1
|
Muraoka T, Okumura M, Saio T. Enzymatic and synthetic regulation of polypeptide folding. Chem Sci 2024; 15:2282-2299. [PMID: 38362427 PMCID: PMC10866363 DOI: 10.1039/d3sc05781j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/04/2024] [Indexed: 02/17/2024] Open
Abstract
Proper folding is essential for the biological functions of all proteins. The folding process is intrinsically error-prone, and the misfolding of a polypeptide chain can cause the formation of toxic aggregates related to pathological outcomes such as neurodegenerative disease and diabetes. Chaperones and some enzymes are involved in the cellular proteostasis systems that assist polypeptide folding to diminish the risk of aggregation. Elucidating the molecular mechanisms of chaperones and related enzymes is important for understanding proteostasis systems and protein misfolding- and aggregation-related pathophysiology. Furthermore, mechanistic studies of chaperones and related enzymes provide important clues to designing chemical mimics, or chemical chaperones, that are potentially useful for recovering proteostasis activities as therapeutic approaches for treating and preventing protein misfolding-related diseases. In this Perspective, we provide a comprehensive overview of the latest understanding of the folding-promotion mechanisms by chaperones and oxidoreductases and recent progress in the development of chemical mimics that possess activities comparable to enzymes, followed by a discussion of future directions.
Collapse
Affiliation(s)
- Takahiro Muraoka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology Koganei Tokyo 184-8588 Japan
- Kanagawa Institute of Industrial Science and Technology (KISTEC) Kanagawa 243-0435 Japan
| | - Masaki Okumura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University Sendai Miyagi 980-8578 Japan
| | - Tomohide Saio
- Division of Molecular Life Science, Institute of Advanced Medical Sciences, Tokushima University Tokushima 770-8503 Japan
| |
Collapse
|
2
|
Park J, Kim H, Gestaut D, Lim S, Opoku-Nsiah KA, Leitner A, Frydman J, Roh SH. A structural vista of phosducin-like PhLP2A-chaperonin TRiC cooperation during the ATP-driven folding cycle. Nat Commun 2024; 15:1007. [PMID: 38307855 PMCID: PMC10837153 DOI: 10.1038/s41467-024-45242-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 01/16/2024] [Indexed: 02/04/2024] Open
Abstract
Proper cellular proteostasis, essential for viability, requires a network of chaperones and cochaperones. ATP-dependent chaperonin TRiC/CCT partners with cochaperones prefoldin (PFD) and phosducin-like proteins (PhLPs) to facilitate folding of essential eukaryotic proteins. Using cryoEM and biochemical analyses, we determine the ATP-driven cycle of TRiC-PFD-PhLP2A interaction. PhLP2A binds to open apo-TRiC through polyvalent domain-specific contacts with its chamber's equatorial and apical regions. PhLP2A N-terminal H3-domain binding to subunits CCT3/4 apical domains displace PFD from TRiC. ATP-induced TRiC closure rearranges the contacts of PhLP2A domains within the closed chamber. In the presence of substrate, actin and PhLP2A segregate into opposing chambers, each binding to positively charged inner surface residues from CCT1/3/6/8. Notably, actin induces a conformational change in PhLP2A, causing its N-terminal helices to extend across the inter-ring interface to directly contact a hydrophobic groove in actin. Our findings reveal an ATP-driven PhLP2A structural rearrangement cycle within the TRiC chamber to facilitate folding.
Collapse
Affiliation(s)
- Junsun Park
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Hyunmin Kim
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Daniel Gestaut
- Dept of Biology and Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Seyeon Lim
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | | | - Alexander Leitner
- Institute of Molecular Systems Biology, Dept of Biology, ETH Zurich, Zurich, 8093, Switzerland
| | - Judith Frydman
- Dept of Biology and Genetics, Stanford University, Stanford, CA, 94305, USA.
| | - Soung-Hun Roh
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea.
| |
Collapse
|
3
|
Araki K, Watanabe-Nakayama T, Sasaki D, Sasaki YC, Mio K. Molecular Dynamics Mappings of the CCT/TRiC Complex-Mediated Protein Folding Cycle Using Diffracted X-ray Tracking. Int J Mol Sci 2023; 24:14850. [PMID: 37834298 PMCID: PMC10573753 DOI: 10.3390/ijms241914850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
The CCT/TRiC complex is a type II chaperonin that undergoes ATP-driven conformational changes during its functional cycle. Structural studies have provided valuable insights into the mechanism of this process, but real-time dynamics analyses of mammalian type II chaperonins are still scarce. We used diffracted X-ray tracking (DXT) to investigate the intramolecular dynamics of the CCT complex. We focused on three surface-exposed loop regions of the CCT1 subunit: the loop regions of the equatorial domain (E domain), the E and intermediate domain (I domain) juncture near the ATP-binding region, and the apical domain (A domain). Our results showed that the CCT1 subunit predominantly displayed rotational motion, with larger mean square displacement (MSD) values for twist (χ) angles compared with tilt (θ) angles. Nucleotide binding had a significant impact on the dynamics. In the absence of nucleotides, the region between the E and I domain juncture could act as a pivotal axis, allowing for greater motion of the E domain and A domain. In the presence of nucleotides, the nucleotides could wedge into the ATP-binding region, weakening the role of the region between the E and I domain juncture as the rotational axis and causing the CCT complex to adopt a more compact structure. This led to less expanded MSD curves for the E domain and A domain compared with nucleotide-absent conditions. This change may help to stabilize the functional conformation during substrate binding. This study is the first to use DXT to probe the real-time molecular dynamics of mammalian type II chaperonins at the millisecond level. Our findings provide new insights into the complex dynamics of chaperonins and their role in the functional folding cycle.
Collapse
Affiliation(s)
- Kazutaka Araki
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 6-2-3 Kashiwanoha, Chiba 277-0882, Japan;
| | - Takahiro Watanabe-Nakayama
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan;
| | - Daisuke Sasaki
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Chiba 277-8561, Japan (Y.C.S.)
| | - Yuji C. Sasaki
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Chiba 277-8561, Japan (Y.C.S.)
| | - Kazuhiro Mio
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 6-2-3 Kashiwanoha, Chiba 277-0882, Japan;
| |
Collapse
|
4
|
Liu C, Jin M, Wang S, Han W, Zhao Q, Wang Y, Xu C, Diao L, Yin Y, Peng C, Bao L, Wang Y, Cong Y. Pathway and mechanism of tubulin folding mediated by TRiC/CCT along its ATPase cycle revealed using cryo-EM. Commun Biol 2023; 6:531. [PMID: 37193829 DOI: 10.1038/s42003-023-04915-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/04/2023] [Indexed: 05/18/2023] Open
Abstract
The eukaryotic chaperonin TRiC/CCT assists the folding of about 10% of cytosolic proteins through an ATP-driven conformational cycle, and the essential cytoskeleton protein tubulin is the obligate substrate of TRiC. Here, we present an ensemble of cryo-EM structures of endogenous human TRiC throughout its ATPase cycle, with three of them revealing endogenously engaged tubulin in different folding stages. The open-state TRiC-tubulin-S1 and -S2 maps show extra density corresponding to tubulin in the cis-ring chamber of TRiC. Our structural and XL-MS analyses suggest a gradual upward translocation and stabilization of tubulin within the TRiC chamber accompanying TRiC ring closure. In the closed TRiC-tubulin-S3 map, we capture a near-natively folded tubulin-with the tubulin engaging through its N and C domains mainly with the A and I domains of the CCT3/6/8 subunits through electrostatic and hydrophilic interactions. Moreover, we also show the potential role of TRiC C-terminal tails in substrate stabilization and folding. Our study delineates the pathway and molecular mechanism of TRiC-mediated folding of tubulin along the ATPase cycle of TRiC, and may also inform the design of therapeutic agents targeting TRiC-tubulin interactions.
Collapse
Affiliation(s)
- Caixuan Liu
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Mingliang Jin
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Shutian Wang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Wenyu Han
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qiaoyu Zhao
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yifan Wang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Cong Xu
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Lei Diao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yue Yin
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, CAS, 201210, Shanghai, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, CAS, 201210, Shanghai, China
| | - Lan Bao
- University of Chinese Academy of Sciences, 100049, Beijing, China
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yanxing Wang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yao Cong
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
5
|
Wang S, Duan X, Wang S, Hao L, Zhang Y, Xu C, Yu Y, Xiang L, Jiang F, Heinlein M, Li T, Zhang W. A chaperonin containing T-complex polypeptide-1 facilitates the formation of the PbWoxT1-PbPTB3 ribonucleoprotein complex for long-distance RNA trafficking in Pyrus betulaefolia. THE NEW PHYTOLOGIST 2023; 238:1115-1128. [PMID: 36751904 DOI: 10.1111/nph.18789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Numerous plant endogenous mRNAs move via phloem and thus affect the growth and development of long-distant organs. mRNAs are transported with RNA-binding proteins forming a ribonucleoprotein complex. However, it remains elusive how such RNP complex assembles and facilitates mRNA trafficking. Protease digestion and RNA immunoprecipitation were used to investigate the RNP assembly function of the complete Chaperonin Containing T-complex Polypeptide-1. In situ hybridization, hairy root transformation, microprojectile bombardment, and grafting experiments demonstrate the role of CCT complex in the transport of a PbWoxT1-PbPTB3 RNP complex in Pyrus betulaefolia. PbCCT5 silenced caused defective movement of GFP-PbPTB3 and GFP-PbWoxT1 from hairy roots to new leaves via the phloem. PbCCT5 is shown to interact with PbPTB3. PbCCT complex enhanced PbPTB3 stabilization and permitted assembly of PbWoxT1 and PbPTB3 into an RNP complex. Furthermore, silencing of individual CCT subunits inhibited the intercellular movement of GFP-PbPTB3 and long-distance trafficking of PbWoxT1 and PbPTB3 in grafted plants. Taken together, the CCT complex assembles PbPTB3 and PbWoxT1 into an RNP complex in the phloem in order to facilitate the long-distance trafficking of PbWoxT1 in P. betulaefolia. This study therefore provides important insights into the mechanism of RNP complex formation and transport.
Collapse
Affiliation(s)
- Shengnan Wang
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Xuwei Duan
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Shengyuan Wang
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Li Hao
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Yi Zhang
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Chaoran Xu
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Yunfei Yu
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Ling Xiang
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Feng Jiang
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Manfred Heinlein
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084, Strasbourg, France
| | - Tianzhong Li
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Wenna Zhang
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| |
Collapse
|
6
|
Park J, Kim H, Gestaut D, Lim S, Leitner A, Frydman J, Roh SH. A structural vista of phosducin-like PhLP2A-chaperonin TRiC cooperation during the ATP-driven folding cycle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.25.534239. [PMID: 37016670 PMCID: PMC10071816 DOI: 10.1101/2023.03.25.534239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Proper cellular proteostasis, essential for viability, requires a network of chaperones and cochaperones. ATP-dependent chaperonin TRiC/CCT partners with cochaperones prefoldin (PFD) and phosducin-like proteins (PhLPs) to facilitate the folding of essential eukaryotic proteins. Using cryoEM and biochemical analyses, we determine the ATP-driven cycle of TRiC-PFD-PhLP2A interaction. In the open TRiC state, PhLP2A binds to the chamber's equator while its N-terminal H3-domain binds to the apical domains of CCT3/4, thereby displacing PFD from TRiC. ATP-induced TRiC closure rearranges the contacts of PhLP2A domains within the closed chamber. In the presence of substrate, actin and PhLP2A segregate into opposing chambers, each binding to the positively charged inner surfaces formed by CCT1/3/6/8. Notably, actin induces a conformational change in PhLP2A, causing its N-terminal helices to extend across the inter-ring interface to directly contact a hydrophobic groove in actin. Our findings reveal an ATP-driven PhLP2A structural rearrangement cycle within the TRiC chamber to facilitate folding.
Collapse
Affiliation(s)
- Junsun Park
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Hyunmin Kim
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Daniel Gestaut
- Dept of Biology, Stanford University, Stanford, CA 94305, USA
| | - Seyeon Lim
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Alexander Leitner
- Institute of Molecular Systems Biology, Dept of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Judith Frydman
- Dept of Biology, Stanford University, Stanford, CA 94305, USA
- Dept of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Soung-Hun Roh
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| |
Collapse
|
7
|
Han W, Jin M, Liu C, Zhao Q, Wang S, Wang Y, Yin Y, Peng C, Wang Y, Cong Y. Structural basis of plp2-mediated cytoskeletal protein folding by TRiC/CCT. SCIENCE ADVANCES 2023; 9:eade1207. [PMID: 36921056 PMCID: PMC10017041 DOI: 10.1126/sciadv.ade1207] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
The cytoskeletal proteins tubulin and actin are the obligate substrates of TCP-1 ring complex/Chaperonin containing TCP-1 (TRiC/CCT), and their folding involves co-chaperone. Through cryo-electron microscopy analysis, we present a more complete picture of TRiC-assisted tubulin/actin folding along TRiC adenosine triphosphatase cycle, under the coordination of co-chaperone plp2. In the open S1/S2 states, plp2 and tubulin/actin engaged within opposite TRiC chambers. Notably, we captured an unprecedented TRiC-plp2-tubulin complex in the closed S3 state, engaged with a folded full-length β-tubulin and loaded with a guanosine triphosphate, and a plp2 occupying opposite rings. Another closed S4 state revealed an actin in the intermediate folding state and a plp2. Accompanying TRiC ring closure, plp2 translocation could coordinate substrate translocation on the CCT6 hemisphere, facilitating substrate stabilization and folding. Our findings reveal the folding mechanism of the major cytoskeletal proteins tubulin/actin under the coordination of the biogenesis machinery TRiC and plp2 and extend our understanding of the links between cytoskeletal proteostasis and related human diseases.
Collapse
Affiliation(s)
- Wenyu Han
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingliang Jin
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Caixuan Liu
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qiaoyu Zhao
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shutian Wang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yifan Wang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yue Yin
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, CAS, Shanghai 201210, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, CAS, Shanghai 201210, China
| | - Yanxing Wang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yao Cong
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Gestaut D, Zhao Y, Park J, Ma B, Leitner A, Collier M, Pintilie G, Roh SH, Chiu W, Frydman J. Structural visualization of the tubulin folding pathway directed by human chaperonin TRiC/CCT. Cell 2022; 185:4770-4787.e20. [PMID: 36493755 PMCID: PMC9735246 DOI: 10.1016/j.cell.2022.11.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 09/01/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022]
Abstract
The ATP-dependent ring-shaped chaperonin TRiC/CCT is essential for cellular proteostasis. To uncover why some eukaryotic proteins can only fold with TRiC assistance, we reconstituted the folding of β-tubulin using human prefoldin and TRiC. We find unstructured β-tubulin is delivered by prefoldin to the open TRiC chamber followed by ATP-dependent chamber closure. Cryo-EM resolves four near-atomic-resolution structures containing progressively folded β-tubulin intermediates within the closed TRiC chamber, culminating in native tubulin. This substrate folding pathway appears closely guided by site-specific interactions with conserved regions in the TRiC chamber. Initial electrostatic interactions between the TRiC interior wall and both the folded tubulin N domain and its C-terminal E-hook tail establish the native substrate topology, thus enabling C-domain folding. Intrinsically disordered CCT C termini within the chamber promote subsequent folding of tubulin's core and middle domains and GTP-binding. Thus, TRiC's chamber provides chemical and topological directives that shape the folding landscape of its obligate substrates.
Collapse
Affiliation(s)
- Daniel Gestaut
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Yanyan Zhao
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Junsun Park
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Boxue Ma
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Alexander Leitner
- Institute of Molecular Systems Biology, Dept of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Miranda Collier
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Grigore Pintilie
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Soung-Hun Roh
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea,Co-Corresponding authors: (lead contact), ,
| | - Wah Chiu
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA,Co-Corresponding authors: (lead contact), ,
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, CA 94305, USA,Department of Genetics, Stanford University, Stanford, CA 94305, USA,Co-Corresponding authors: (lead contact), ,
| |
Collapse
|
9
|
Hu C, Yang J, Qi Z, Wu H, Wang B, Zou F, Mei H, Liu J, Wang W, Liu Q. Heat shock proteins: Biological functions, pathological roles, and therapeutic opportunities. MedComm (Beijing) 2022; 3:e161. [PMID: 35928554 PMCID: PMC9345296 DOI: 10.1002/mco2.161] [Citation(s) in RCA: 185] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/12/2022] Open
Abstract
The heat shock proteins (HSPs) are ubiquitous and conserved protein families in both prokaryotic and eukaryotic organisms, and they maintain cellular proteostasis and protect cells from stresses. HSP protein families are classified based on their molecular weights, mainly including large HSPs, HSP90, HSP70, HSP60, HSP40, and small HSPs. They function as molecular chaperons in cells and work as an integrated network, participating in the folding of newly synthesized polypeptides, refolding metastable proteins, protein complex assembly, dissociating protein aggregate dissociation, and the degradation of misfolded proteins. In addition to their chaperone functions, they also play important roles in cell signaling transduction, cell cycle, and apoptosis regulation. Therefore, malfunction of HSPs is related with many diseases, including cancers, neurodegeneration, and other diseases. In this review, we describe the current understandings about the molecular mechanisms of the major HSP families including HSP90/HSP70/HSP60/HSP110 and small HSPs, how the HSPs keep the protein proteostasis and response to stresses, and we also discuss their roles in diseases and the recent exploration of HSP related therapy and diagnosis to modulate diseases. These research advances offer new prospects of HSPs as potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Chen Hu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Jing Yang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Ziping Qi
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Hong Wu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Beilei Wang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Fengming Zou
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Husheng Mei
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Jing Liu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Wenchao Wang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Qingsong Liu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
- Precision Medicine Research Laboratory of Anhui ProvinceHefeiAnhuiP. R. China
| |
Collapse
|
10
|
Ghozlan H, Cox A, Nierenberg D, King S, Khaled AR. The TRiCky Business of Protein Folding in Health and Disease. Front Cell Dev Biol 2022; 10:906530. [PMID: 35602608 PMCID: PMC9117761 DOI: 10.3389/fcell.2022.906530] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/20/2022] [Indexed: 01/03/2023] Open
Abstract
Maintenance of the cellular proteome or proteostasis is an essential process that when deregulated leads to diseases like neurological disorders and cancer. Central to proteostasis are the molecular chaperones that fold proteins into functional 3-dimensional (3D) shapes and prevent protein aggregation. Chaperonins, a family of chaperones found in all lineages of organisms, are efficient machines that fold proteins within central cavities. The eukaryotic Chaperonin Containing TCP1 (CCT), also known as Tailless complex polypeptide 1 (TCP-1) Ring Complex (TRiC), is a multi-subunit molecular complex that folds the obligate substrates, actin, and tubulin. But more than folding cytoskeletal proteins, CCT differs from most chaperones in its ability to fold proteins larger than its central folding chamber and in a sequential manner that enables it to tackle proteins with complex topologies or very large proteins and complexes. Unique features of CCT include an asymmetry of charges and ATP affinities across the eight subunits that form the hetero-oligomeric complex. Variable substrate binding capacities endow CCT with a plasticity that developed as the chaperonin evolved with eukaryotes and acquired functional capacity in the densely packed intracellular environment. Given the decades of discovery on the structure and function of CCT, much remains unknown such as the scope of its interactome. New findings on the role of CCT in disease, and potential for diagnostic and therapeutic uses, heighten the need to better understand the function of this essential molecular chaperone. Clues as to how CCT causes cancer or neurological disorders lie in the early studies of the chaperonin that form a foundational knowledgebase. In this review, we span the decades of CCT discoveries to provide critical context to the continued research on the diverse capacities in health and disease of this essential protein-folding complex.
Collapse
Affiliation(s)
- Heba Ghozlan
- Division of Cancer Research, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
- Department of Physiology and Biochemistry, Jordan University of Science and Technology, Irbid, Jordan
| | - Amanda Cox
- Division of Cancer Research, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Daniel Nierenberg
- Division of Cancer Research, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Stephen King
- Division of Neuroscience, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Annette R. Khaled
- Division of Cancer Research, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
11
|
Kelly JJ, Tranter D, Pardon E, Chi G, Kramer H, Happonen L, Knee KM, Janz JM, Steyaert J, Bulawa C, Paavilainen VO, Huiskonen JT, Yue WW. Snapshots of actin and tubulin folding inside the TRiC chaperonin. Nat Struct Mol Biol 2022; 29:420-429. [PMID: 35449234 PMCID: PMC9113939 DOI: 10.1038/s41594-022-00755-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 03/01/2022] [Indexed: 01/16/2023]
Abstract
The integrity of a cell's proteome depends on correct folding of polypeptides by chaperonins. The chaperonin TCP-1 ring complex (TRiC) acts as obligate folder for >10% of cytosolic proteins, including he cytoskeletal proteins actin and tubulin. Although its architecture and how it recognizes folding substrates are emerging from structural studies, the subsequent fate of substrates inside the TRiC chamber is not defined. We trapped endogenous human TRiC with substrates (actin, tubulin) and cochaperone (PhLP2A) at different folding stages, for structure determination by cryo-EM. The already-folded regions of client proteins are anchored at the chamber wall, positioning unstructured regions toward the central space to achieve their native fold. Substrates engage with different sections of the chamber during the folding cycle, coupled to TRiC open-and-close transitions. Further, the cochaperone PhLP2A modulates folding, acting as a molecular strut between substrate and TRiC chamber. Our structural snapshots piece together an emerging model of client protein folding within TRiC.
Collapse
Affiliation(s)
- John J Kelly
- Centre for Medicines Discovery, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Dale Tranter
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Gamma Chi
- Centre for Medicines Discovery, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Holger Kramer
- Biological Mass Spectrometry and Proteomics Facility, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Lotta Happonen
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Kelly M Knee
- Pfizer Rare Disease Research Unit, Worldwide Research and Development, Pfizer Inc., Cambridge, MA, USA
| | - Jay M Janz
- Pfizer Rare Disease Research Unit, Worldwide Research and Development, Pfizer Inc., Cambridge, MA, USA
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Christine Bulawa
- Pfizer Rare Disease Research Unit, Worldwide Research and Development, Pfizer Inc., Cambridge, MA, USA
| | - Ville O Paavilainen
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Juha T Huiskonen
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland.
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, UK.
| | - Wyatt W Yue
- Centre for Medicines Discovery, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.
- Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
12
|
Cuellar J, Vallin J, Svanström A, Maestro-López M, Teresa Bueno-Carrasco M, Grant Ludlam W, Willardson BM, Valpuesta JM, Grantham J. The molecular chaperone CCT sequesters gelsolin and protects it from cleavage by caspase-3. J Mol Biol 2021; 434:167399. [PMID: 34896365 DOI: 10.1016/j.jmb.2021.167399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/19/2021] [Accepted: 12/03/2021] [Indexed: 11/27/2022]
Abstract
The actin filament severing and capping protein gelsolin plays an important role in modulation of actin filament dynamics by influencing the number of actin filament ends. During apoptosis, gelsolin becomes constitutively active due to cleavage by caspase-3. In non-apoptotic cells gelsolin is activated by the binding of Ca2+. This activated form of gelsolin binds to, but is not a folding substrate of the molecular chaperone CCT/TRiC. Here we demonstrate that in vitro, gelsolin is protected from cleavage by caspase-3 in the presence of CCT. Cryoelectron microscopy and single particle 3D reconstruction of the CCT:gelsolin complex reveals that gelsolin is located in the interior of the chaperonin cavity, with a placement distinct from that of the obligate CCT folding substrates actin and tubulin. In cultured mouse melanoma B16F1 cells, gelsolin co-localises with CCT upon stimulation of actin dynamics at peripheral regions during lamellipodia formation. These data indicate that localised sequestration of gelsolin by CCT may provide spatial control of actin filament dynamics.
Collapse
Affiliation(s)
- Jorge Cuellar
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, 28049, Spain.
| | - Josefine Vallin
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 40530 Gothenburg, Sweden
| | - Andreas Svanström
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 40530 Gothenburg, Sweden
| | - Moisés Maestro-López
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, 28049, Spain
| | | | - W Grant Ludlam
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Barry M Willardson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - José M Valpuesta
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, 28049, Spain
| | - Julie Grantham
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 40530 Gothenburg, Sweden.
| |
Collapse
|
13
|
Herreros D, Lederman RR, Krieger J, Jiménez-Moreno A, Martínez M, Myška D, Strelak D, Filipovic J, Bahar I, Carazo JM, Sanchez COS. Approximating deformation fields for the analysis of continuous heterogeneity of biological macromolecules by 3D Zernike polynomials. IUCRJ 2021; 8:992-1005. [PMID: 34804551 PMCID: PMC8562670 DOI: 10.1107/s2052252521008903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/25/2021] [Indexed: 05/04/2023]
Abstract
Structural biology has evolved greatly due to the advances introduced in fields like electron microscopy. This image-capturing technique, combined with improved algorithms and current data processing software, allows the recovery of different conformational states of a macromolecule, opening new possibilities for the study of its flexibility and dynamic events. However, the ensemble analysis of these different conformations, and in particular their placement into a common variable space in which the differences and similarities can be easily recognized, is not an easy matter. To simplify the analysis of continuous heterogeneity data, this work proposes a new automatic algorithm that relies on a mathematical basis defined over the sphere to estimate the deformation fields describing conformational transitions among different structures. Thanks to the approximation of these deformation fields, it is possible to describe the forces acting on the molecules due to the presence of different motions. It is also possible to represent and compare several structures in a low-dimensional mapping, which summarizes the structural characteristics of different states. All these analyses are integrated into a common framework, providing the user with the ability to combine them seamlessly. In addition, this new approach is a significant step forward compared with principal component analysis and normal mode analysis of cryo-electron microscopy maps, avoiding the need to select components or modes and producing localized analysis.
Collapse
Affiliation(s)
- David Herreros
- Centro Nacional de Biotecnologia-CSIC, C/ Darwin 3, Cantoblanco, Madrid 28049, Spain
| | - Roy R. Lederman
- Department of Statistics and Data Science, Yale University, New Haven, Connecticut, USA
| | - James Krieger
- Department of Computational and Systems Biology, University of Pittsburgh, Pennsylvania, USA
| | - Amaya Jiménez-Moreno
- Centro Nacional de Biotecnologia-CSIC, C/ Darwin 3, Cantoblanco, Madrid 28049, Spain
| | - Marta Martínez
- Centro Nacional de Biotecnologia-CSIC, C/ Darwin 3, Cantoblanco, Madrid 28049, Spain
| | - David Myška
- Institute of Computer Science, Masaryk University, Botanická 68a, 60200 Brno, Czech Republic
| | - David Strelak
- Centro Nacional de Biotecnologia-CSIC, C/ Darwin 3, Cantoblanco, Madrid 28049, Spain
- Faculty of Informatics, Masaryk University, Botanická 68a, 60200 Brno, Czech Republic
| | - Jiri Filipovic
- Institute of Computer Science, Masaryk University, Botanická 68a, 60200 Brno, Czech Republic
| | - Ivet Bahar
- Department of Computational and Systems Biology, University of Pittsburgh, Pennsylvania, USA
| | - Jose Maria Carazo
- Centro Nacional de Biotecnologia-CSIC, C/ Darwin 3, Cantoblanco, Madrid 28049, Spain
| | | |
Collapse
|
14
|
CryoEM reveals the stochastic nature of individual ATP binding events in a group II chaperonin. Nat Commun 2021; 12:4754. [PMID: 34362932 PMCID: PMC8346469 DOI: 10.1038/s41467-021-25099-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/21/2021] [Indexed: 12/05/2022] Open
Abstract
Chaperonins are homo- or hetero-oligomeric complexes that use ATP binding and hydrolysis to facilitate protein folding. ATP hydrolysis exhibits both positive and negative cooperativity. The mechanism by which chaperonins coordinate ATP utilization in their multiple subunits remains unclear. Here we use cryoEM to study ATP binding in the homo-oligomeric archaeal chaperonin from Methanococcus maripaludis (MmCpn), consisting of two stacked rings composed of eight identical subunits each. Using a series of image classification steps, we obtained different structural snapshots of individual chaperonins undergoing the nucleotide binding process. We identified nucleotide-bound and free states of individual subunits in each chaperonin, allowing us to determine the ATP occupancy state of each MmCpn particle. We observe distinctive tertiary and quaternary structures reflecting variations in nucleotide occupancy and subunit conformations in each chaperonin complex. Detailed analysis of the nucleotide distribution in each MmCpn complex indicates that individual ATP binding events occur in a statistically random manner for MmCpn, both within and across the rings. Our findings illustrate the power of cryoEM to characterize a biochemical property of multi-subunit ligand binding cooperativity at the individual particle level. The mechanism by which chaperonins coordinate ATP utilization in their multiple subunits remains unclear. Here, the authors employ an approach that uses cryo-EM single particle analysis to track the number and distribution of nucleotides bound to each subunit in the homo-oligomeric MmCpn archaeal chaperonin complex and observe that ATP binds in a statistically random manner to MmCpn both within a ring and across the rings, which shows that there is no cooperativity in ATP binding to archaeal group II chaperonins under the conditions used in this study.
Collapse
|
15
|
Green AM, DeWeerd RA, O'Leary DR, Hansen AR, Hayer KE, Kulej K, Dineen AS, Szeto JH, Garcia BA, Weitzman MD. Interaction with the CCT chaperonin complex limits APOBEC3A cytidine deaminase cytotoxicity. EMBO Rep 2021; 22:e52145. [PMID: 34347354 DOI: 10.15252/embr.202052145] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 11/09/2022] Open
Abstract
The APOBEC3 cytidine deaminases are implicated as the cause of a prevalent somatic mutation pattern found in cancer genomes. The APOBEC3 enzymes act as viral restriction factors by mutating viral genomes. Mutation of the cellular genome is presumed to be an off-target activity of the enzymes, although the regulatory measures for APOBEC3 expression and activity remain undefined. It is therefore difficult to predict circumstances that enable APOBEC3 interaction with cellular DNA that leads to mutagenesis. The APOBEC3A (A3A) enzyme is the most potent deaminase of the family. Using proteomics, we evaluate protein interactors of A3A to identify potential regulators. We find that A3A interacts with the chaperonin-containing TCP-1 (CCT) complex, a cellular machine that assists in protein folding and function. Importantly, depletion of CCT results in A3A-induced DNA damage and cytotoxicity. Evaluation of cancer genomes demonstrates an enrichment of A3A mutational signatures in cancers with silencing mutations in CCT subunit genes. Together, these data suggest that the CCT complex interacts with A3A, and that disruption of CCT function results in increased A3A mutational activity.
Collapse
Affiliation(s)
- Abby M Green
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachel A DeWeerd
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - David R O'Leary
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Ava R Hansen
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Katharina E Hayer
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Katarzyna Kulej
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ariel S Dineen
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Julia H Szeto
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew D Weitzman
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA.,Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
16
|
Zhang Y, Krieger J, Mikulska-Ruminska K, Kaynak B, Sorzano COS, Carazo JM, Xing J, Bahar I. State-dependent sequential allostery exhibited by chaperonin TRiC/CCT revealed by network analysis of Cryo-EM maps. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 160:104-120. [PMID: 32866476 PMCID: PMC7914283 DOI: 10.1016/j.pbiomolbio.2020.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 06/25/2020] [Accepted: 08/16/2020] [Indexed: 12/17/2022]
Abstract
The eukaryotic chaperonin TRiC/CCT plays a major role in assisting the folding of many proteins through an ATP-driven allosteric cycle. Recent structures elucidated by cryo-electron microscopy provide a broad view of the conformations visited at various stages of the chaperonin cycle, including a sequential activation of its subunits in response to nucleotide binding. But we lack a thorough mechanistic understanding of the structure-based dynamics and communication properties that underlie the TRiC/CCT machinery. In this study, we present a computational methodology based on elastic network models adapted to cryo-EM density maps to gain a deeper understanding of the structure-encoded allosteric dynamics of this hexadecameric machine. We have analysed several structures of the chaperonin resolved in different states toward mapping its conformational landscape. Our study indicates that the overall architecture intrinsically favours cooperative movements that comply with the structural variabilities observed in experiments. Furthermore, the individual subunits CCT1-CCT8 exhibit state-dependent sequential events at different states of the allosteric cycle. For example, in the ATP-bound state, subunits CCT5 and CCT4 selectively initiate the lid closure motions favoured by the overall architecture; whereas in the apo form of the heteromer, the subunit CCT7 exhibits the highest predisposition to structural change. The changes then propagate through parallel fluxes of allosteric signals to neighbours on both rings. The predicted state-dependent mechanisms of sequential activation provide new insights into TRiC/CCT intra- and inter-ring signal transduction events.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Computational and Systems Biology, University of Pittsburgh, 800 Murdoch Building, 3420 Forbes Avenue, Pittsburgh, PA, 15261, USA
| | - James Krieger
- Department of Computational and Systems Biology, University of Pittsburgh, 800 Murdoch Building, 3420 Forbes Avenue, Pittsburgh, PA, 15261, USA
| | - Karolina Mikulska-Ruminska
- Department of Computational and Systems Biology, University of Pittsburgh, 800 Murdoch Building, 3420 Forbes Avenue, Pittsburgh, PA, 15261, USA
| | - Burak Kaynak
- Department of Computational and Systems Biology, University of Pittsburgh, 800 Murdoch Building, 3420 Forbes Avenue, Pittsburgh, PA, 15261, USA
| | | | - José-María Carazo
- Centro Nacional de Biotecnología (CSIC), Darwin, 3, 28049, Madrid, Spain
| | - Jianhua Xing
- Department of Computational and Systems Biology, University of Pittsburgh, 800 Murdoch Building, 3420 Forbes Avenue, Pittsburgh, PA, 15261, USA
| | - Ivet Bahar
- Department of Computational and Systems Biology, University of Pittsburgh, 800 Murdoch Building, 3420 Forbes Avenue, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
17
|
McClatchy DB, Martínez-Bartolomé S, Gao Y, Lavallée-Adam M, Yates JR. Quantitative analysis of global protein stability rates in tissues. Sci Rep 2020; 10:15983. [PMID: 32994440 PMCID: PMC7524747 DOI: 10.1038/s41598-020-72410-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023] Open
Abstract
Protein degradation is an essential mechanism for maintaining proteostasis in response to internal and external perturbations. Disruption of this process is implicated in many human diseases. We present a new technique, QUAD (Quantification of Azidohomoalanine Degradation), to analyze the global degradation rates in tissues using a non-canonical amino acid and mass spectrometry. QUAD analysis reveals that protein stability varied within tissues, but discernible trends in the data suggest that cellular environment is a major factor dictating stability. Within a tissue, different organelles and protein functions were enriched with different stability patterns. QUAD analysis demonstrated that protein stability is enhanced with age in the brain but not in the liver. Overall, QUAD allows the first global quantitation of protein stability rates in tissues, which will allow new insights and hypotheses in basic and translational research.
Collapse
Affiliation(s)
- Daniel B McClatchy
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Yu Gao
- College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Mathieu Lavallée-Adam
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Department of Biochemistry, Microbiology and Immunology and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
18
|
Rodriguez A, Von Salzen D, Holguin BA, Bernal RA. Complex Destabilization in the Mitochondrial Chaperonin Hsp60 Leads to Disease. Front Mol Biosci 2020; 7:159. [PMID: 32766281 PMCID: PMC7381220 DOI: 10.3389/fmolb.2020.00159] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/24/2020] [Indexed: 01/21/2023] Open
Abstract
Several neurological disorders have been linked to mutations in chaperonin genes and more specifically to the HSPD1 gene. In humans, HSPD1 encodes the mitochondrial Heat Shock Protein 60 (mtHsp60) chaperonin, which carries out essential protein folding reactions that help maintain mitochondrial and cellular homeostasis. It functions as a macromolecular complex that provides client proteins an environment that favors proper folding in an ATP-dependent manner. It has been established that mtHsp60 plays a crucial role in the proper folding of mitochondrial proteins involved in ATP producing pathways. Recently, various single-point mutations in the mtHsp60 encoding gene have been directly linked to neuropathies and paraplegias. Individuals who harbor mtHsp60 mutations that negatively impact its folding ability display phenotypes with highly compromised muscle and neuron cells. Carriers of these mutations usually develop neuropathies and paraplegias at different stages of their lives mainly characterized by leg stiffness and weakness as well as degeneration of spinal cord nerves. These phenotypes are likely due to hindered energy producing pathways involved in cellular respiration resulting in ATP deprived cells. Although the complete protein folding mechanism of mtHsp60 is not well understood, recent work suggests that several of these mutations act by destabilizing the oligomeric stability of mtHsp60. Here, we discuss recent studies that highlight key aspects of the mtHsp60 mechanism with a focus on some of the known disease-causing point mutations, D29G and V98I, and their effect on the protein folding reaction cycle.
Collapse
Affiliation(s)
| | | | | | - Ricardo A. Bernal
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX, United States
| |
Collapse
|
19
|
Kaelber JT, Jiang W, Weaver SC, Auguste AJ, Chiu W. Arrangement of the Polymerase Complexes inside a Nine-Segmented dsRNA Virus. Structure 2020; 28:604-612.e3. [PMID: 32049031 PMCID: PMC7289189 DOI: 10.1016/j.str.2020.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 12/18/2019] [Accepted: 01/17/2020] [Indexed: 12/15/2022]
Abstract
Members of the family Reoviridae package several copies of the viral polymerase complex into their capsid to carry out replication and transcription within viral particles. Classical single-particle reconstruction encounters difficulties resolving structures such as the intraparticle polymerase complex because refinement can converge to an incorrect map and because the map could depict a nonrepresentative subset of particles or an average of heterogeneous particles. Using the nine-segmented Fako virus, we tested hypotheses for the arrangement and number of polymerase complexes within the virion by measuring how well each hypothesis describes the set of cryoelectron microscopy images of individual viral particles. We find that the polymerase complex in Fako virus binds at ten possible sites despite having only nine genome segments. A single asymmetric configuration describes the arrangement of these complexes in both virions and genome-free capsids. Similarities between the arrangements of Reoviridae with 9, 10, and 11 segments indicate the generalizability of this architecture.
Collapse
Affiliation(s)
- Jason T Kaelber
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| | - Wen Jiang
- Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Scott C Weaver
- Institute for Human Infections and Immunity, World Reference Center for Emerging Viruses and Arboviruses, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Albert J Auguste
- Institute for Human Infections and Immunity, World Reference Center for Emerging Viruses and Arboviruses, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; Department of Entomology, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Wah Chiu
- Department of Bioengineering, Department of Microbiology and Immunology, and James H. Clark Center, Stanford University, Stanford, CA, USA
| |
Collapse
|
20
|
Abstract
This chronologue seeks to document the discovery and development of an understanding of oligomeric ring protein assemblies known as chaperonins that assist protein folding in the cell. It provides detail regarding genetic, physiologic, biochemical, and biophysical studies of these ATP-utilizing machines from both in vivo and in vitro observations. The chronologue is organized into various topics of physiology and mechanism, for each of which a chronologic order is generally followed. The text is liberally illustrated to provide firsthand inspection of the key pieces of experimental data that propelled this field. Because of the length and depth of this piece, the use of the outline as a guide for selected reading is encouraged, but it should also be of help in pursuing the text in direct order.
Collapse
|
21
|
An ensemble of cryo-EM structures of TRiC reveal its conformational landscape and subunit specificity. Proc Natl Acad Sci U S A 2019; 116:19513-19522. [PMID: 31492816 PMCID: PMC6765261 DOI: 10.1073/pnas.1903976116] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The ATP-fueled TRiC/CCT acts in the folding of 10% cytosolic proteins. TRiC consists of 8 paralogous subunits, each of which plays special roles in TRiC assembly, allosteric cooperativity, and substrate folding. However, due to lack of a thorough picture of TRiC conformational landscape and atomic-resolution details, the underlying structural mechanisms of TRiC subunit specificity in nucleotide usage and substrate binding, and the allosteric transition during ring closure remain unclear. Here, through cryo-electron microscopy (cryo-EM) analysis, we captured a thorough picture of TRiC conformational landscape from open to closed states and its gradually enhanced allosteric coordination, including the N termini, in unprecedented structural detail. Our study also offers insights into the TRiC subunit specificities in nucleotide usage and ring closure. TRiC/CCT assists the folding of ∼10% of cytosolic proteins through an ATP-driven conformational cycle and is essential in maintaining protein homeostasis. Here, we determined an ensemble of cryo-electron microscopy (cryo-EM) structures of yeast TRiC at various nucleotide concentrations, with 4 open-state maps resolved at near-atomic resolutions, and a closed-state map at atomic resolution, revealing an extra layer of an unforeseen N-terminal allosteric network. We found that, during TRiC ring closure, the CCT7 subunit moves first, responding to nucleotide binding; CCT4 is the last to bind ATP, serving as an ATP sensor; and CCT8 remains ADP-bound and is hardly involved in the ATPase-cycle in our experimental conditions; overall, yeast TRiC consumes nucleotide in a 2-ring positively coordinated manner. Our results depict a thorough picture of the TRiC conformational landscape and its allosteric transitions from the open to closed states in more structural detail and offer insights into TRiC subunit specificity in ATP consumption and ring closure, and potentially in substrate processing.
Collapse
|
22
|
Identification of an allosteric network that influences assembly and function of group II chaperonins. Nat Struct Mol Biol 2019; 24:683-684. [PMID: 28880864 DOI: 10.1038/nsmb.3459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Structural and functional analysis of the role of the chaperonin CCT in mTOR complex assembly. Nat Commun 2019; 10:2865. [PMID: 31253771 PMCID: PMC6599039 DOI: 10.1038/s41467-019-10781-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/01/2019] [Indexed: 01/01/2023] Open
Abstract
The mechanistic target of rapamycin (mTOR) kinase forms two multi-protein signaling complexes, mTORC1 and mTORC2, which are master regulators of cell growth, metabolism, survival and autophagy. Two of the subunits of these complexes are mLST8 and Raptor, β-propeller proteins that stabilize the mTOR kinase and recruit substrates, respectively. Here we report that the eukaryotic chaperonin CCT plays a key role in mTORC assembly and signaling by folding both mLST8 and Raptor. A high resolution (4.0 Å) cryo-EM structure of the human mLST8-CCT intermediate isolated directly from cells shows mLST8 in a near-native state bound to CCT deep within the folding chamber between the two CCT rings, and interacting mainly with the disordered N- and C-termini of specific CCT subunits of both rings. These findings describe a unique function of CCT in mTORC assembly and a distinct binding site in CCT for mLST8, far from those found for similar β-propeller proteins. β-propeller domains are an important class of folding substrates for the eukaryotic cytosolic chaperonin CTT. Here the authors find that CTT contributes to the folding and assembly of two β-propeller proteins from mTOR complexes, mLST8 and Raptor, and determine the 4.0 Å cryoEM structure of a human mLST8-CCT intermediate that shows mLST8 in a near-native state.
Collapse
|
24
|
Zhao Q, Zhang X, Sommer F, Ta N, Wang N, Schroda M, Cong Y, Liu C. Hetero-oligomeric CPN60 resembles highly symmetric group-I chaperonin structure revealed by Cryo-EM. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:798-812. [PMID: 30735603 DOI: 10.1111/tpj.14273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/07/2019] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
The chloroplast chaperonin system is indispensable for the biogenesis of Rubisco, the key enzyme in photosynthesis. Using Chlamydomonas reinhardtii as a model system, we found that in vivo the chloroplast chaperonin consists of CPN60α, CPN60β1 and CPN60β2 and the co-chaperonin of the three subunits CPN20, CPN11 and CPN23. In Escherichia coli, CPN20 homo-oligomers and all possible other chloroplast co-chaperonin hetero-oligomers are functional, but only that consisting of CPN11/20/23-CPN60αβ1β2 can fully replace GroES/GroEL under stringent stress conditions. Endogenous CPN60 was purified and its stoichiometry was determined to be 6:2:6 for CPN60α:CPN60β1:CPN60β2. The cryo-EM structures of endogenous CPN60αβ1β2/ADP and CPN60αβ1β2/co-chaperonin/ADP were solved at resolutions of 4.06 and 3.82 Å, respectively. In both hetero-oligomeric complexes the chaperonin subunits within each ring are highly symmetric. Through hetero-oligomerization, the chloroplast co-chaperonin CPN11/20/23 forms seven GroES-like domains, which symmetrically interact with CPN60αβ1β2. Our structure also reveals an uneven distribution of roof-forming domains in the dome-shaped CPN11/20/23 co-chaperonin and potentially diversified surface properties in the folding cavity of the CPN60αβ1β2 chaperonin that might enable the chloroplast chaperonin system to assist in the folding of specific substrates.
Collapse
Affiliation(s)
- Qian Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiang Zhang
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201210, China
- Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Frederik Sommer
- Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Na Ta
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Ning Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Michael Schroda
- Molecular Biotechnology and Systems Biology, TU Kaiserslautern, Erwin-Schroedinger Str. 70, 67663, Kaiserslautern, Germany
| | - Yao Cong
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201210, China
- Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Cuimin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
25
|
Ahn HK, Yoon JT, Choi I, Kim S, Lee HS, Pai HS. Functional characterization of chaperonin containing T-complex polypeptide-1 and its conserved and novel substrates in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2741-2757. [PMID: 30825377 PMCID: PMC6506772 DOI: 10.1093/jxb/erz099] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/21/2019] [Indexed: 05/31/2023]
Abstract
Chaperonin containing T-complex polypeptide-1 (CCT) is an evolutionarily conserved chaperonin multi-subunit complex that mediates protein folding in eukaryotes. It is essential for cell growth and survival in yeast and mammals, with diverse substrate proteins. However, only a few studies on plant CCT have been reported to date, due to the essentiality of CCT subunit genes and the large size of the complex. Here, we have investigated the structure and function of the Arabidopsis CCT complex in detail. The plant CCT consisted of eight subunits that assemble to form a high-molecular-mass protein complex, shown by diverse methods. CCT-deficient cells exhibited depletion of cortical microtubules, accompanied by a reduction in cellular α- and β-tubulin levels due to protein degradation. Cycloheximide-chase assays suggested that CCT is involved in the folding of tubulins in plants. Furthermore, CCT interacted with PPX1, the catalytic subunit of protein phosphatase 4, and may participate in the folding of PPX1 as its substrate. CCT also interacted with Tap46, a regulatory subunit of PP2A family phosphatases, but Tap46 appeared to function in PPX1 stabilization, rather than as a CCT substrate. Collectively, our findings reveal the essential functions of CCT chaperonin in plants and its conserved and novel substrates.
Collapse
Affiliation(s)
- Hee-Kyung Ahn
- Department of Systems Biology, Yonsei University, Seoul, Korea
| | - Joong-Tak Yoon
- Department of Systems Biology, Yonsei University, Seoul, Korea
| | - Ilyeong Choi
- Department of Systems Biology, Yonsei University, Seoul, Korea
| | - Sumin Kim
- Department of Systems Biology, Yonsei University, Seoul, Korea
| | - Ho-Seok Lee
- Department of Systems Biology, Yonsei University, Seoul, Korea
| | - Hyun-Sook Pai
- Department of Systems Biology, Yonsei University, Seoul, Korea
| |
Collapse
|
26
|
Gestaut D, Limatola A, Joachimiak L, Frydman J. The ATP-powered gymnastics of TRiC/CCT: an asymmetric protein folding machine with a symmetric origin story. Curr Opin Struct Biol 2019; 55:50-58. [PMID: 30978594 DOI: 10.1016/j.sbi.2019.03.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/04/2019] [Indexed: 10/27/2022]
Abstract
The eukaryotic chaperonin TRiC/CCT is a large hetero-oligomeric complex that plays an essential role assisting cellular protein folding and suppressing protein aggregation. It consists of two rings, and each composed of eight different subunits; non-native polypeptides bind and fold in an ATP-dependent manner within their central chamber. Here, we review recent advances in our understanding of TRiC structure and mechanism enabled by application of hybrid structural methods including the integration of cryo-electron microscopy with distance constraints from crosslinking mass spectrometry. These new insights are revealing how the different TRiC/CCT subunits create asymmetry in its ATP-driven conformational cycle and its interaction with non-native polypeptides, which ultimately underlie its unique ability to fold proteins that cannot be folded by other chaperones.
Collapse
Affiliation(s)
- Daniel Gestaut
- Department of Biology and Genetics, Stanford University, Stanford, CA 94305-5430, USA
| | - Antonio Limatola
- Department of Biology and Genetics, Stanford University, Stanford, CA 94305-5430, USA
| | - Lukasz Joachimiak
- Department of Biology and Genetics, Stanford University, Stanford, CA 94305-5430, USA
| | - Judith Frydman
- Department of Biology and Genetics, Stanford University, Stanford, CA 94305-5430, USA.
| |
Collapse
|
27
|
Abstract
The eukaryotic group II chaperonin TRiC/CCT assists the folding of 10% of cytosolic proteins including many key structural and regulatory proteins. TRiC plays an essential role in maintaining protein homeostasis, and dysfunction of TRiC is closely related to human diseases including cancer and neurodegenerative diseases. TRiC consists of eight paralogous subunits, each of which plays a specific role in the assembly, allosteric cooperativity, and substrate recognition and folding of this complex macromolecular machine. TRiC-mediated substrate folding is regulated through its ATP-driven conformational changes. In recent years, progresses have been made on the structure, subunit arrangement, conformational cycle, and substrate folding of TRiC. Additionally, accumulating evidences also demonstrate the linkage between TRiC oligomer or monomer and diseases. In this review, we focus on the TRiC structure itself, TRiC assisted substrate folding, TRiC and disease, and the potential therapeutic application of TRiC in various diseases.
Collapse
Affiliation(s)
- Mingliang Jin
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Caixuan Liu
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Wenyu Han
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yao Cong
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
- Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
28
|
Pathway of Actin Folding Directed by the Eukaryotic Chaperonin TRiC. Cell 2018; 174:1507-1521.e16. [PMID: 30100183 DOI: 10.1016/j.cell.2018.07.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/20/2018] [Accepted: 07/03/2018] [Indexed: 12/22/2022]
Abstract
The hetero-oligomeric chaperonin of eukarya, TRiC, is required to fold the cytoskeletal protein actin. The simpler bacterial chaperonin system, GroEL/GroES, is unable to mediate actin folding. Here, we use spectroscopic and structural techniques to determine how TRiC promotes the conformational progression of actin to the native state. We find that actin fails to fold spontaneously even in the absence of aggregation but populates a kinetically trapped, conformationally dynamic state. Binding of this frustrated intermediate to TRiC specifies an extended topology of actin with native-like secondary structure. In contrast, GroEL stabilizes bound actin in an unfolded state. ATP binding to TRiC effects an asymmetric conformational change in the chaperonin ring. This step induces the partial release of actin, priming it for folding upon complete release into the chaperonin cavity, mediated by ATP hydrolysis. Our results reveal how the unique features of TRiC direct the folding pathway of an obligate eukaryotic substrate.
Collapse
|
29
|
Wang H, Han W, Takagi J, Cong Y. Yeast Inner-Subunit PA–NZ-1 Labeling Strategy for Accurate Subunit Identification in a Macromolecular Complex through Cryo-EM Analysis. J Mol Biol 2018; 430:1417-1425. [DOI: 10.1016/j.jmb.2018.03.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/14/2018] [Accepted: 03/25/2018] [Indexed: 12/25/2022]
|
30
|
Zang Y, Wang H, Cui Z, Jin M, Liu C, Han W, Wang Y, Cong Y. Development of a yeast internal-subunit eGFP labeling strategy and its application in subunit identification in eukaryotic group II chaperonin TRiC/CCT. Sci Rep 2018; 8:2374. [PMID: 29403048 PMCID: PMC5799240 DOI: 10.1038/s41598-017-18962-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/18/2017] [Indexed: 11/23/2022] Open
Abstract
Unambiguous subunit assignment in a multicomponent complex is critical for thorough understanding of the machinery and its functionality. The eukaryotic group II chaperonin TRiC/CCT folds approximately 10% of cytosolic proteins and is important for the maintenance of cellular homeostasis. TRiC consists of two rings and each ring has eight homologous but distinct subunits. Unambiguous subunit identification of a macromolecular machine such as TRiC through intermediate or low-resolution cryo-EM map remains challenging. Here we present a yeast internal-subunit eGFP labeling strategy termed YISEL, which can quickly introduce an eGFP tag in the internal position of a target subunit by homologous recombination, and the tag labeled protein can be expressed in endogenous level. Through this method, the labeling efficiency and tag-occupancy is ensured, and the inserted tag is usually less mobile compared to that fused to the terminus. It can also be used to bio-engineer other tag in the internal position of a protein in yeast. By applying our YISEL strategy and combined with cryo-EM 3D reconstruction, we unambiguously identified all the subunits in the cryo-EM map of TRiC, demonstrating the potential for broad application of this strategy in accurate and efficient subunit identification in other challenging complexes.
Collapse
Affiliation(s)
- Yunxiang Zang
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Huping Wang
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhicheng Cui
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Mingliang Jin
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Caixuan Liu
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Wenyu Han
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yanxing Wang
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Yao Cong
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China. .,Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
31
|
Carr AC, Khaled AS, Bassiouni R, Flores O, Nierenberg D, Bhatti H, Vishnubhotla P, Manuel JP, Santra S, Khaled AR. Targeting chaperonin containing TCP1 (CCT) as a molecular therapeutic for small cell lung cancer. Oncotarget 2017; 8:110273-110288. [PMID: 29299146 PMCID: PMC5746381 DOI: 10.18632/oncotarget.22681] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/05/2017] [Indexed: 12/20/2022] Open
Abstract
Identifying new druggable targets is desired to meet the needs for effective cancer treatments. To this end, we previously reported the efficacy of a therapeutic peptide called CT20p that displays selective cytotoxicity through inhibition of a multi-subunit, protein-folding complex called Chaperonin-Containing TCP-1 (CCT). To investigate the role of CCT in cancer progression, we examined protein levels of CCT subunits in liver, prostate, and lung cancer using human tissue microarrays. We found that these cancers expressed higher levels of CCT2 as compared to normal tissues. Small cell lung cancer (SCLC) stood out as having statistically significant difference in CCT2. Higher levels of CCT2 in tumors from lung cancer patients were also associated with decreased survival. Using SCLC cell lines, we observed detectable amounts of CCT subunits and cells were susceptible to killing by CT20p. Treatment with CT20p, delivered to cells using polymeric nanoparticles, was cytotoxic to all SCLC cell lines, decreasing the levels of CCT client proteins like STAT3. In contrast, treatment with a STAT3 inhibitor was effective in one of the SCLC cell lines. While we found that CCT levels could vary in cell lines, normal tissues had low levels of CCT and minimal toxicity to liver or kidney function was observed in mice treated with CT20p. These results indicate that in SCLC, changes in CCT levels could be used as a biomarker for diagnosis and that targeting CCT for inhibition with CT20p is a promising treatment approach for those cancers such as SCLC that currently lack targeted therapeutics.
Collapse
Affiliation(s)
- Ana C. Carr
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Amr S. Khaled
- Department of Pathology and Laboratory Medicine, Department of Internal Medicine, Orlando VA Medical Center, Orlando, FL 32803, USA
| | - Rania Bassiouni
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Orielyz Flores
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Daniel Nierenberg
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Hammad Bhatti
- Department of Pathology and Laboratory Medicine, Department of Internal Medicine, Orlando VA Medical Center, Orlando, FL 32803, USA
| | - Priya Vishnubhotla
- Department of Pathology and Laboratory Medicine, Department of Internal Medicine, Orlando VA Medical Center, Orlando, FL 32803, USA
| | - J. Perez Manuel
- Biomedical Imaging Research Institute, & Samuel Oschin Comprehensive Cancer Institute, Department of Biomedical Sciences and Department of Neurosurgery, Cedar Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Santimukul Santra
- Department of Chemistry, Pittsburg State University, Pittsburg, KS 66762, USA
| | - Annette R. Khaled
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| |
Collapse
|
32
|
An YJ, Rowland SE, Na JH, Spigolon D, Hong SK, Yoon YJ, Lee JH, Robb FT, Cha SS. Structural and mechanistic characterization of an archaeal-like chaperonin from a thermophilic bacterium. Nat Commun 2017; 8:827. [PMID: 29018216 PMCID: PMC5635000 DOI: 10.1038/s41467-017-00980-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/08/2017] [Indexed: 11/13/2022] Open
Abstract
The chaperonins (CPNs) are megadalton sized hollow complexes with two cavities that open and close to encapsulate non-native proteins. CPNs are assigned to two sequence-related groups that have distinct allosteric mechanisms. In Group I CPNs a detachable co-chaperone, GroES, closes the chambers whereas in Group II a built-in lid closes the chambers. Group I CPNs have a bacterial ancestry, whereas Group II CPNs are archaeal in origin. Here we describe open and closed crystal structures representing a new phylogenetic branch of CPNs. These Group III CPNs are divergent in sequence and structure from extant CPNs, but are closed by a built-in lid like Group II CPNs. A nucleotide-sensing loop, present in both Group I and Group II CPNs, is notably absent. We identified inter-ring pivot joints that articulate during ring closure. These Group III CPNs likely represent a relic from the ancestral CPN that formed distinct bacterial and archaeal branches. Chaperonins (CPNs) are ATP-dependent protein-folding machines. Here the authors present the open and closed crystal structures of a Group III CPN from the thermophilic bacterium Carboxydothermus hydrogenoformans, discuss its mechanism and structurally compare it with Group I and II CPNs.
Collapse
Affiliation(s)
- Young Jun An
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Ansan, 15627, Republic of Korea
| | - Sara E Rowland
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD, 21201, USA.,Institute of Marine and Environmental Technology, Baltimore, MD, 21201, USA
| | - Jung-Hyun Na
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Dario Spigolon
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD, 21201, USA.,Institute of Marine and Environmental Technology, Baltimore, MD, 21201, USA
| | - Seung Kon Hong
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Yeo Joon Yoon
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jung-Hyun Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Ansan, 15627, Republic of Korea
| | - Frank T Robb
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD, 21201, USA. .,Institute of Marine and Environmental Technology, Baltimore, MD, 21201, USA.
| | - Sun-Shin Cha
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
33
|
Spigolon D, Gallagher DT, Velazquez-Campoy A, Bulone D, Narang J, San Biagio PL, Cappello F, Macario AJL, Conway de Macario E, Robb FT. Quantitative analysis of the impact of a human pathogenic mutation on the CCT5 chaperonin subunit using a proxy archaeal ortholog. Biochem Biophys Rep 2017; 12:66-71. [PMID: 29552646 PMCID: PMC5851525 DOI: 10.1016/j.bbrep.2017.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/21/2017] [Accepted: 07/26/2017] [Indexed: 01/20/2023] Open
Abstract
The human chaperonin complex is a ~ 1 MDa nanomachine composed of two octameric rings formed from eight similar but non-identical subunits called CCT. Here, we are elucidating the mechanism of a heritable CCT5 subunit mutation that causes profound neuropathy in humans. In previous work, we introduced an equivalent mutation in an archaeal chaperonin that assembles into two octameric rings like in humans but in which all subunits are identical. We reported that the hexadecamer formed by the mutant subunit is unstable with impaired chaperoning functions. This study quantifies the loss of structural stability in the hexadecamer due to the pathogenic mutation, using differential scanning calorimetry (DSC) and isothermal titration calorimetry (ITC). The disassembly of the wild type complex, which is tightly coupled with subunit denaturation, was decoupled by the mutation without affecting the stability of individual subunits. Our results verify the effectiveness of the homo-hexadecameric archaeal chaperonin as a proxy to assess the impact of subtle defects in heterologous systems with mutations in a single subunit.
A crippling hereditary neuropathy was addressed at the molecular level. The archaeal/CCT5 model represents a promising testbed for subtle defects. The homomeric archaeal model amplifies the effect of the mutation. The mutation decouples assembly without destabilizing individual subunits.
Collapse
Affiliation(s)
- Dario Spigolon
- Institute for Bioscience and Biotechnology Research (IBBR), Rockville, MD, USA.,Institute of Biophysics, UOS Palermo, National Research Council, Italy.,Department of Physics and Chemistry, University of Palermo, Palermo, Italy
| | - D Travis Gallagher
- Institute for Bioscience and Biotechnology Research (IBBR), Rockville, MD, USA
| | - Adrian Velazquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units: BIFI-IQFR and GBsC-CSIC,Universidad de Zaragoza, Zaragoza, Spain.,Department of Biochemistry and Molecular and Cell Biology, Universidad de Zaragoza, Zaragoza, Spain.,Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain.,Fundacion ARAID, Government of Aragon, Zaragoza, Spain
| | - Donatella Bulone
- Institute of Biophysics, UOS Palermo, National Research Council, Italy
| | - Jatin Narang
- Institute for Bioscience and Biotechnology Research (IBBR), Rockville, MD, USA
| | | | - Francesco Cappello
- Department of Biomedicine and Clinical Neurosciences, Human Anatomy Section, University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Alberto J L Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy.,Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore, Baltimore, USA.,Institute of Marine and Environmental Technology (IMET), Columbus Center, Baltimore, MD, USA
| | - Everly Conway de Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy.,Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore, Baltimore, USA.,Institute of Marine and Environmental Technology (IMET), Columbus Center, Baltimore, MD, USA
| | - Frank T Robb
- Institute for Bioscience and Biotechnology Research (IBBR), Rockville, MD, USA.,Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore, Baltimore, USA.,Institute of Marine and Environmental Technology (IMET), Columbus Center, Baltimore, MD, USA
| |
Collapse
|
34
|
Lopez T, Dalton K, Tomlinson A, Pande V, Frydman J. An information theoretic framework reveals a tunable allosteric network in group II chaperonins. Nat Struct Mol Biol 2017; 24:726-733. [PMID: 28741612 PMCID: PMC5986071 DOI: 10.1038/nsmb.3440] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 06/22/2017] [Indexed: 12/19/2022]
Abstract
ATP-dependent allosteric regulation of the ring-shaped group II chaperonins remains ill defined, in part because their complex oligomeric topology has limited the success of structural techniques in suggesting allosteric determinants. Further, their high sequence conservation has hindered the prediction of allosteric networks using mathematical covariation approaches. Here, we develop an information theoretic strategy that is robust to residue conservation and apply it to group II chaperonins. We identify a contiguous network of covarying residues that connects all nucleotide-binding pockets within each chaperonin ring. An interfacial residue between the networks of neighboring subunits controls positive cooperativity by communicating nucleotide occupancy within each ring. Strikingly, chaperonin allostery is tunable through single mutations at this position. Naturally occurring variants at this position that double the extent of positive cooperativity are less prevalent in nature. We propose that being less cooperative than attainable allows chaperonins to support robust folding over a wider range of metabolic conditions.
Collapse
Affiliation(s)
- Tom Lopez
- Department of Biology, Stanford University, Stanford, California, USA
| | - Kevin Dalton
- Biophysics Program, Stanford University, Stanford, California, USA
| | - Anthony Tomlinson
- Department of Biology, Stanford University, Stanford, California, USA
| | - Vijay Pande
- Biophysics Program, Stanford University, Stanford, California, USA
- Department of Chemistry, Stanford University, Stanford, California, USA
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, California, USA
- Biophysics Program, Stanford University, Stanford, California, USA
| |
Collapse
|
35
|
Roh SH, Kasembeli MM, Galaz-Montoya JG, Chiu W, Tweardy DJ. Chaperonin TRiC/CCT Recognizes Fusion Oncoprotein AML1-ETO through Subunit-Specific Interactions. Biophys J 2017; 110:2377-2385. [PMID: 27276256 DOI: 10.1016/j.bpj.2016.04.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/24/2016] [Accepted: 04/26/2016] [Indexed: 12/31/2022] Open
Abstract
AML1-ETO is the translational product of a chimeric gene created by the stable chromosome translocation t (8;21)(q22;q22). It causes acute myeloid leukemia (AML) by dysregulating the expression of genes critical for myeloid cell development and differentiation and recently has been reported to bind multiple subunits of the mammalian cytosolic chaperonin TRiC (or CCT), primarily through its DNA binding domain (AML1-175). Through these interactions, TRiC plays an important role in the synthesis, folding, and activity of AML1-ETO. Using single-particle cryo-electron microscopy, we demonstrate here that a folding intermediate of AML1-ETO's DNA-binding domain (AML1-175) forms a stable complex with apo-TRiC. Our structure reveals that AML1-175 associates directly with a specific subset of TRiC subunits in the open conformation.
Collapse
Affiliation(s)
- Soung-Hun Roh
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
| | - Moses M Kasembeli
- Division of Internal Medicine, Department of Infectious Diseases, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jesús G Galaz-Montoya
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
| | - Wah Chiu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas.
| | - David J Tweardy
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas; Division of Internal Medicine, Department of Infectious Diseases, University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
36
|
Zang Y, Jin M, Wang H, Cui Z, Kong L, Liu C, Cong Y. Staggered ATP binding mechanism of eukaryotic chaperonin TRiC (CCT) revealed through high-resolution cryo-EM. Nat Struct Mol Biol 2016; 23:1083-1091. [PMID: 27775711 DOI: 10.1038/nsmb.3309] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 09/20/2016] [Indexed: 01/04/2023]
Abstract
The eukaryotic chaperonin TRiC (or CCT) assists in the folding of 10% of cytosolic proteins. Here we present two cryo-EM structures of Saccharomyces cerevisiae TRiC in a newly identified nucleotide partially preloaded (NPP) state and in the ATP-bound state, at 4.7-Å and 4.6-Å resolution, respectively. Through inner-subunit eGFP tagging, we identified the subunit locations in open-state TRiC and found that the CCT2 subunit pair forms an unexpected Z shape. ATP binding induces a dramatic conformational change on the CCT2 side, thereby suggesting that CCT2 plays an essential role in TRiC allosteric cooperativity. Our structural and biochemical data reveal a staggered ATP binding mechanism of TRiC with preloaded nucleotide on the CCT6 side of NPP-TRiC and demonstrate that TRiC has evolved into a complex that is structurally divided into two sides. This work offers insight into how the TRiC nucleotide cycle coordinates with its mechanical cycle in preparing folding intermediates for further productive folding.
Collapse
Affiliation(s)
- Yunxiang Zang
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mingliang Jin
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Huping Wang
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhicheng Cui
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Liangliang Kong
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Caixuan Liu
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yao Cong
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
37
|
Differential conformational modulations of MreB folding upon interactions with GroEL/ES and TRiC chaperonin components. Sci Rep 2016; 6:28386. [PMID: 27328749 PMCID: PMC4916439 DOI: 10.1038/srep28386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/03/2016] [Indexed: 11/15/2022] Open
Abstract
Here, we study and compare the mechanisms of action of the GroEL/GroES and the TRiC chaperonin systems on MreB client protein variants extracted from E. coli. MreB is a homologue to actin in prokaryotes. Single-molecule fluorescence correlation spectroscopy (FCS) and time-resolved fluorescence polarization anisotropy report the binding interaction of folding MreB with GroEL, GroES and TRiC. Fluorescence resonance energy transfer (FRET) measurements on MreB variants quantified molecular distance changes occurring during conformational rearrangements within folding MreB bound to chaperonins. We observed that the MreB structure is rearranged by a binding-induced expansion mechanism in TRiC, GroEL and GroES. These results are quantitatively comparable to the structural rearrangements found during the interaction of β-actin with GroEL and TRiC, indicating that the mechanism of chaperonins is conserved during evolution. The chaperonin-bound MreB is also significantly compacted after addition of AMP-PNP for both the GroEL/ES and TRiC systems. Most importantly, our results showed that GroES may act as an unfoldase by inducing a dramatic initial expansion of MreB (even more than for GroEL) implicating a role for MreB folding, allowing us to suggest a delivery mechanism for GroES to GroEL in prokaryotes.
Collapse
|
38
|
Bell JM, Chen M, Baldwin PR, Ludtke SJ. High resolution single particle refinement in EMAN2.1. Methods 2016; 100:25-34. [PMID: 26931650 PMCID: PMC4848122 DOI: 10.1016/j.ymeth.2016.02.018] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 01/01/2023] Open
Abstract
EMAN2.1 is a complete image processing suite for quantitative analysis of grayscale images, with a primary focus on transmission electron microscopy, with complete workflows for performing high resolution single particle reconstruction, 2-D and 3-D heterogeneity analysis, random conical tilt reconstruction and subtomogram averaging, among other tasks. In this manuscript we provide the first detailed description of the high resolution single particle analysis pipeline and the philosophy behind its approach to the reconstruction problem. High resolution refinement is a fully automated process, and involves an advanced set of heuristics to select optimal algorithms for each specific refinement task. A gold standard FSC is produced automatically as part of refinement, providing a robust resolution estimate for the final map, and this is used to optimally filter the final CTF phase and amplitude corrected structure. Additional methods are in-place to reduce model bias during refinement, and to permit cross-validation using other computational methods.
Collapse
Affiliation(s)
- James M Bell
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Muyuan Chen
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Philip R Baldwin
- Department of Psychiatry, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Steven J Ludtke
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
39
|
Clare DK, Saibil HR. ATP-driven molecular chaperone machines. Biopolymers 2016; 99:846-59. [PMID: 23877967 PMCID: PMC3814418 DOI: 10.1002/bip.22361] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/08/2013] [Indexed: 01/17/2023]
Abstract
This review is focused on the mechanisms by which ATP binding and hydrolysis drive chaperone machines assisting protein folding and unfolding. A survey of the key, general chaperone systems Hsp70 and Hsp90, and the unfoldase Hsp100 is followed by a focus on the Hsp60 chaperonin machine which is understood in most detail. Cryo-electron microscopy analysis of the E. coli Hsp60 GroEL reveals intermediate conformations in the ATPase cycle and in substrate folding. These structures suggest a mechanism by which GroEL can forcefully unfold and then encapsulate substrates for subsequent folding in isolation from all other binding surfaces.
Collapse
Affiliation(s)
- Daniel K Clare
- Department of Crystallography, Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| | | |
Collapse
|
40
|
Molugu SK, Hildenbrand ZL, Morgan DG, Sherman MB, He L, Georgopoulos C, Sernova NV, Kurochkina LP, Mesyanzhinov VV, Miroshnikov KA, Bernal RA. Ring Separation Highlights the Protein-Folding Mechanism Used by the Phage EL-Encoded Chaperonin. Structure 2016; 24:537-546. [PMID: 26996960 DOI: 10.1016/j.str.2016.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/01/2016] [Accepted: 02/17/2016] [Indexed: 01/05/2023]
Abstract
Chaperonins are ubiquitous, ATP-dependent protein-folding molecular machines that are essential for all forms of life. Bacteriophage φEL encodes its own chaperonin to presumably fold exceedingly large viral proteins via profoundly different nucleotide-binding conformations. Our structural investigations indicate that ATP likely binds to both rings simultaneously and that a misfolded substrate acts as the trigger for ATP hydrolysis. More importantly, the φEL complex dissociates into two single rings resulting from an evolutionarily altered residue in the highly conserved ATP-binding pocket. Conformational changes also more than double the volume of the single-ring internal chamber such that larger viral proteins are accommodated. This is illustrated by the fact that φEL is capable of folding β-galactosidase, a 116-kDa protein. Collectively, the architecture and protein-folding mechanism of the φEL chaperonin are significantly different from those observed in group I and II chaperonins.
Collapse
Affiliation(s)
- Sudheer K Molugu
- Department of Chemistry, University of Texas at El Paso, El Paso, TX 79968, USA
| | | | - David Gene Morgan
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Michael B Sherman
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Lilin He
- Neutron Scattering Science Division, Oak Ridge National Laboratory, C23, Building 7964K, Oak Ridge, TN 37831-6430, USA
| | - Costa Georgopoulos
- Department of Biochemistry, University of Utah, 4100 EEJMRB, Salt Lake City, UT 84112-5650, USA
| | - Natalia V Sernova
- Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoi Karetny Pereulok, 19, Moscow 127994, Russia
| | - Lidia P Kurochkina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Vadim V Mesyanzhinov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Konstantin A Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Ricardo A Bernal
- Department of Chemistry, University of Texas at El Paso, El Paso, TX 79968, USA.
| |
Collapse
|
41
|
Chaston JJ, Smits C, Aragão D, Wong ASW, Ahsan B, Sandin S, Molugu SK, Molugu SK, Bernal RA, Stock D, Stewart AG. Structural and Functional Insights into the Evolution and Stress Adaptation of Type II Chaperonins. Structure 2016; 24:364-74. [PMID: 26853941 DOI: 10.1016/j.str.2015.12.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 12/14/2015] [Accepted: 12/16/2015] [Indexed: 12/12/2022]
Abstract
Chaperonins are essential biological complexes assisting protein folding in all kingdoms of life. Whereas homooligomeric bacterial GroEL binds hydrophobic substrates non-specifically, the heterooligomeric eukaryotic CCT binds specifically to distinct classes of substrates. Sulfolobales, which survive in a wide range of temperatures, have evolved three different chaperonin subunits (α, β, γ) that form three distinct complexes tailored for different substrate classes at cold, normal, and elevated temperatures. The larger octadecameric β complexes cater for substrates under heat stress, whereas smaller hexadecameric αβ complexes prevail under normal conditions. The cold-shock complex contains all three subunits, consistent with greater substrate specificity. Structural analysis using crystallography and electron microscopy reveals the geometry of these complexes and shows a novel arrangement of the α and β subunits in the hexadecamer enabling incorporation of the γ subunit.
Collapse
Affiliation(s)
- Jessica J Chaston
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Callum Smits
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia
| | - David Aragão
- Australian Synchrotron, Clayton, VIC 3168, Australia
| | - Andrew S W Wong
- School of Biological Sciences, Nanyang Technological University, Singapore 637551; NTU Institute of Structural Biology, Nanyang Technological University, Singapore 637551
| | - Bilal Ahsan
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Sara Sandin
- School of Biological Sciences, Nanyang Technological University, Singapore 637551; NTU Institute of Structural Biology, Nanyang Technological University, Singapore 637551
| | - Sudheer K Molugu
- Department of Chemistry, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Sanjay K Molugu
- Department of Chemistry, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Ricardo A Bernal
- Department of Chemistry, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Daniela Stock
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - Alastair G Stewart
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
42
|
Roh SH, Kasembeli M, Galaz-Montoya JG, Trnka M, Lau WCY, Burlingame A, Chiu W, Tweardy DJ. Chaperonin TRiC/CCT Modulates the Folding and Activity of Leukemogenic Fusion Oncoprotein AML1-ETO. J Biol Chem 2015; 291:4732-41. [PMID: 26706127 DOI: 10.1074/jbc.m115.684878] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Indexed: 11/06/2022] Open
Abstract
AML1-ETO is the most common fusion oncoprotein causing acute myeloid leukemia (AML), a disease with a 5-year survival rate of only 24%. AML1-ETO functions as a rogue transcription factor, altering the expression of genes critical for myeloid cell development and differentiation. Currently, there are no specific therapies for AML1-ETO-positive AML. While known for decades to be the translational product of a chimeric gene created by the stable chromosome translocation t(8;21)(q22;q22), it is not known how AML1-ETO achieves its native and functional conformation or whether this process can be targeted for therapeutic benefit. Here, we show that the biosynthesis and folding of the AML1-ETO protein is facilitated by interaction with the essential eukaryotic chaperonin TRiC (or CCT). We demonstrate that a folding intermediate of AML1-ETO binds to TRiC directly, mainly through its β-strand rich, DNA-binding domain (AML-(1-175)), with the assistance of HSP70. Our results suggest that TRiC contributes to AML1-ETO proteostasis through specific interactions between the oncoprotein's DNA-binding domain, which may be targeted for therapeutic benefit.
Collapse
Affiliation(s)
- Soung-Hun Roh
- From the Verna and Marrs McLean Department of Biochemistry and Molecular Biology and
| | - Moses Kasembeli
- Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, and
| | - Jesús G Galaz-Montoya
- From the Verna and Marrs McLean Department of Biochemistry and Molecular Biology and
| | - Mike Trnka
- National Bio-Organic Biomedical Mass Spectrometry Resource Center, University of California, San Francisco, California 94158
| | - Wilson Chun-Yu Lau
- Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, and
| | - Alma Burlingame
- National Bio-Organic Biomedical Mass Spectrometry Resource Center, University of California, San Francisco, California 94158
| | - Wah Chiu
- From the Verna and Marrs McLean Department of Biochemistry and Molecular Biology and
| | - David J Tweardy
- From the Verna and Marrs McLean Department of Biochemistry and Molecular Biology and Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, and
| |
Collapse
|
43
|
Roh SH, Kasembeli M, Bakthavatsalam D, Chiu W, Tweardy DJ. Contribution of the Type II Chaperonin, TRiC/CCT, to Oncogenesis. Int J Mol Sci 2015; 16:26706-20. [PMID: 26561808 PMCID: PMC4661834 DOI: 10.3390/ijms161125975] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 10/22/2015] [Accepted: 10/26/2015] [Indexed: 02/07/2023] Open
Abstract
The folding of newly synthesized proteins and the maintenance of pre-existing proteins are essential in sustaining a living cell. A network of molecular chaperones tightly guides the folding, intracellular localization, and proteolytic turnover of proteins. Many of the key regulators of cell growth and differentiation have been identified as clients of molecular chaperones, which implies that chaperones are potential mediators of oncogenesis. In this review, we briefly provide an overview of the role of chaperones, including HSP70 and HSP90, in cancer. We further summarize and highlight the emerging the role of chaperonin TRiC (T-complex protein-1 ring complex, also known as CCT) in the development and progression of cancer mediated through its critical interactions with oncogenic clients that modulate growth deregulation, apoptosis, and genome instability in cancer cells. Elucidation of how TRiC modulates the folding and function of oncogenic clients will provide strategies for developing novel cancer therapies.
Collapse
Affiliation(s)
- Soung-Hun Roh
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Moses Kasembeli
- Division of Internal Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | | | - Wah Chiu
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - David J Tweardy
- Division of Internal Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
44
|
Walzthoeni T, Joachimiak LA, Rosenberger G, Röst HL, Malmström L, Leitner A, Frydman J, Aebersold R. xTract: software for characterizing conformational changes of protein complexes by quantitative cross-linking mass spectrometry. Nat Methods 2015; 12:1185-90. [PMID: 26501516 DOI: 10.1038/nmeth.3631] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 09/27/2015] [Indexed: 02/08/2023]
Abstract
Chemical cross-linking in combination with mass spectrometry generates distance restraints of amino acid pairs in close proximity on the surface of native proteins and protein complexes. In this study we used quantitative mass spectrometry and chemical cross-linking to quantify differences in cross-linked peptides obtained from complexes in spatially discrete states. We describe a generic computational pipeline for quantitative cross-linking mass spectrometry consisting of modules for quantitative data extraction and statistical assessment of the obtained results. We used the method to detect conformational changes in two model systems: firefly luciferase and the bovine TRiC complex. Our method discovers and explains the structural heterogeneity of protein complexes using only sparse structural information.
Collapse
Affiliation(s)
- Thomas Walzthoeni
- Department of Biology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland.,Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lukasz A Joachimiak
- Department of Biology and Genetics, Stanford University, Stanford, California, USA
| | - George Rosenberger
- Department of Biology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland.,PhD Program in Systems Biology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland.,PhD Program in Systems Biology, University of Zurich, Zurich, Switzerland
| | - Hannes L Röst
- Department of Biology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Lars Malmström
- Department of Biology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Alexander Leitner
- Department of Biology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Judith Frydman
- Department of Biology and Genetics, Stanford University, Stanford, California, USA
| | - Ruedi Aebersold
- Department of Biology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland.,Faculty of Science, University of Zurich, Zurich, Switzerland
| |
Collapse
|
45
|
Single particle tomography in EMAN2. J Struct Biol 2015; 190:279-90. [PMID: 25956334 DOI: 10.1016/j.jsb.2015.04.016] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/24/2015] [Accepted: 04/29/2015] [Indexed: 11/22/2022]
Abstract
Single particle tomography (SPT or subtomogram averaging) offers a powerful alternative to traditional 2-D single particle reconstruction for studying conformationally or compositionally heterogeneous macromolecules. It can also provide direct observation (without labeling or staining) of complexes inside cells at nanometer resolution. The development of computational methods and tools for SPT remains an area of active research. Here we present the EMAN2.1 SPT toolbox, which offers a full SPT processing pipeline, from particle picking to post-alignment analysis of subtomogram averages, automating most steps. Different algorithm combinations can be applied at each step, providing versatility and allowing for procedural cross-testing and specimen-specific strategies. Alignment methods include all-vs-all, binary tree, iterative single-model refinement, multiple-model refinement, and self-symmetry alignment. An efficient angular search, Graphic Processing Unit (GPU) acceleration and both threaded and distributed parallelism are provided to speed up processing. Finally, automated simulations, per particle reconstruction of subtiltseries, and per-particle Contrast Transfer Function (CTF) correction have been implemented. Processing examples using both real and simulated data are shown for several structures.
Collapse
|
46
|
The Mechanism and Function of Group II Chaperonins. J Mol Biol 2015; 427:2919-30. [PMID: 25936650 DOI: 10.1016/j.jmb.2015.04.013] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/22/2015] [Accepted: 04/23/2015] [Indexed: 12/19/2022]
Abstract
Protein folding in the cell requires the assistance of enzymes collectively called chaperones. Among these, the chaperonins are 1-MDa ring-shaped oligomeric complexes that bind unfolded polypeptides and promote their folding within an isolated chamber in an ATP-dependent manner. Group II chaperonins, found in archaea and eukaryotes, contain a built-in lid that opens and closes over the central chamber. In eukaryotes, the chaperonin TRiC/CCT is hetero-oligomeric, consisting of two stacked rings of eight paralogous subunits each. TRiC facilitates folding of approximately 10% of the eukaryotic proteome, including many cytoskeletal components and cell cycle regulators. Folding of many cellular substrates of TRiC cannot be assisted by any other chaperone. A complete structural and mechanistic understanding of this highly conserved and essential chaperonin remains elusive. However, recent work is beginning to shed light on key aspects of chaperonin function and how their unique properties underlie their contribution to maintaining cellular proteostasis.
Collapse
|
47
|
Dalton KM, Frydman J, Pande VS. The dynamic conformational cycle of the group I chaperonin C-termini revealed via molecular dynamics simulation. PLoS One 2015; 10:e0117724. [PMID: 25822285 PMCID: PMC4379175 DOI: 10.1371/journal.pone.0117724] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/31/2014] [Indexed: 11/24/2022] Open
Abstract
Chaperonins are large ring shaped oligomers that facilitate protein folding by encapsulation within a central cavity. All chaperonins possess flexible C-termini which protrude from the equatorial domain of each subunit into the central cavity. Biochemical evidence suggests that the termini play an important role in the allosteric regulation of the ATPase cycle, in substrate folding and in complex assembly and stability. Despite the tremendous wealth of structural data available for numerous orthologous chaperonins, little structural information is available regarding the residues within the C-terminus. Herein, molecular dynamics simulations are presented which localize the termini throughout the nucleotide cycle of the group I chaperonin, GroE, from Escherichia coli. The simulation results predict that the termini undergo a heretofore unappreciated conformational cycle which is coupled to the nucleotide state of the enzyme. As such, these results have profound implications for the mechanism by which GroE utilizes nucleotide and folds client proteins.
Collapse
Affiliation(s)
- Kevin M. Dalton
- Biophysics Program, Stanford University, Stanford, California, United States of America
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Vijay S. Pande
- Department of Chemistry, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
48
|
Joachimiak LA, Walzthoeni T, Liu CW, Aebersold R, Frydman J. The structural basis of substrate recognition by the eukaryotic chaperonin TRiC/CCT. Cell 2015; 159:1042-1055. [PMID: 25416944 DOI: 10.1016/j.cell.2014.10.042] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 08/17/2014] [Accepted: 10/20/2014] [Indexed: 12/20/2022]
Abstract
The eukaryotic chaperonin TRiC (also called CCT) is the obligate chaperone for many essential proteins. TRiC is hetero-oligomeric, comprising two stacked rings of eight different subunits each. Subunit diversification from simpler archaeal chaperonins appears linked to proteome expansion. Here, we integrate structural, biophysical, and modeling approaches to identify the hitherto unknown substrate-binding site in TRiC and uncover the basis of substrate recognition. NMR and modeling provided a structural model of a chaperonin-substrate complex. Mutagenesis and crosslinking-mass spectrometry validated the identified substrate-binding interface and demonstrate that TRiC contacts full-length substrates combinatorially in a subunit-specific manner. The binding site of each subunit has a distinct, evolutionarily conserved pattern of polar and hydrophobic residues specifying recognition of discrete substrate motifs. The combinatorial recognition of polypeptides broadens the specificity of TRiC and may direct the topology of bound polypeptides along a productive folding trajectory, contributing to TRiC's unique ability to fold obligate substrates.
Collapse
Affiliation(s)
- Lukasz A Joachimiak
- Department of Biology and Genetics, Stanford University, Stanford, CA 94305, USA.
| | - Thomas Walzthoeni
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland; Ph.D. Program in Molecular Life Sciences, University of Zurich/ETH Zurich, 8057 Zurich, Switzerland
| | - Corey W Liu
- Stanford Magnetic Resonance Laboratory, Stanford University, Stanford, CA 94305, USA
| | - Ruedi Aebersold
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland; Faculty of Science, University of Zurich, 8006 Zurich, Switzerland
| | - Judith Frydman
- Department of Biology and Genetics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
49
|
Bakthavatsalam D, Soung RH, Tweardy DJ, Chiu W, Dixon RAF, Woodside DG. Chaperonin-containing TCP-1 complex directly binds to the cytoplasmic domain of the LOX-1 receptor. FEBS Lett 2014; 588:2133-40. [PMID: 24846140 DOI: 10.1016/j.febslet.2014.04.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 04/25/2014] [Accepted: 04/29/2014] [Indexed: 12/28/2022]
Abstract
Lectin-like oxidized low-density lipoprotein receptor (LOX-1) is a scavenger receptor that binds oxidized low-density lipoprotein (OxLDL) and has a role in atherosclerosis development. The N-terminus intracellular region (cytoplasmic domain) of LOX-1 mediates receptor internalization and trafficking, potentially through intracellular protein interactions. Using affinity isolation, we identified 6 of the 8 components of the chaperonin-containing TCP-1 (CCT) complex bound to LOX-1 cytoplasmic domain, which we verified by coimmunoprecipitation and immunostaining in human umbilical vein endothelial cells. We found that the interaction between CCT and LOX-1 is direct and ATP-dependent and that OxLDL suppressed this interaction. Understanding the association between LOX-1 and the CCT complex may facilitate the design of novel therapies for cardiovascular disease.
Collapse
Affiliation(s)
| | - Roh Hun Soung
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - David J Tweardy
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wah Chiu
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Richard A F Dixon
- Department of Molecular Cardiology, Texas Heart Institute, Houston, TX 77030, USA
| | - Darren G Woodside
- Department of Molecular Cardiology, Texas Heart Institute, Houston, TX 77030, USA
| |
Collapse
|
50
|
Cuellar J, Yébenes H, Parker SK, Carranza G, Serna M, Valpuesta JM, Zabala JC, Detrich HW. Assisted protein folding at low temperature: evolutionary adaptation of the Antarctic fish chaperonin CCT and its client proteins. Biol Open 2014; 3:261-70. [PMID: 24659247 PMCID: PMC3988795 DOI: 10.1242/bio.20147427] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eukaryotic ectotherms of the Southern Ocean face energetic challenges to protein folding assisted by the cytosolic chaperonin CCT. We hypothesize that CCT and its client proteins (CPs) have co-evolved molecular adaptations that facilitate CCT–CP interaction and the ATP-driven folding cycle at low temperature. To test this hypothesis, we compared the functional and structural properties of CCT–CP systems from testis tissues of an Antarctic fish, Gobionotothen gibberifrons (Lönnberg) (habitat/body T = −1.9 to +2°C), and of the cow (body T = 37°C). We examined the temperature dependence of the binding of denatured CPs (β-actin, β-tubulin) by fish and bovine CCTs, both in homologous and heterologous combinations and at temperatures between −4°C and 20°C, in a buffer conducive to binding of the denatured CP to the open conformation of CCT. In homologous combination, the percentage of G. gibberifrons CCT bound to CP declined linearly with increasing temperature, whereas the converse was true for bovine CCT. Binding of CCT to heterologous CPs was low, irrespective of temperature. When reactions were supplemented with ATP, G. gibberifrons CCT catalyzed the folding and release of actin at 2°C. The ATPase activity of apo-CCT from G. gibberifrons at 4°C was ∼2.5-fold greater than that of apo-bovine CCT, whereas equivalent activities were observed at 20°C. Based on these results, we conclude that the catalytic folding cycle of CCT from Antarctic fishes is partially compensated at their habitat temperature, probably by means of enhanced CP-binding affinity and increased flexibility of the CCT subunits.
Collapse
Affiliation(s)
- Jorge Cuellar
- Centro Nacional de Biotechnología (CNB-CSIC), Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|