-uridine incorporation. Surprisingly, multiple termination mutants have no decrease in transcript output relative to controls. These data are discussed in context of current models of pol III transcription.
Collapse
Affiliation(s)
- Keshab Rijal
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
45
|
Acker J, Conesa C, Lefebvre O. Yeast RNA polymerase III transcription factors and effectors. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:283-95. [PMID: 23063749 DOI: 10.1016/j.bbagrm.2012.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/27/2012] [Accepted: 10/03/2012] [Indexed: 12/19/2022]
Abstract
Recent data indicate that the well-defined transcription machinery of RNA polymerase III (Pol III) is probably more complex than commonly thought. In this review, we describe the yeast basal transcription factors of Pol III and their involvements in the transcription cycle. We also present a list of proteins detected on genes transcribed by Pol III (class III genes) that might participate in the transcription process. Surprisingly, several of these proteins are involved in RNA polymerase II transcription. Defining the role of these potential new effectors in Pol III transcription in vivo will be the challenge of the next few years. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
Affiliation(s)
- Joël Acker
- CEA, iBiTecS, Gif Sur Yvette, F-91191, France
| | | | | |
Collapse
|
46
|
Vannini A. A structural perspective on RNA polymerase I and RNA polymerase III transcription machineries. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:258-64. [PMID: 23031840 DOI: 10.1016/j.bbagrm.2012.09.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 09/17/2012] [Accepted: 09/21/2012] [Indexed: 01/11/2023]
Abstract
RNA polymerase I and III are responsible for the bulk of nuclear transcription in actively growing cells and their activity impacts the cellular biosynthetic capacity. As a consequence, RNA polymerase I and III deregulation has been directly linked to cancer development. The complexity of RNA polymerase I and III transcription apparatuses has hampered their structural characterization. However, in the last decade tremendous progresses have been made, providing insights into the molecular and functional architecture of these multi-subunit transcriptional machineries. Here we summarize the available structural data on RNA polymerase I and III, including specific transcription factors and global regulators. Despite the overall scarcity of detailed structural data, the recent advances in the structural biology of RNA polymerase I and III represent the first step towards a comprehensive understanding of the molecular mechanism underlying RNA polymerase I and III transcription. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
Affiliation(s)
- Alessandro Vannini
- Division of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
47
|
Teichmann M, Dumay-Odelot H, Fribourg S. Structural and functional aspects of winged-helix domains at the core of transcription initiation complexes. Transcription 2012; 3:2-7. [PMID: 22456313 DOI: 10.4161/trns.3.1.18917] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The winged helix (WH) domain is found in core components of transcription systems in eukaryotes and prokaryotes. It represents a sub-class of the helix-turn-helix motif. The WH domain participates in establishing protein-DNA and protein-protein-interactions. Here, we discuss possible explanations for the enrichment of this motif in transcription systems.
Collapse
Affiliation(s)
- Martin Teichmann
- Université de Bordeaux, Institut Européen de Chimie et Biologie, Pessac, France
| | | | | |
Collapse
|
48
|
Vannini A, Cramer P. Conservation between the RNA polymerase I, II, and III transcription initiation machineries. Mol Cell 2012; 45:439-46. [PMID: 22365827 DOI: 10.1016/j.molcel.2012.01.023] [Citation(s) in RCA: 313] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/25/2012] [Accepted: 01/30/2012] [Indexed: 01/24/2023]
Abstract
Recent studies of the three eukaryotic transcription machineries revealed that all initiation complexes share a conserved core. This core consists of the RNA polymerase (I, II, or III), the TATA box-binding protein (TBP), and transcription factors TFIIB, TFIIE, and TFIIF (for Pol II) or proteins structurally and functionally related to parts of these factors (for Pol I and Pol III). The conserved core initiation complex stabilizes the open DNA promoter complex and directs initial RNA synthesis. The periphery of the core initiation complex is decorated by additional polymerase-specific factors that account for functional differences in promoter recognition and opening, and gene class-specific regulation. This review outlines the similarities and differences between these important molecular machines.
Collapse
Affiliation(s)
- Alessandro Vannini
- Gene Center and Department of Biochemistry, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany.
| | | |
Collapse
|
49
|
Loakes D. Nucleotides and nucleic acids; oligo- and polynucleotides. ORGANOPHOSPHORUS CHEMISTRY 2012. [DOI: 10.1039/9781849734875-00169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- David Loakes
- Medical Research Council Laboratory of Molecular Biology, Hills Road Cambridge CB2 2QH UK
| |
Collapse
|
50
|
Jennebach S, Herzog F, Aebersold R, Cramer P. Crosslinking-MS analysis reveals RNA polymerase I domain architecture and basis of rRNA cleavage. Nucleic Acids Res 2012; 40:5591-601. [PMID: 22396529 PMCID: PMC3384336 DOI: 10.1093/nar/gks220] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
RNA polymerase (Pol) I contains a 10-subunit catalytic core that is related to the core of Pol II and includes subunit A12.2. In addition, Pol I contains the heterodimeric subcomplexes A14/43 and A49/34.5, which are related to the Pol II subcomplex Rpb4/7 and the Pol II initiation factor TFIIF, respectively. Here we used lysine-lysine crosslinking, mass spectrometry (MS) and modeling based on five crystal structures, to extend the previous homology model of the Pol I core, to confirm the location of A14/43 and to position A12.2 and A49/34.5 on the core. In the resulting model of Pol I, the C-terminal ribbon (C-ribbon) domain of A12.2 reaches the active site via the polymerase pore, like the C-ribbon of the Pol II cleavage factor TFIIS, explaining why the intrinsic RNA cleavage activity of Pol I is strong, in contrast to the weak cleavage activity of Pol II. The A49/34.5 dimerization module resides on the polymerase lobe, like TFIIF, whereas the A49 tWH domain resides above the cleft, resembling parts of TFIIE. This indicates that Pol I and also Pol III are distantly related to a Pol II-TFIIS-TFIIF-TFIIE complex.
Collapse
Affiliation(s)
- Stefan Jennebach
- Gene Center and Department of Biochemistry, Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | | | | | | |
Collapse
|