1
|
Biology and Regulation of Staphylococcal Biofilm. Int J Mol Sci 2023; 24:ijms24065218. [PMID: 36982293 PMCID: PMC10049468 DOI: 10.3390/ijms24065218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/15/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Despite continuing progress in medical and surgical procedures, staphylococci remain the major Gram-positive bacterial pathogens that cause a wide spectrum of diseases, especially in patients requiring the utilization of indwelling catheters and prosthetic devices implanted temporarily or for prolonged periods of time. Within the genus, if Staphylococcus aureus and S. epidermidis are prevalent species responsible for infections, several coagulase-negative species which are normal components of our microflora also constitute opportunistic pathogens that are able to infect patients. In such a clinical context, staphylococci producing biofilms show an increased resistance to antimicrobials and host immune defenses. Although the biochemical composition of the biofilm matrix has been extensively studied, the regulation of biofilm formation and the factors contributing to its stability and release are currently still being discovered. This review presents and discusses the composition and some regulation elements of biofilm development and describes its clinical importance. Finally, we summarize the numerous and various recent studies that address attempts to destroy an already-formed biofilm within the clinical context as a potential therapeutic strategy to avoid the removal of infected implant material, a critical event for patient convenience and health care costs.
Collapse
|
2
|
Jamsen JA, Shock DD, Wilson SH. Watching right and wrong nucleotide insertion captures hidden polymerase fidelity checkpoints. Nat Commun 2022; 13:3193. [PMID: 35680862 PMCID: PMC9184648 DOI: 10.1038/s41467-022-30141-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/19/2022] [Indexed: 12/26/2022] Open
Abstract
Efficient and accurate DNA synthesis is enabled by DNA polymerase fidelity checkpoints that promote insertion of the right instead of wrong nucleotide. Erroneous X-family polymerase (pol) λ nucleotide insertion leads to genomic instability in double strand break and base-excision repair. Here, time-lapse crystallography captures intermediate catalytic states of pol λ undergoing right and wrong natural nucleotide insertion. The revealed nucleotide sensing mechanism responds to base pair geometry through active site deformation to regulate global polymerase-substrate complex alignment in support of distinct optimal (right) or suboptimal (wrong) reaction pathways. An induced fit during wrong but not right insertion, and associated metal, substrate, side chain and pyrophosphate reaction dynamics modulated nucleotide insertion. A third active site metal hastened right but not wrong insertion and was not essential for DNA synthesis. The previously hidden fidelity checkpoints uncovered reveal fundamental strategies of polymerase DNA repair synthesis in genomic instability. DNA polymerase (pol) λ performs DNA synthesis in base excision and double strand break repair. How pol λ accomplishes nucleotide insertion that can lead to mutagenesis and genomic instability was unclear. Here the authors employ time-lapse crystallography to reveal hidden polymerase checkpoints that enable right and wrong natural nucleotide insertion by pol λ.
Collapse
Affiliation(s)
- Joonas A Jamsen
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA.
| | - David D Shock
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
3
|
Yudkina AV, Zharkov DO. Miscoding and DNA Polymerase Stalling by Methoxyamine-Adducted Abasic Sites. Chem Res Toxicol 2022; 35:303-314. [PMID: 35089032 DOI: 10.1021/acs.chemrestox.1c00359] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Apurinic/apyrimidinic (AP) sites appear in DNA spontaneously and as intermediates of base excision DNA repair. AP sites are noninstructive lesions: they strongly block DNA polymerases, and if bypassed, the nature of the incorporated dNMP is mostly guided by the interactions within the polymerase-DNA active site. Many DNA polymerases follow the "A-rule", preferentially incorporating dAMP opposite to natural AP sites. Methoxyamine (MX), a small molecule, efficiently reacts with the aldehyde moiety of natural AP sites, thereby preventing their cleavage by APEX1, the major human AP endonuclease. MX is currently regarded as a possible sensitizer of cancer cells toward DNA-damaging drugs. To evaluate the mutagenic potential of MX, we have studied the utilization of various dNTPs by five DNA polymerases of different families encountering MX-AP adducts in the template in comparison with the natural aldehydic AP site. The Klenow fragment of Escherichia coli DNA polymerase I strictly followed the A-rule with both natural AP and MX-adducted AP sites. Phage RB69 DNA polymerase, a close relative of human DNA polymerases δ and ε, efficiently incorporated both dAMP and dGMP. DNA polymerase β mostly incorporated dAMP and dCMP, preferring dCMP opposite to the natural AP site and dAMP opposite to the MX-AP site, while DNA polymerase λ was selective for dGMP, apparently via the primer misalignment mechanism. Finally, translesion DNA polymerase κ also followed the A-rule for MX-AP and additionally incorporated dCMP opposite to a natural AP site. Overall, the MX-AP site, despite structural differences, was similar to the natural AP site in terms of the dNMP misincorporation preference but was bypassed less efficiently by all polymerases except for Pol κ.
Collapse
Affiliation(s)
- Anna V Yudkina
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, Novosibirsk 630090, Russia
| | - Dmitry O Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, Novosibirsk 630090, Russia.,Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090, Russia
| |
Collapse
|
4
|
Rosenstein AH, Walker VK. Fidelity of a Bacterial DNA Polymerase in Microgravity, a Model for Human Health in Space. Front Cell Dev Biol 2021; 9:702849. [PMID: 34912795 PMCID: PMC8666419 DOI: 10.3389/fcell.2021.702849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Abstract
Long-term space missions will expose crew members, their cells as well as their microbiomes to prolonged periods of microgravity and ionizing radiation, environmental stressors for which almost no earth-based organisms have evolved to survive. Despite the importance of maintaining genomic integrity, the impact of these stresses on DNA polymerase-mediated replication and repair has not been fully explored. DNA polymerase fidelity and replication rates were assayed under conditions of microgravity generated by parabolic flight and compared to earth-like gravity. Upon commencement of a parabolic arc, primed synthetic single-stranded DNA was used as a template for one of two enzymes (Klenow fragment exonuclease+/-; with and without proofreading exonuclease activity, respectively) and were quenched immediately following the 20 s microgravitational period. DNA polymerase error rates were determined with an algorithm developed to identify experimental mutations. In microgravity Klenow exonuclease+ showed a median 1.1-fold per-base decrease in polymerization fidelity for base substitutions when compared to earth-like gravity (p = 0.02), but in the absence of proofreading activity, a 2.4-fold decrease was observed (p = 1.98 × 10-11). Similarly, 1.1-fold and 1.5-fold increases in deletion frequencies in the presence or absence of exonuclease activity (p = 1.51 × 10-7 and p = 8.74 × 10-13), respectively, were observed in microgravity compared to controls. The development of this flexible semi-autonomous payload system coupled with genetic and bioinformatic approaches serves as a proof-of-concept for future space health research.
Collapse
Affiliation(s)
- Aaron H Rosenstein
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
5
|
Jamsen JA, Sassa A, Shock DD, Beard WA, Wilson SH. Watching a double strand break repair polymerase insert a pro-mutagenic oxidized nucleotide. Nat Commun 2021; 12:2059. [PMID: 33824325 PMCID: PMC8024293 DOI: 10.1038/s41467-021-21354-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/08/2020] [Indexed: 01/07/2023] Open
Abstract
Oxidized dGTP (8-oxo-7,8-dihydro-2´-deoxyguanosine triphosphate, 8-oxodGTP) insertion by DNA polymerases strongly promotes cancer and human disease. How DNA polymerases discriminate against oxidized and undamaged nucleotides, especially in error-prone double strand break (DSB) repair, is poorly understood. High-resolution time-lapse X-ray crystallography snapshots of DSB repair polymerase μ undergoing DNA synthesis reveal that a third active site metal promotes insertion of oxidized and undamaged dGTP in the canonical anti-conformation opposite template cytosine. The product metal bridged O8 with product oxygens, and was not observed in the syn-conformation opposite template adenine (At). Rotation of At into the syn-conformation enabled undamaged dGTP misinsertion. Exploiting metal and substrate dynamics in a rigid active site allows 8-oxodGTP to circumvent polymerase fidelity safeguards to promote pro-mutagenic double strand break repair.
Collapse
Affiliation(s)
- Joonas A. Jamsen
- grid.280664.e0000 0001 2110 5790Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709 USA
| | - Akira Sassa
- grid.136304.30000 0004 0370 1101Laboratory of Chromatin Metabolism and Epigenetics, Graduate School of Science, Chiba University, Chiba, Japan
| | - David D. Shock
- grid.280664.e0000 0001 2110 5790Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709 USA
| | - William A. Beard
- grid.280664.e0000 0001 2110 5790Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709 USA
| | - Samuel H. Wilson
- grid.280664.e0000 0001 2110 5790Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709 USA
| |
Collapse
|
6
|
Hoitsma NM, Whitaker AM, Schaich MA, Smith MR, Fairlamb MS, Freudenthal BD. Structure and function relationships in mammalian DNA polymerases. Cell Mol Life Sci 2020; 77:35-59. [PMID: 31722068 PMCID: PMC7050493 DOI: 10.1007/s00018-019-03368-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/11/2019] [Accepted: 10/31/2019] [Indexed: 12/19/2022]
Abstract
DNA polymerases are vital for the synthesis of new DNA strands. Since the discovery of DNA polymerase I in Escherichia coli, a diverse library of mammalian DNA polymerases involved in DNA replication, DNA repair, antibody generation, and cell checkpoint signaling has emerged. While the unique functions of these DNA polymerases are differentiated by their association with accessory factors and/or the presence of distinctive catalytic domains, atomic resolution structures of DNA polymerases in complex with their DNA substrates have revealed mechanistic subtleties that contribute to their specialization. In this review, the structure and function of all 15 mammalian DNA polymerases from families B, Y, X, and A will be reviewed and discussed with special emphasis on the insights gleaned from recently published atomic resolution structures.
Collapse
Affiliation(s)
- Nicole M Hoitsma
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Amy M Whitaker
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Matthew A Schaich
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Mallory R Smith
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Max S Fairlamb
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
7
|
Wu WJ, Yang W, Tsai MD. How DNA polymerases catalyse replication and repair with contrasting fidelity. Nat Rev Chem 2017. [DOI: 10.1038/s41570-017-0068] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
8
|
Structural basis for the binding and incorporation of nucleotide analogs with L-stereochemistry by human DNA polymerase λ. Proc Natl Acad Sci U S A 2014; 111:E3033-42. [PMID: 25015085 DOI: 10.1073/pnas.1401286111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although lamivudine and emtricitabine, two L-deoxycytidine analogs, have been widely used as antiviral drugs for years, a structural basis for D-stereoselectivity against L-dNTPs, enantiomers of natural nucleotides (D-dNTPs), by any DNA polymerase or reverse transcriptase has not been established due to lack of a ternary structure of a polymerase, DNA, and an incoming L-dNTP. Here, we report 2.10-2.25 Å ternary crystal structures of human DNA polymerase λ, DNA, and L-deoxycytidine 5'-triphosphate (L-dCTP), or the triphosphates of lamivudine ((-)3TC-TP) and emtricitabine ((-)FTC-TP) with four ternary complexes per asymmetric unit. The structures of these 12 ternary complexes reveal that relative to D-deoxycytidine 5'-triphosphate (D-dCTP) in the canonical ternary structure of Polλ-DNA-D-dCTP, L-dCTP, (-)3TC-TP, and (-)FTC-TP all have their ribose rotated by 180°. Among the four ternary complexes with a specific L-nucleotide, two are similar and show that the L-nucleotide forms three Watson-Crick hydrogen bonds with the templating nucleotide dG and adopts a chair-like triphosphate conformation. In the remaining two similar ternary complexes, the L-nucleotide surprisingly interacts with the side chain of a conserved active site residue R517 through one or two hydrogen bonds, whereas the templating dG is anchored by a hydrogen bond with the side chain of a semiconserved residue Y505. Furthermore, the triphosphate of the L-nucleotide adopts an unprecedented N-shaped conformation. Our mutagenic and kinetic studies further demonstrate that the side chain of R517 is critical for the formation of the abovementioned four complexes along proposed catalytic pathways for L-nucleotide incorporation and provide the structural basis for the D-stereoselectivity of a DNA polymerase.
Collapse
|
9
|
Structures of the Leishmania infantum polymerase beta. DNA Repair (Amst) 2014; 18:1-9. [PMID: 24666693 DOI: 10.1016/j.dnarep.2014.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/28/2014] [Accepted: 03/01/2014] [Indexed: 11/21/2022]
Abstract
Protozoans of the genus Leishmania, the pathogenic agent causing leishmaniasis, encode the family X DNA polymerase Li Pol β. Here, we report the first crystal structures of Li Pol β. Our pre- and post-catalytic structures show that the polymerase adopts the common family X DNA polymerase fold. However, in contrast to other family X DNA polymerases, the dNTP-induced conformational changes in Li Pol β are much more subtle. Moreover, pre- and post-catalytic structures reveal that Li Pol β interacts with the template strand through a nonconserved, variable region known as loop3. Li Pol β Δloop3 mutants display a higher catalytic rate, catalytic efficiency and overall error rates with respect to WT Li Pol β. These results further demonstrate the subtle structural variability that exists within this family of enzymes and provides insight into how this variability underlies the substantial functional differences among their members.
Collapse
|
10
|
Wang B, Feig M, Cukier RI, Burton ZF. Computational simulation strategies for analysis of multisubunit RNA polymerases. Chem Rev 2013; 113:8546-66. [PMID: 23987500 PMCID: PMC3829680 DOI: 10.1021/cr400046x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Beibei Wang
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824-1319, United States
| | - Michael Feig
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824-1319, United States
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Robert I. Cukier
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Zachary F. Burton
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824-1319, United States
| |
Collapse
|
11
|
Banavali NK. Analyzing the relationship between single base flipping and strand slippage near DNA duplex termini. J Phys Chem B 2013; 117:14320-8. [PMID: 24206351 DOI: 10.1021/jp408957c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Insertion-deletion (indel) mutations are caused by strand slippage between pairing primer and template strands during nucleic acid strand extension. A possible causative factor for such strand slippage is base flipping in the primer strand or template strand, for insertion or deletion mutations, respectively. A simple mechanistic description is that the "hole" in the nucleic acid duplex left behind by a flipping base is occupied by a neighboring base on the same strand, resulting in slippage with respect to its paired strand. The extent of single base flipping required for occupation of its former place in the double helix by a neighboring base is not fully understood. The present study uses restrained molecular dynamics (MD) simulations along a pseudohedihedral base flipping parameter to construct two-dimensional free energy profiles along base flipping and strand slippage geometric parameters. These profiles, generated for both cytosine and guanine single base flipping in a short repetitive indel mutation hot-spot DNA sequence, illustrate the extent of single base flipping that can allow strand slippage by one base position. Relatively minor base flipping into both the major and minor grooves can result in strand slippage. Deconstruction of the collective variable strand slippage geometric parameter into its component distances illustrates the details of how strand slippage can accompany base flipping. The trans Watson-Crick:sugar edge interaction that stabilizes cytosine flipping in this hot-spot sequence is also characterized energetically. The impact of these results on understanding sequence dependence of indel errors in nucleic acid strand extension is discussed, along with a suggestion for future studies that can generalize the present findings to all nearest-neighbor sequence contexts.
Collapse
Affiliation(s)
- Nilesh K Banavali
- Laboratory of Computational and Structural Biology, Division of Genetics, David Axelrod Institute, Wadsworth Center, New York State Department of Health , P.O. Box 22002, Albany, New York 12201-2002, United States
| |
Collapse
|
12
|
Mutation rates, spectra, and genome-wide distribution of spontaneous mutations in mismatch repair deficient yeast. G3-GENES GENOMES GENETICS 2013; 3:1453-65. [PMID: 23821616 PMCID: PMC3755907 DOI: 10.1534/g3.113.006429] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
DNA mismatch repair is a highly conserved DNA repair pathway. In humans, germline mutations in hMSH2 or hMLH1, key components of mismatch repair, have been associated with Lynch syndrome, a leading cause of inherited cancer mortality. Current estimates of the mutation rate and the mutational spectra in mismatch repair defective cells are primarily limited to a small number of individual reporter loci. Here we use the yeast Saccharomyces cerevisiae to generate a genome-wide view of the rates, spectra, and distribution of mutation in the absence of mismatch repair. We performed mutation accumulation assays and next generation sequencing on 19 strains, including 16 msh2 missense variants implicated in Lynch cancer syndrome. The mutation rate for DNA mismatch repair null strains was approximately 1 mutation per genome per generation, 225-fold greater than the wild-type rate. The mutations were distributed randomly throughout the genome, independent of replication timing. The mutation spectra included insertions/deletions at homopolymeric runs (87.7%) and at larger microsatellites (5.9%), as well as transitions (4.5%) and transversions (1.9%). Additionally, repeat regions with proximal repeats are more likely to be mutated. A bias toward deletions at homopolymers and insertions at (AT)n microsatellites suggests a different mechanism for mismatch generation at these sites. Interestingly, 5% of the single base pair substitutions might represent double-slippage events that occurred at the junction of immediately adjacent repeats, resulting in a shift in the repeat boundary. These data suggest a closer scrutiny of tumor suppressors with homopolymeric runs with proximal repeats as the potential drivers of oncogenesis in mismatch repair defective cells.
Collapse
|
13
|
Gouge J, Rosario S, Romain F, Beguin P, Delarue M. Structures of intermediates along the catalytic cycle of terminal deoxynucleotidyltransferase: dynamical aspects of the two-metal ion mechanism. J Mol Biol 2013; 425:4334-52. [PMID: 23856622 DOI: 10.1016/j.jmb.2013.07.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/28/2013] [Accepted: 07/03/2013] [Indexed: 11/19/2022]
Abstract
Terminal deoxynucleotidyltransferase (Tdt) is a non-templated eukaryotic DNA polymerase of the polX family that is responsible for the random addition of nucleotides at the V(D)J junctions of immunoglobulins and T-cell receptors. Here we describe a series of high-resolution X-ray structures that mimic the pre-catalytic state, the post-catalytic state and a competent state that can be transformed into the two other ones in crystallo via the addition of dAMPcPP and Zn(2+), respectively. We examined the effect of Mn(2+), Co(2+) and Zn(2+) because they all have a marked influence on the kinetics of the reaction. We demonstrate a dynamic role of divalent transition metal ions bound to site A: (i) Zn(2+) (or Co(2+)) in Metal A site changes coordination from octahedral to tetrahedral after the chemical step, which explains the known higher affinity of Tdt for the primer strand when these ions are present, and (ii) metal A has to leave to allow the translocation of the primer strand and to clear the active site, a typical feature for a ratchet-like mechanism. Except for Zn(2+), the sugar puckering of the primer strand 3' terminus changes from C2'-endo to C3'-endo during catalysis. In addition, our data are compatible with a scheme where metal A is the last component that binds to the active site to complete its productive assembly, as already inferred in human pol beta. The new structures have potential implications for modeling pol mu, a closely related polX implicated in the repair of DNA double-strand breaks, in a complex with a DNA synapsis.
Collapse
Affiliation(s)
- Jérôme Gouge
- Unité de Dynamique Structurale des Macromolécules, Institut Pasteur, UMR 3528 du CNRS, 25 rue du Dr Roux, 75015 Paris, France
| | | | | | | | | |
Collapse
|
14
|
"Gate-keeper" residues and active-site rearrangements in DNA polymerase μ help discriminate non-cognate nucleotides. PLoS Comput Biol 2013; 9:e1003074. [PMID: 23717197 PMCID: PMC3662701 DOI: 10.1371/journal.pcbi.1003074] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 04/11/2013] [Indexed: 11/19/2022] Open
Abstract
Incorporating the cognate instead of non-cognate substrates is crucial for DNA polymerase function. Here we analyze molecular dynamics simulations of DNA polymerase μ (pol μ) bound to different non-cognate incoming nucleotides including A:dCTP, A:dGTP, A(syn):dGTP, A:dATP, A(syn):dATP, T:dCTP, and T:dGTP to study the structure-function relationships involved with aberrant base pairs in the conformational pathway; while a pol μ complex with the A:dTTP base pair is available, no solved non-cognate structures are available. We observe distinct differences of the non-cognate systems compared to the cognate system. Specifically, the motions of active-site residue His329 and Asp330 distort the active site, and Trp436, Gln440, Glu443 and Arg444 tend to tighten the nucleotide-binding pocket when non-cognate nucleotides are bound; the latter effect may further lead to an altered electrostatic potential within the active site. That most of these “gate-keeper” residues are located farther apart from the upstream primer in pol μ, compared to other X family members, also suggests an interesting relation to pol μ's ability to incorporate nucleotides when the upstream primer is not paired. By examining the correlated motions within pol μ complexes, we also observe different patterns of correlations between non-cognate systems and the cognate system, especially decreased interactions between the incoming nucleotides and the nucleotide-binding pocket. Altered correlated motions in non-cognate systems agree with our recently proposed hybrid conformational selection/induced-fit models. Taken together, our studies propose the following order for difficulty of non-cognate system insertions by pol μ: T:dGTP<A(syn):dATP<T:dCTP<A:dGTP<A(syn):dGTP<A:dCTP<A:dATP. This sequence agrees with available kinetic data for non-cognate nucleotide insertions, with the exception of A:dGTP, which may be more sensitive to the template sequence. The structures and conformational aspects predicted here are experimentally testable. DNA polymerase μ (pol μ) is an enzyme that participates in DNA repair and thus has a central role in maintaining the integrity of genetic information. To efficiently repair the DNA, discriminating the cognate instead of non-cognate nucleotides (“fidelity-checking”) is required. Here we analyze molecular dynamics simulations of pol μ bound to different non-cognate nucleotides to study the structure-function relationships involved in the fidelity-checking mechanism of pol μ on the atomic level. Our results suggest that His329, Asp330, Trp436, Gln440, Glu443, and Arg444 are of great importance for pol μ's fidelity-checking mechanism. We also observe altered patterns of correlated motions within pol μ complex when non-cognate instead of cognate nucleotides are bound, which agrees with our recently proposed hybrid conformational selection/induced-fit models. Taken together, our studies help interpret the available kinetic data of various non-cognate nucleotide insertions by pol μ. We also suggest experimentally testable predictions; for example, a point mutation like E443M may reduce the ability of pol μ to insert the cognate more than of non-cognate nucleotides. Our studies suggest an interesting relation to pol μ's unique ability to incorporate nucleotides when the upstream primer is not paired.
Collapse
|
15
|
Banavali NK. Partial base flipping is sufficient for strand slippage near DNA duplex termini. J Am Chem Soc 2013; 135:8274-82. [PMID: 23692220 DOI: 10.1021/ja401573j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Strand slippage is a structural mechanism by which insertion-deletion (indel) mutations are introduced during replication by polymerases. Three-dimensional atomic-resolution structural pathways are still not known for the decades-old template slippage description. The dynamic nature of the process and the higher energy intermediates involved increase the difficulty of studying these processes experimentally. In the present study, restrained and unrestrained molecular dynamics simulations, carried out using multiple nucleic acid force fields, are used to demonstrate that partial base-flipping can be sufficient for strand slippage at DNA duplex termini. Such strand slippage can occur in either strand, i.e. near either the 3' or the 5' terminus of a DNA strand, which suggests that similar structural flipping mechanisms can cause both primer and template slippage. In the repetitive mutation hot-spot sequence studied, non-canonical base-pairing with exposed DNA groove atoms of a neighboring G:C base-pair stabilizes a partially flipped state of the cytosine. For its base-pair partner guanine, a similar partially flipped metastable intermediate was not detected, and the propensity for sustained slippage was also found to be lower. This illustrates that a relatively small metastable DNA structural distortion in polymerase active sites could allow single base insertion or deletion mutations to occur, and stringent DNA groove molecular recognition may be required to maintain intrinsic DNA polymerase fidelity. The implications of a close relationship between base-pair dissociation, base unstacking, and strand slippage are discussed in the context of sequence dependence of indel mutations.
Collapse
Affiliation(s)
- Nilesh K Banavali
- Laboratory of Computational and Structural Biology, Division of Genetics, Wadsworth Center, New York State Department of Health , and Department of Biomedical Sciences, School of Public Health, State University of New York at Albany , CMS 2008, 150 New Scotland Avenue, Albany, New York 12208, United States
| |
Collapse
|
16
|
Abstract
The structural features that enable replicative DNA polymerases to synthesize DNA rapidly and accurately also limit their ability to copy damaged DNA. Direct replication of DNA damage is termed translesion synthesis (TLS), a mechanism conserved from bacteria to mammals and executed by an array of specialized DNA polymerases. This chapter examines how these translesion polymerases replicate damaged DNA and how they are regulated to balance their ability to replicate DNA lesions with the risk of undesirable mutagenesis. It also discusses how TLS is co-opted to increase the diversity of the immunoglobulin gene hypermutation and the contribution it makes to the mutations that sculpt the genome of cancer cells.
Collapse
Affiliation(s)
- Julian E Sale
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom.
| |
Collapse
|
17
|
Abstract
Plant mitochondrial genomes are notorious for their large and variable size, nonconserved open reading frames of unknown function, and high rates of rearrangement. Paradoxically, the mutation rates are very low. However, mutation rates can only be measured in sequences that can be aligned--a very small part of plant mitochondrial genomes. Comparison of the complete mitochondrial genome sequences of two ecotypes of Arabidopsis thaliana allows the alignment of noncoding as well as coding DNA and estimation of the mutation rates in both. A recent chimeric duplication is also analyzed. A hypothesis is proposed that the mechanisms of plant mitochondrial DNA repair account for these features and includes different mechanisms in transcribed and nontranscribed regions. Within genes, a bias toward gene conversion would keep measured mutation rates low, whereas in noncoding regions, break-induced replication (BIR) explains the expansion and rearrangements. Both processes are types of double-strand break repair, but enhanced second-strand capture in transcribed regions versus BIR in nontranscribed regions can explain the two seemingly contradictory features of plant mitochondrial genome evolution--the low mutation rates in genes and the striking expansions of noncoding sequences.
Collapse
Affiliation(s)
- Alan C Christensen
- School of Biological Sciences, E249 Beadle Center, University of Nebraska-Lincoln, USA.
| |
Collapse
|
18
|
Freudenthal BD, Beard WA, Wilson SH. Structures of dNTP intermediate states during DNA polymerase active site assembly. Structure 2012; 20:1829-37. [PMID: 22959623 PMCID: PMC3496073 DOI: 10.1016/j.str.2012.08.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 08/08/2012] [Accepted: 08/10/2012] [Indexed: 11/23/2022]
Abstract
DNA polymerase and substrate conformational changes are essential for high-fidelity DNA synthesis. Structures of DNA polymerase (pol) β in complex with DNA show the enzyme in an "open" conformation. Subsequent to binding the nucleotide, the polymerase "closes" around the nascent base pair with two metals positioned for chemistry. However, structures of substrate/active site intermediates prior to closure are lacking. By destabilizing the closed complex, we determined unique ternary complex structures of pol β with correct and incorrect incoming nucleotides bound to the open conformation. These structures reveal that Watson-Crick hydrogen bonding is assessed upon initial complex formation. Importantly, nucleotide-bound states representing intermediate metal coordination states occur with active site assembly. The correct, but not incorrect, nucleotide maintains Watson-Crick hydrogen bonds during interconversion of these states. These structures indicate that the triphosphate of the incoming nucleotide undergoes rearrangement prior to closure, providing an opportunity to deter misinsertion and increase fidelity.
Collapse
Affiliation(s)
- Bret D. Freudenthal
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, P.O. Box 12233, Research Triangle Park, North Carolina 27709-2233, USA
| | - William A. Beard
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, P.O. Box 12233, Research Triangle Park, North Carolina 27709-2233, USA
| | - Samuel H. Wilson
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, P.O. Box 12233, Research Triangle Park, North Carolina 27709-2233, USA
| |
Collapse
|
19
|
Villani G, Hubscher U, Gironis N, Parkkinen S, Pospiech H, Shevelev I, di Cicco G, Markkanen E, Syväoja JE, Tanguy Le Gac N. In vitro gap-directed translesion DNA synthesis of an abasic site involving human DNA polymerases epsilon, lambda, and beta. J Biol Chem 2011; 286:32094-104. [PMID: 21757740 DOI: 10.1074/jbc.m111.246611] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA polymerase (pol) ε is thought to be the leading strand replicase in eukaryotes, whereas pols λ and β are believed to be mainly involved in re-synthesis steps of DNA repair. DNA elongation by the human pol ε is halted by an abasic site (apurinic/apyrimidinic (AP) site). In this study, we present in vitro evidence that human pols λ, β, and η can perform translesion synthesis (TLS) of an AP site in the presence of pol ε, likely by initiating the 3'OHs created at the lesion by the arrested pol ε. However, in the case of pols λ and β, this TLS requires the presence of a DNA gap downstream from the product synthesized by the pol ε, and the optimal gap for efficient TLS is different for the two polymerases. The presence of gaps did not affect the TLS capacity of human pol η. Characterization of the reaction products showed that pol β inserted dAMP opposite the AP site, whereas gap filling synthesis by pol λ resulted in single or double deletions opposite the lesion. The synthesis up to the AP site by pol ε and the subsequent TLS by pols λ and β are not influenced by human processivity factor proliferating cell nuclear antigen and human single-stranded DNA-binding protein replication protein A. The bypass capacity of pol λ at the AP site is greatly reduced when a truncated form of the enzyme, which has lost the BRCA1 C-terminal and proline-rich domains, is used. Collectively, our in vitro results support the existence of a mechanism of gap-directed TLS at an AP site involving a switch between the replicative pol ε and the repair pols λ and β.
Collapse
Affiliation(s)
- Giuseppe Villani
- Institut de Pharmacologie et de Biologie Structurale, CNRS-Université Paul Sabatier Toulouse III, UMR 5089, 205 Route de Narbonne, 31077 Toulouse Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Schlick T, Collepardo-Guevara R, Halvorsen LA, Jung S, Xiao X. Biomolecularmodeling and simulation: a field coming of age. Q Rev Biophys 2011; 44:191-228. [PMID: 21226976 PMCID: PMC3700731 DOI: 10.1017/s0033583510000284] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We assess the progress in biomolecular modeling and simulation, focusing on structure prediction and dynamics, by presenting the field’s history, metrics for its rise in popularity, early expressed expectations, and current significant applications. The increases in computational power combined with improvements in algorithms and force fields have led to considerable success, especially in protein folding, specificity of ligand/biomolecule interactions, and interpretation of complex experimental phenomena (e.g. NMR relaxation, protein-folding kinetics and multiple conformational states) through the generation of structural hypotheses and pathway mechanisms. Although far from a general automated tool, structure prediction is notable for proteins and RNA that preceded the experiment, especially by knowledge-based approaches. Thus, despite early unrealistic expectations and the realization that computer technology alone will not quickly bridge the gap between experimental and theoretical time frames, ongoing improvements to enhance the accuracy and scope of modeling and simulation are propelling the field onto a productive trajectory to become full partner with experiment and a field on its own right.
Collapse
Affiliation(s)
- Tamar Schlick
- Department of Chemistry, New York University, 100 Washington Square East, Silver Building, New York, NY 10003, USA.
| | | | | | | | | |
Collapse
|
21
|
Markkanen E, van Loon B, Ferrari E, Hübscher U. Ubiquitylation of DNA polymerase λ. FEBS Lett 2011; 585:2826-30. [PMID: 21486570 DOI: 10.1016/j.febslet.2011.03.069] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 03/31/2011] [Accepted: 03/31/2011] [Indexed: 12/26/2022]
Abstract
DNA polymerase (pol) λ, one of the 15 cellular pols, belongs to the X family. It is a small 575 amino-acid protein containing a polymerase, a dRP-lyase, a proline/serine rich and a BRCT domain. Pol λ shows various enzymatic activities including DNA polymerization, terminal transferase and dRP-lyase. It has been implicated to play a role in several DNA repair pathways, particularly base excision repair (BER), non-homologous end-joining (NHEJ) and translesion DNA synthesis (TLS). Similarly to other DNA repair enzymes, pol λ undergoes posttranslational modifications during the cell cycle that regulate its stability and possibly its subcellular localization. Here we describe our knowledge about ubiquitylation of pol λ and the impact of this modification on its regulation.
Collapse
Affiliation(s)
- Enni Markkanen
- Institute for Veterinary Biochemistry and Molecular Biology, University of Zürich-Irchel, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
22
|
The in vitro fidelity of yeast DNA polymerase δ and polymerase ε holoenzymes during dinucleotide microsatellite DNA synthesis. DNA Repair (Amst) 2011; 10:497-505. [PMID: 21429821 DOI: 10.1016/j.dnarep.2011.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 02/11/2011] [Accepted: 02/18/2011] [Indexed: 11/20/2022]
Abstract
Elucidating the sources of genetic variation within microsatellite alleles has important implications for understanding the etiology of human diseases. Mismatch repair is a well described pathway for the suppression of microsatellite instability. However, the cellular polymerases responsible for generating microsatellite errors have not been fully described. We address this gap in knowledge by measuring the fidelity of recombinant yeast polymerase δ (Pol δ) and ɛ (Pol ɛ) holoenzymes during synthesis of a [GT/CA] microsatellite. The in vitro HSV-tk forward assay was used to measure DNA polymerase errors generated during gap-filling of complementary GT(10) and CA(10)-containing substrates and ∼90 nucleotides of HSV-tk coding sequence surrounding the microsatellites. The observed mutant frequencies within the microsatellites were 4 to 30-fold higher than the observed mutant frequencies within the coding sequence. More specifically, the rate of Pol δ and Pol ɛ misalignment-based insertion/deletion errors within the microsatellites was ∼1000-fold higher than the rate of insertion/deletion errors within the HSV-tk gene. Although the most common microsatellite error was the deletion of a single repeat unit, ∼ 20% of errors were deletions of two or more units for both polymerases. The differences in fidelity for wild type enzymes and their exonuclease-deficient derivatives were ∼2-fold for unit-based microsatellite insertion/deletion errors. Interestingly, the exonucleases preferentially removed potentially stabilizing interruption errors within the microsatellites. Since Pol δ and Pol ɛ perform not only the bulk of DNA replication in eukaryotic cells but also are implicated in performing DNA synthesis associated with repair and recombination, these results indicate that microsatellite errors may be introduced into the genome during multiple DNA metabolic pathways.
Collapse
|
23
|
Abstract
In describing the DNA double helix, Watson and Crick suggested that "spontaneous mutation may be due to a base occasionally occurring in one of its less likely tautomeric forms." Indeed, among many mispairing possibilities, either tautomerization or ionization of bases might allow a DNA polymerase to insert a mismatch with correct Watson-Crick geometry. However, despite substantial progress in understanding the structural basis of error prevention during polymerization, no DNA polymerase has yet been shown to form a natural base-base mismatch with Watson-Crick-like geometry. Here we provide such evidence, in the form of a crystal structure of a human DNA polymerase λ variant poised to misinsert dGTP opposite a template T. All atoms needed for catalysis are present at the active site and in positions that overlay with those for a correct base pair. The mismatch has Watson-Crick geometry consistent with a tautomeric or ionized base pair, with the pH dependence of misinsertion consistent with the latter. The results support the original idea that a base substitution can originate from a mismatch having Watson-Crick geometry, and they suggest a common catalytic mechanism for inserting a correct and an incorrect nucleotide. A second structure indicates that after misinsertion, the now primer-terminal G • T mismatch is also poised for catalysis but in the wobble conformation seen in other studies, indicating the dynamic nature of the pathway required to create a mismatch in fully duplex DNA.
Collapse
|
24
|
Foley MC, Padow VA, Schlick T. DNA pol λ's extraordinary ability to stabilize misaligned DNA. J Am Chem Soc 2010; 132:13403-16. [PMID: 20822183 DOI: 10.1021/ja1049687] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
DNA polymerases have the venerable task of maintaining genome stability during DNA replication and repair. Errors, nonetheless, occur with error propensities that are polymerase specific. For example, DNA polymerase λ (pol λ) generates single-base deletions through template-strand slippage within short repetitive DNA regions much more readily than does the closely related polymerase β (pol β). Here we present in silico evidence to help interpret pol λ's greater tendency for deletion errors than pol β by its more favorable protein/DNA electrostatic interactions immediately around the extrahelical nucleotide on the template strand. Our molecular dynamics and free energy analyses suggest that pol λ provides greater stabilization to misaligned DNA than aligned DNA. Our study of several pol λ mutants of Lys544 (Ala, Phe, Glu) probes the interactions between the extrahelical nucleotide and the adjacent Lys544 to show that the charge of the 544 residue controls stabilization of the DNA misalignment. In addition, we identify other thumb residues (Arg538, Lys521, Arg517, and Arg514) that play coordinating roles in stabilizing pol λ's interactions with misaligned DNA. Interestingly, their aggregate stabilization effect is more important than that of any one component residue, in contrast to aligned DNA systems, as we determined from mutations of these key residues and energetic analyses. No such comparable network of stabilizing misaligned DNA exists in pol β. Evolutionary needs for DNA repair on substrates with minimal base-pairing, such as those encountered by pol λ in the non-homologous end-joining pathway, may have been solved by a greater tolerance to deletion errors. Other base-flipping proteins share similar binding properties and motions for extrahelical nucleotides.
Collapse
Affiliation(s)
- Meredith C Foley
- Department of Chemistry and Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012, USA
| | | | | |
Collapse
|
25
|
Brown JA, Pack LR, Sanman LE, Suo Z. Efficiency and fidelity of human DNA polymerases λ and β during gap-filling DNA synthesis. DNA Repair (Amst) 2010; 10:24-33. [PMID: 20961817 DOI: 10.1016/j.dnarep.2010.09.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 09/14/2010] [Accepted: 09/16/2010] [Indexed: 12/31/2022]
Abstract
The base excision repair (BER) pathway coordinates the replacement of 1-10 nucleotides at sites of single-base lesions. This process generates DNA substrates with various gap sizes which can alter the catalytic efficiency and fidelity of a DNA polymerase during gap-filling DNA synthesis. Here, we quantitatively determined the substrate specificity and base substitution fidelity of human DNA polymerase λ (Pol λ), an enzyme proposed to support the known BER DNA polymerase β (Pol β), as it filled 1-10-nucleotide gaps at 1-nucleotide intervals. Pol λ incorporated a correct nucleotide with relatively high efficiency until the gap size exceeded 9 nucleotides. Unlike Pol λ, Pol β did not have an absolute threshold on gap size as the catalytic efficiency for a correct dNTP gradually decreased as the gap size increased from 2 to 10 nucleotides and then recovered for non-gapped DNA. Surprisingly, an increase in gap size resulted in lower polymerase fidelity for Pol λ, and this downregulation of fidelity was controlled by its non-enzymatic N-terminal domains. Overall, Pol λ was up to 160-fold more error-prone than Pol β, thereby suggesting Pol λ would be more mutagenic during long gap-filling DNA synthesis. In addition, dCTP was the preferred misincorporation for Pol λ and its N-terminal domain truncation mutants. This nucleotide preference was shown to be dependent upon the identity of the adjacent 5'-template base. Our results suggested that both Pol λ and Pol β would catalyze nucleotide incorporation with the highest combination of efficiency and accuracy when the DNA substrate contains a single-nucleotide gap. Thus, Pol λ, like Pol β, is better suited to catalyze gap-filling DNA synthesis during short-patch BER in vivo, although, Pol λ may play a role in long-patch BER.
Collapse
Affiliation(s)
- Jessica A Brown
- Department of Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
26
|
Brown JA, Pack LR, Sherrer SM, Kshetry AK, Newmister SA, Fowler JD, Taylor JS, Suo Z. Identification of critical residues for the tight binding of both correct and incorrect nucleotides to human DNA polymerase λ. J Mol Biol 2010; 403:505-15. [PMID: 20851705 DOI: 10.1016/j.jmb.2010.09.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 08/31/2010] [Accepted: 09/08/2010] [Indexed: 10/19/2022]
Abstract
DNA polymerase λ (Pol λ) is a novel X-family DNA polymerase that shares 34% sequence identity with DNA polymerase β. Pre-steady-state kinetic studies have shown that the Pol λ-DNA complex binds both correct and incorrect nucleotides 130-fold tighter, on average, than the DNA polymerase β-DNA complex, although the base substitution fidelity of both polymerases is 10(-)(4) to 10(-5). To better understand Pol λ's tight nucleotide binding affinity, we created single-substitution and double-substitution mutants of Pol λ to disrupt the interactions between active-site residues and an incoming nucleotide or a template base. Single-turnover kinetic assays showed that Pol λ binds to an incoming nucleotide via cooperative interactions with active-site residues (R386, R420, K422, Y505, F506, A510, and R514). Disrupting protein interactions with an incoming correct or incorrect nucleotide impacted binding to each of the common structural moieties in the following order: triphosphate≫base>ribose. In addition, the loss of Watson-Crick hydrogen bonding between the nucleotide and the template base led to a moderate increase in K(d). The fidelity of Pol λ was maintained predominantly by a single residue, R517, which has minor groove interactions with the DNA template.
Collapse
Affiliation(s)
- Jessica A Brown
- Department of Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Foti JJ, Delucia AM, Joyce CM, Walker GC. UmuD(2) inhibits a non-covalent step during DinB-mediated template slippage on homopolymeric nucleotide runs. J Biol Chem 2010; 285:23086-95. [PMID: 20467052 DOI: 10.1074/jbc.m110.115774] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli DinB (DNA polymerase IV) possesses an enzyme architecture resulting in specialized lesion bypass function and the potential for creating -1 frameshifts in homopolymeric nucleotide runs. We have previously shown that the mutagenic potential of DinB is regulated by the DNA damage response protein UmuD(2). In the current study, we employ a pre-steady-state fluorescence approach to gain a mechanistic understanding of DinB regulation by UmuD(2). Our results suggest that DinB, like its mammalian and archaeal orthologs, uses a template slippage mechanism to create single base deletions on homopolymeric runs. With 2-aminopurine as a fluorescent reporter in the DNA substrate, the template slippage reaction results in a prechemistry fluorescence change that is inhibited by UmuD(2). We propose a model in which DNA templates containing homopolymeric nucleotide runs, when bound to DinB, are in an equilibrium between non-slipped and slipped conformations. UmuD(2), when bound to DinB, displaces the equilibrium in favor of the non-slipped conformation, thereby preventing frameshifting and potentially enhancing DinB activity on non-slipped substrates.
Collapse
Affiliation(s)
- James J Foti
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
28
|
Garcia-Diaz M, Murray MS, Kunkel TA, Chou KM. Interaction between DNA Polymerase lambda and anticancer nucleoside analogs. J Biol Chem 2010; 285:16874-9. [PMID: 20348107 DOI: 10.1074/jbc.m109.094391] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The anticancer activity of cytarabine (AraC) and gemcitabine (dFdC) is thought to result from chain termination after incorporation into DNA. To investigate their incorporation into DNA at atomic level resolution, we present crystal structures of human DNA polymerase lambda (Pol lambda) bound to gapped DNA and containing either AraC or dFdC paired opposite template dG. These structures reveal that AraC and dFdC can bind within the nascent base pair binding pocket of Pol lambda. Although the conformation of the ribose of AraCTP is similar to that of normal dCTP, the conformation of dFdCTP is significantly different. Consistent with these structures, Pol lambda efficiently incorporates AraCTP but not dFdCTP. The data are consistent with the possibility that Pol lambda could modulate the cytotoxic effect of AraC.
Collapse
Affiliation(s)
- Miguel Garcia-Diaz
- Laboratory of Structural Biology and Laboratory of Molecular Genetics, Department of Health and Human Services, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
29
|
Foley MC, Schlick T. Relationship between conformational changes in pol lambda's active site upon binding incorrect nucleotides and mismatch incorporation rates. J Phys Chem B 2010; 113:13035-47. [PMID: 19572669 DOI: 10.1021/jp903172x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The correct replication and repair of DNA is critical for a cell's survival. Here, we investigate the fidelity of mammalian DNA polymerase lambda (pol lambda) utilizing dynamics simulation of the enzyme bound to incorrect incoming nucleotides including A:C, A:G, A(syn):G, A:A, A(syn):A, and T:G, all of which exhibit differing incorporation rates for pol lambda as compared to A:T bound to pol lambda. The wide range of DNA motion and protein residue side-chain motions observed in the mismatched systems demonstrates distinct differences when compared to the reference (correct base pair) system. Notably, Arg517's interactions with the DNA template strand bases in the active site are more limited, and Arg517 displays increased interactions with the incorrect dNTPs. This effect suggests that Arg517 helps provide a base-checking mechanism to discriminate correct from incorrect dNTPs. In addition, we find Tyr505 and Phe506 also play key roles in this base checking. A survey of the electrostatic potential landscape of the active sites and concomitant changes in electrostatic interaction energy between Arg517 and the dNTPs reveals that pol lambda binds incorrect dNTPs less tightly than the correct dNTP. These trends lead us to propose the following order for mismatch insertion by pol lambda: A:C > A:G > A(syn):G > T:G > A(syn):A > A:A. This sequence agrees with available kinetic data for incorrect nucleotide insertion opposite template adenine, with the exception of T:G, which may be more sensitive to the insertion context.
Collapse
Affiliation(s)
- Meredith C Foley
- Department of Chemistry and Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012, USA
| | | |
Collapse
|
30
|
Template strand scrunching during DNA gap repair synthesis by human polymerase lambda. Nat Struct Mol Biol 2009; 16:967-72. [PMID: 19701199 PMCID: PMC2767187 DOI: 10.1038/nsmb.1654] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 06/26/2009] [Indexed: 01/07/2023]
Abstract
Family X polymerases such as DNA polymerase lambda (Pol lambda) are well suited for filling short gaps during DNA repair because they simultaneously bind both the 5' and 3' ends of short gaps. DNA binding and gap filling are well characterized for 1-nucleotide (nt) gaps, but the location of yet-to-be-copied template nucleotides in longer gaps is unknown. Here we present crystal structures revealing that, when bound to a 2-nt gap, Pol lambda scrunches the template strand and binds the additional uncopied template base in an extrahelical position within a binding pocket that comprises three conserved amino acids. Replacing these amino acids with alanine results in less processive gap filling and less efficient NHEJ when 2-nt gaps are involved. Thus, akin to scrunching by RNA polymerase during transcription initiation, scrunching occurs during gap filling DNA synthesis associated with DNA repair.
Collapse
|
31
|
Yamtich J, Sweasy JB. DNA polymerase family X: function, structure, and cellular roles. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:1136-50. [PMID: 19631767 DOI: 10.1016/j.bbapap.2009.07.008] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 07/02/2009] [Accepted: 07/03/2009] [Indexed: 10/20/2022]
Abstract
The X family of DNA polymerases in eukaryotic cells consists of terminal transferase and DNA polymerases beta, lambda, and mu. These enzymes have similar structural portraits, yet different biochemical properties, especially in their interactions with DNA. None of these enzymes possesses a proofreading subdomain, and their intrinsic fidelity of DNA synthesis is much lower than that of a polymerase that functions in cellular DNA replication. In this review, we discuss the similarities and differences of three members of Family X: polymerases beta, lambda, and mu. We focus on biochemical mechanisms, structural variation, fidelity and lesion bypass mechanisms, and cellular roles. Remarkably, although these enzymes have similar three-dimensional structures, their biochemical properties and cellular functions differ in important ways that impact cellular function.
Collapse
Affiliation(s)
- Jennifer Yamtich
- Department of Therapeutic Radiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | | |
Collapse
|
32
|
Di Pasquale F, Fischer D, Grohmann D, Restle T, Geyer A, Marx A. Opposed steric constraints in human DNA polymerase beta and E. coli DNA polymerase I. J Am Chem Soc 2008; 130:10748-57. [PMID: 18627154 DOI: 10.1021/ja8028284] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA polymerase selectivity is crucial for the survival of any living species, yet varies significantly among different DNA polymerases. Errors within DNA polymerase-catalyzed DNA synthesis result from the insertion of noncanonical nucleotides and extension of misaligned DNA substrates. The substrate binding characteristics among DNA polymerases are believed to vary in properties such as shape and tightness of the binding pocket, which might account for the observed differences in fidelity. Here, we employed 4'-alkylated nucleotides and primer strands bearing 4'-alkylated nucleotides at the 3'-terminal position as steric probes to investigate differential active site properties of human DNA polymerase beta (Pol beta) and the 3'-->5'-exonuclease-deficient Klenow fragment of E. coli DNA polymerase I (KF(exo-)). Transient kinetic measurements indicate that both enzymes vary significantly in active site tightness at both positions. While small 4'-methyl and -ethyl modifications of the nucleoside triphosphate perturb Pol beta catalysis, extension of modified primer strands is only marginally affected. Just the opposite was observed for KF(exo-). Here, incorporation of the modified nucleotides is only slightly reduced, whereas size augmentation of the 3'-terminal nucleotide in the primer reduces the catalytic efficiency by more than 7000- and 260,000-fold, respectively. NMR studies support the notion that the observed effects derive from enzyme substrate interactions rather than inherent properties of the modified substrates. These findings are consistent with the observed differential capability of the investigated DNA polymerases in fidelity such as processing misaligned DNA substrates. The results presented provide direct evidence for the involvement of varied steric effects among different DNA polymerases on their fidelity.
Collapse
Affiliation(s)
- Francesca Di Pasquale
- Fachbereich Chemie, Universität Konstanz, Universitätsstrasse 10, D-78457 Konstanz, Germany
| | | | | | | | | | | |
Collapse
|