1
|
Royzenblat SK, Freddolino L. Spatio-temporal organization of the E. coli chromosome from base to cellular length scales. EcoSal Plus 2024; 12:eesp00012022. [PMID: 38864557 PMCID: PMC11636183 DOI: 10.1128/ecosalplus.esp-0001-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 04/17/2024] [Indexed: 06/13/2024]
Abstract
Escherichia coli has been a vital model organism for studying chromosomal structure, thanks, in part, to its small and circular genome (4.6 million base pairs) and well-characterized biochemical pathways. Over the last several decades, we have made considerable progress in understanding the intricacies of the structure and subsequent function of the E. coli nucleoid. At the smallest scale, DNA, with no physical constraints, takes on a shape reminiscent of a randomly twisted cable, forming mostly random coils but partly affected by its stiffness. This ball-of-spaghetti-like shape forms a structure several times too large to fit into the cell. Once the physiological constraints of the cell are added, the DNA takes on overtwisted (negatively supercoiled) structures, which are shaped by an intricate interplay of many proteins carrying out essential biological processes. At shorter length scales (up to about 1 kb), nucleoid-associated proteins organize and condense the chromosome by inducing loops, bends, and forming bridges. Zooming out further and including cellular processes, topological domains are formed, which are flanked by supercoiling barriers. At the megabase-scale both large, highly self-interacting regions (macrodomains) and strong contacts between distant but co-regulated genes have been observed. At the largest scale, the nucleoid forms a helical ellipsoid. In this review, we will explore the history and recent advances that pave the way for a better understanding of E. coli chromosome organization and structure, discussing the cellular processes that drive changes in DNA shape, and what contributes to compaction and formation of dynamic structures, and in turn how bacterial chromatin affects key processes such as transcription and replication.
Collapse
Affiliation(s)
- Sonya K. Royzenblat
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lydia Freddolino
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Blackwell AM, Jami-Alahmadi Y, Nasamu AS, Kudo S, Senoo A, Slam C, Tsumoto K, Wohlschlegel JA, Manuel Martinez Caaveiro J, Goldberg DE, Sigala PA. Malaria parasites require a divergent heme oxygenase for apicoplast gene expression and biogenesis. eLife 2024; 13:RP100256. [PMID: 39660822 PMCID: PMC11634067 DOI: 10.7554/elife.100256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Malaria parasites have evolved unusual metabolic adaptations that specialize them for growth within heme-rich human erythrocytes. During blood-stage infection, Plasmodium falciparum parasites internalize and digest abundant host hemoglobin within the digestive vacuole. This massive catabolic process generates copious free heme, most of which is biomineralized into inert hemozoin. Parasites also express a divergent heme oxygenase (HO)-like protein (PfHO) that lacks key active-site residues and has lost canonical HO activity. The cellular role of this unusual protein that underpins its retention by parasites has been unknown. To unravel PfHO function, we first determined a 2.8 Å-resolution X-ray structure that revealed a highly α-helical fold indicative of distant HO homology. Localization studies unveiled PfHO targeting to the apicoplast organelle, where it is imported and undergoes N-terminal processing but retains most of the electropositive transit peptide. We observed that conditional knockdown of PfHO was lethal to parasites, which died from defective apicoplast biogenesis and impaired isoprenoid-precursor synthesis. Complementation and molecular-interaction studies revealed an essential role for the electropositive N-terminus of PfHO, which selectively associates with the apicoplast genome and enzymes involved in nucleic acid metabolism and gene expression. PfHO knockdown resulted in a specific deficiency in levels of apicoplast-encoded RNA but not DNA. These studies reveal an essential function for PfHO in apicoplast maintenance and suggest that Plasmodium repurposed the conserved HO scaffold from its canonical heme-degrading function in the ancestral chloroplast to fulfill a critical adaptive role in organelle gene expression.
Collapse
Affiliation(s)
- Amanda Mixon Blackwell
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, University of California, Los AngelesLos AngelesUnited States
| | - Armiyaw S Nasamu
- Departments of Medicine and Molecular Microbiology, Washington University School of MedicineSt. LouisUnited States
| | - Shota Kudo
- Department of Chemistry & Biotechnology, The University of TokyoTokyoJapan
| | - Akinobu Senoo
- Department of Protein Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyushu UniversityFukuokaJapan
| | - Celine Slam
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| | - Kouhei Tsumoto
- Department of Chemistry & Biotechnology, The University of TokyoTokyoJapan
- Department of Bioengineering, University of TokyoTokyoJapan
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California, Los AngelesLos AngelesUnited States
| | | | - Daniel E Goldberg
- Departments of Medicine and Molecular Microbiology, Washington University School of MedicineSt. LouisUnited States
| | - Paul A Sigala
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
- Departments of Medicine and Molecular Microbiology, Washington University School of MedicineSt. LouisUnited States
| |
Collapse
|
3
|
Rashid FZM, Dame RT. 2024: A "nucleoid space" odyssey featuring H-NS. Bioessays 2024; 46:e2400098. [PMID: 39324242 DOI: 10.1002/bies.202400098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024]
Abstract
The three-dimensional architecture of the bacterial chromosome is intertwined with genome processes such as transcription and replication. Conspicuously so, that the structure of the chromosome permits accurate prediction of active genome processes. Although appreciation of this interplay has developed rapidly in the past two decades, our understanding of this subject is still in its infancy, with research primarily focusing on how the process of transcription regulates and is regulated by chromosome structure. Here, we summarize the latest developments in the field with a focus on the interplay between chromosome structure and transcription in Escherichia coli (E. coli) as mediated by H-NS-a model nucleoid structuring protein. We describe how the organization of chromosomes at the global and local scales is dependent on transcription, and how transcription is regulated by chromosome structure. Finally, we take note of studies that highlight our limited knowledge of structure-function relationships in the chromosome, and we point out research tracks that will improve our insight in the topic.
Collapse
Affiliation(s)
- Fatema-Zahra M Rashid
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
- Centre for Interdisciplinary Genome Research, Leiden University, Leiden, The Netherlands
| | - Remus T Dame
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
- Centre for Interdisciplinary Genome Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
4
|
Strzałka A, Mikołajczyk J, Kowalska K, Skurczyński M, Holmes NA, Jakimowicz D. The role of two major nucleoid-associated proteins in Streptomyces, HupA and HupS, in stress survival and gene expression regulation. Microb Cell Fact 2024; 23:275. [PMID: 39402545 PMCID: PMC11472566 DOI: 10.1186/s12934-024-02549-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Streptomyces are sporulating soil bacteria with enormous potential for secondary metabolites biosynthesis. Regulatory networks governing Streptomyces coelicolor differentiation and secondary metabolites production are complex and composed of numerous regulatory proteins ranging from specific transcriptional regulators to sigma factors. Nucleoid-associated proteins (NAPs) are also believed to contribute to regulation of gene expression. Upon DNA binding, these proteins impact DNA accessibility. Among NAPs, HU proteins are the most widespread and abundant. Unlike other bacteria, the Streptomyces genomes encode two HU homologs: HupA and HupS, which differ in structure and expression profile. However, it remained unclear whether the functions of both homologs overlap. Additionally, although both proteins have been shown to bind the chromosome, their rolesin transcriptional regulation have not been studied so far. RESULTS In this study, we explore whether HupA and HupS affect S. coelicolor growth under optimal and stressful conditions and how they control global gene expression. By testing both single and double mutants, we address the question of the complementarity of both HU homologs. We show that the lack of both hup genes led to growth and sporulation inhibition, as well as increased spore fragility. We also demonstrate that both HU homologs can be considered global transcriptional regulators, influencing expression of between 2% and 6% genes encoding among others proteins linked to global regulatory networks and secondary metabolite production. CONCLUSIONS We identify the independent HupA and HupS regulons, as well as genes under the control of both HupA and HupS proteins. Our data indicate a partial overlap between the functions of HupA and HupS during S. coelicolor growth. HupA and HupS play important roles in Streptomyces regulatory network and impact secondary metabolite clusters.
Collapse
Affiliation(s)
- Agnieszka Strzałka
- Molecular Microbiology Department, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland.
| | - Jakub Mikołajczyk
- Molecular Microbiology Department, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Klaudia Kowalska
- Molecular Microbiology Department, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Michał Skurczyński
- Molecular Microbiology Department, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Neil A Holmes
- The John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Dagmara Jakimowicz
- Molecular Microbiology Department, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
5
|
Blackwell AM, Jami-Alahmadi Y, Nasamu AS, Kudo S, Senoo A, Slam C, Tsumoto K, Wohlschlegel JA, Caaveiro JMM, Goldberg DE, Sigala PA. Malaria parasites require a divergent heme oxygenase for apicoplast gene expression and biogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596652. [PMID: 38853871 PMCID: PMC11160694 DOI: 10.1101/2024.05.30.596652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Malaria parasites have evolved unusual metabolic adaptations that specialize them for growth within heme-rich human erythrocytes. During blood-stage infection, Plasmodium falciparum parasites internalize and digest abundant host hemoglobin within the digestive vacuole. This massive catabolic process generates copious free heme, most of which is biomineralized into inert hemozoin. Parasites also express a divergent heme oxygenase (HO)-like protein (PfHO) that lacks key active-site residues and has lost canonical HO activity. The cellular role of this unusual protein that underpins its retention by parasites has been unknown. To unravel PfHO function, we first determined a 2.8 Å-resolution X-ray structure that revealed a highly α-helical fold indicative of distant HO homology. Localization studies unveiled PfHO targeting to the apicoplast organelle, where it is imported and undergoes N-terminal processing but retains most of the electropositive transit peptide. We observed that conditional knockdown of PfHO was lethal to parasites, which died from defective apicoplast biogenesis and impaired isoprenoid-precursor synthesis. Complementation and molecular-interaction studies revealed an essential role for the electropositive N-terminus of PfHO, which selectively associates with the apicoplast genome and enzymes involved in nucleic acid metabolism and gene expression. PfHO knockdown resulted in a specific deficiency in levels of apicoplast-encoded RNA but not DNA. These studies reveal an essential function for PfHO in apicoplast maintenance and suggest that Plasmodium repurposed the conserved HO scaffold from its canonical heme-degrading function in the ancestral chloroplast to fulfill a critical adaptive role in organelle gene expression.
Collapse
Affiliation(s)
| | | | - Armiyaw S. Nasamu
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
| | - Shota Kudo
- Department of Chemistry & Biotechnology, The University of Tokyo, Tokyo, Japan
| | - Akinobu Senoo
- Department of Protein Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Celine Slam
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT
| | - Kouhei Tsumoto
- Department of Chemistry & Biotechnology, The University of Tokyo, Tokyo, Japan
- Department of Bioengineering, University of Tokyo, Tokyo, Japan
| | | | - Jose M. M. Caaveiro
- Department of Chemistry & Biotechnology, The University of Tokyo, Tokyo, Japan
| | - Daniel E. Goldberg
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
| | - Paul A. Sigala
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
6
|
Li W, He Z, Di W, Xu W, Li Y, Sun B. Transposition mechanism of IS Apl1-the determinant of colistin resistance dissemination. Antimicrob Agents Chemother 2024; 68:e0123123. [PMID: 38289082 PMCID: PMC10916398 DOI: 10.1128/aac.01231-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/18/2023] [Indexed: 03/07/2024] Open
Abstract
Multidrug-resistant Enterobacteriaceae, a prominent family of gram-negative pathogenic bacteria, causes a wide range of severe diseases. Strains carrying the mobile colistin resistance (mcr-1) gene show resistance to polymyxin, the last line of defense against multidrug-resistant gram-negative bacteria. However, the transmission of mcr-1 is not well understood. In this study, genomes of mcr-1-positive strains were obtained from the NCBI database, revealing their widespread distribution in China. We also showed that ISApl1, a crucial factor in mcr-1 transmission, is capable of self-transposition. Moreover, the self-cyclization of ISApl1 is mediated by its own encoded transposase. The electrophoretic mobility shift assay experiment validated that the transposase can bind to the inverted repeats (IRs) on both ends, facilitating the cyclization of ISApl1. Through knockout or shortening of IRs at both ends of ISApl1, we demonstrated that the cyclization of ISApl1 is dependent on the sequences of the IRs at both ends. Simultaneously, altering the ATCG content of the bases at both ends of ISApl1 can impact the excision rate by modifying the binding ability between IRs and ISAPL1. Finally, we showed that heat-unstable nucleoid protein (HU) can inhibit ISApl1 transposition by binding to the IRs and preventing ISAPL1 binding and expression. In conclusion, the regulation of ISApl1-self-circling is predominantly controlled by the inverted repeat (IR) sequence and the HU protein. This molecular mechanism deepens our comprehension of mcr-1 dissemination.
Collapse
Affiliation(s)
- Wei Li
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhien He
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wei Di
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Weifeng Xu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yujie Li
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Baolin Sun
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
7
|
Keshavam CC, Naz S, Gupta A, Sanyal P, Kochar M, Gangwal A, Sangwan N, Kumar N, Tyagi E, Goel S, Singh NK, Sowpati DT, Khare G, Ganguli M, Raze D, Locht C, Basu-Modak S, Gupta M, Nandicoori VK, Singh Y. The heparin-binding hemagglutinin protein of Mycobacterium tuberculosis is a nucleoid-associated protein. J Biol Chem 2023; 299:105364. [PMID: 37865319 PMCID: PMC10665949 DOI: 10.1016/j.jbc.2023.105364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/23/2023] Open
Abstract
Nucleoid-associated proteins (NAPs) regulate multiple cellular processes such as gene expression, virulence, and dormancy throughout bacterial species. NAPs help in the survival and adaptation of Mycobacterium tuberculosis (Mtb) within the host. Fourteen NAPs have been identified in Escherichia coli; however, only seven NAPs are documented in Mtb. Given its complex lifestyle, it is reasonable to assume that Mtb would encode for more NAPs. Using bioinformatics tools and biochemical experiments, we have identified the heparin-binding hemagglutinin (HbhA) protein of Mtb as a novel sequence-independent DNA-binding protein which has previously been characterized as an adhesion molecule required for extrapulmonary dissemination. Deleting the carboxy-terminal domain of HbhA resulted in a complete loss of its DNA-binding activity. Atomic force microscopy showed HbhA-mediated architectural modulations in the DNA, which may play a regulatory role in transcription and genome organization. Our results showed that HbhA colocalizes with the nucleoid region of Mtb. Transcriptomics analyses of a hbhA KO strain revealed that it regulates the expression of ∼36% of total and ∼29% of essential genes. Deletion of hbhA resulted in the upregulation of ∼73% of all differentially expressed genes, belonging to multiple pathways suggesting it to be a global repressor. The results show that HbhA is a nonessential NAP regulating gene expression globally and acting as a plausible transcriptional repressor.
Collapse
Affiliation(s)
| | - Saba Naz
- Department of Zoology, University of Delhi, Delhi, India; CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Aanchal Gupta
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Priyadarshini Sanyal
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Centre for Cellular and Molecular Biology (CSIR-CCMB) Campus, Hyderabad, India
| | - Manisha Kochar
- Department of Zoology, University of Delhi, Delhi, India; CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | | | - Nitika Sangwan
- Department of Zoology, University of Delhi, Delhi, India
| | - Nishant Kumar
- Department of Zoology, University of Delhi, Delhi, India
| | - Ekta Tyagi
- Department of Zoology, University of Delhi, Delhi, India
| | - Simran Goel
- Department of Zoology, University of Delhi, Delhi, India
| | | | | | - Garima Khare
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Munia Ganguli
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Dominique Raze
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017 - CIIL - Centre for Infection and Immunity of Lille, Lille, France
| | - Camille Locht
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017 - CIIL - Centre for Infection and Immunity of Lille, Lille, France
| | | | - Meetu Gupta
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.
| | - Vinay Kumar Nandicoori
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Centre for Cellular and Molecular Biology (CSIR-CCMB) Campus, Hyderabad, India; National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India.
| | - Yogendra Singh
- Department of Zoology, University of Delhi, Delhi, India; Delhi School of Public Health, Institution of Eminence, University of Delhi, Delhi, India.
| |
Collapse
|
8
|
Norris V, Kayser C, Muskhelishvili G, Konto-Ghiorghi Y. The roles of nucleoid-associated proteins and topoisomerases in chromosome structure, strand segregation, and the generation of phenotypic heterogeneity in bacteria. FEMS Microbiol Rev 2023; 47:fuac049. [PMID: 36549664 DOI: 10.1093/femsre/fuac049] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/06/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
How to adapt to a changing environment is a fundamental, recurrent problem confronting cells. One solution is for cells to organize their constituents into a limited number of spatially extended, functionally relevant, macromolecular assemblies or hyperstructures, and then to segregate these hyperstructures asymmetrically into daughter cells. This asymmetric segregation becomes a particularly powerful way of generating a coherent phenotypic diversity when the segregation of certain hyperstructures is with only one of the parental DNA strands and when this pattern of segregation continues over successive generations. Candidate hyperstructures for such asymmetric segregation in prokaryotes include those containing the nucleoid-associated proteins (NAPs) and the topoisomerases. Another solution to the problem of creating a coherent phenotypic diversity is by creating a growth-environment-dependent gradient of supercoiling generated along the replication origin-to-terminus axis of the bacterial chromosome. This gradient is modulated by transcription, NAPs, and topoisomerases. Here, we focus primarily on two topoisomerases, TopoIV and DNA gyrase in Escherichia coli, on three of its NAPs (H-NS, HU, and IHF), and on the single-stranded binding protein, SSB. We propose that the combination of supercoiling-gradient-dependent and strand-segregation-dependent topoisomerase activities result in significant differences in the supercoiling of daughter chromosomes, and hence in the phenotypes of daughter cells.
Collapse
Affiliation(s)
- Vic Norris
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| | - Clara Kayser
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| | - Georgi Muskhelishvili
- Agricultural University of Georgia, School of Natural Sciences, 0159 Tbilisi, Georgia
| | - Yoan Konto-Ghiorghi
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| |
Collapse
|
9
|
Wegrzyn K, Oliwa M, Nowacka M, Zabrocka E, Bury K, Purzycki P, Czaplewska P, Pipka J, Giraldo R, Konieczny I. Rep protein accommodates together dsDNA and ssDNA which enables a loop-back mechanism to plasmid DNA replication initiation. Nucleic Acids Res 2023; 51:10551-10567. [PMID: 37713613 PMCID: PMC10602881 DOI: 10.1093/nar/gkad740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/25/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023] Open
Abstract
For DNA replication initiation in Bacteria, replication initiation proteins bind to double-stranded DNA (dsDNA) and interact with single-stranded DNA (ssDNA) at the replication origin. The structural-functional relationship of the nucleoprotein complex involving initiator proteins is still elusive and different models are proposed. In this work, based on crosslinking combined with mass spectrometry (MS), the analysis of mutant proteins and crystal structures, we defined amino acid residues essential for the interaction between plasmid Rep proteins, TrfA and RepE, and ssDNA. This interaction and Rep binding to dsDNA could not be provided in trans, and both are important for dsDNA melting at DNA unwinding element (DUE). We solved two crystal structures of RepE: one in a complex with ssDNA DUE, and another with both ssDNA DUE and dsDNA containing RepE-specific binding sites (iterons). The amino acid residues involved in interaction with ssDNA are located in the WH1 domain in stand β1, helices α1 and α2 and in the WH2 domain in loops preceding strands β1' and β2' and in these strands. It is on the opposite side compared to RepE dsDNA-recognition interface. Our data provide evidence for a loop-back mechanism through which the plasmid replication initiator molecule accommodates together dsDNA and ssDNA.
Collapse
Affiliation(s)
- Katarzyna Wegrzyn
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Monika Oliwa
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Marzena Nowacka
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Księcia Trojdena 4, 02-109 Warsaw, Poland
| | - Elżbieta Zabrocka
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Katarzyna Bury
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Piotr Purzycki
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Paulina Czaplewska
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Justyna Pipka
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Rafael Giraldo
- Centro de Investigaciones Biológicas – CSIC, E28040 Madrid, Spain
| | - Igor Konieczny
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| |
Collapse
|
10
|
Scholz SA, Lindeboom CD, Freddolino PL. Genetic context effects can override canonical cis regulatory elements in Escherichia coli. Nucleic Acids Res 2022; 50:10360-10375. [PMID: 36134716 PMCID: PMC9561378 DOI: 10.1093/nar/gkac787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/10/2022] [Accepted: 09/02/2022] [Indexed: 11/12/2022] Open
Abstract
Recent experiments have shown that in addition to control by cis regulatory elements, the local chromosomal context of a gene also has a profound impact on its transcription. Although this chromosome-position dependent expression variation has been empirically mapped at high-resolution, the underlying causes of the variation have not been elucidated. Here, we demonstrate that 1 kb of flanking, non-coding synthetic sequences with a low frequency of guanosine and cytosine (GC) can dramatically reduce reporter expression compared to neutral and high GC-content flanks in Escherichia coli. Natural and artificial genetic context can have a similarly strong effect on reporter expression, regardless of cell growth phase or medium. Despite the strong reduction in the maximal expression level from the fully-induced reporter, low GC synthetic flanks do not affect the time required to reach the maximal expression level after induction. Overall, we demonstrate key determinants of transcriptional propensity that appear to act as tunable modulators of transcription, independent of regulatory sequences such as the promoter. These findings provide insight into the regulation of naturally occurring genes and an independent control for optimizing expression of synthetic biology constructs.
Collapse
Affiliation(s)
- Scott A Scholz
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Chase D Lindeboom
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Peter L Freddolino
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
11
|
Muskhelishvili G, Sobetzko P, Travers A. Spatiotemporal Coupling of DNA Supercoiling and Genomic Sequence Organization-A Timing Chain for the Bacterial Growth Cycle? Biomolecules 2022; 12:biom12060831. [PMID: 35740956 PMCID: PMC9221221 DOI: 10.3390/biom12060831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 01/25/2023] Open
Abstract
In this article we describe the bacterial growth cycle as a closed, self-reproducing, or autopoietic circuit, reestablishing the physiological state of stationary cells initially inoculated in the growth medium. In batch culture, this process of self-reproduction is associated with the gradual decline in available metabolic energy and corresponding change in the physiological state of the population as a function of "travelled distance" along the autopoietic path. We argue that this directional alteration of cell physiology is both reflected in and supported by sequential gene expression along the chromosomal OriC-Ter axis. We propose that during the E. coli growth cycle, the spatiotemporal order of gene expression is established by coupling the temporal gradient of supercoiling energy to the spatial gradient of DNA thermodynamic stability along the chromosomal OriC-Ter axis.
Collapse
Affiliation(s)
- Georgi Muskhelishvili
- School of Natural Sciences, Biology Program, Agricultural University of Georgia, 0159 Tbilisi, Georgia
- Correspondence:
| | - Patrick Sobetzko
- Synmikro, Loewe Center for Synthetic Microbiology, Philipps-Universität Marburg, 35043 Marburg, Germany;
| | - Andrew Travers
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK;
| |
Collapse
|
12
|
Relationship between the Chromosome Structural Dynamics and Gene Expression—A Chicken and Egg Dilemma? Microorganisms 2022; 10:microorganisms10050846. [PMID: 35630292 PMCID: PMC9144111 DOI: 10.3390/microorganisms10050846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023] Open
Abstract
Prokaryotic transcription was extensively studied over the last half-century. A great deal of data has been accumulated regarding the control of gene expression by transcription factors regulating their target genes by binding at specific DNA sites. However, there is a significant gap between the mechanistic description of transcriptional control obtained from in vitro biochemical studies and the complexity of transcriptional regulation in the context of the living cell. Indeed, recent studies provide ample evidence for additional levels of complexity pertaining to the regulation of transcription in vivo, such as, for example, the role of the subcellular localization and spatial organization of different molecular components involved in the transcriptional control and, especially, the role of chromosome configurational dynamics. The question as to how the chromosome is dynamically reorganized under the changing environmental conditions and how this reorganization is related to gene expression is still far from being clear. In this article, we focus on the relationships between the chromosome structural dynamics and modulation of gene expression during bacterial adaptation. We argue that spatial organization of the bacterial chromosome is of central importance in the adaptation of gene expression to changing environmental conditions and vice versa, that gene expression affects chromosome dynamics.
Collapse
|
13
|
Pal P, Modi M, Ravichandran S, Yennamalli RM, Priyadarshini R. DNA-Binding Properties of YbaB, a Putative Nucleoid-Associated Protein From Caulobacter crescentus. Front Microbiol 2021; 12:733344. [PMID: 34777284 PMCID: PMC8581549 DOI: 10.3389/fmicb.2021.733344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/22/2021] [Indexed: 11/30/2022] Open
Abstract
Nucleoid-associated proteins (NAPs) or histone-like proteins (HLPs) are DNA-binding proteins present in bacteria that play an important role in nucleoid architecture and gene regulation. NAPs affect bacterial nucleoid organization via DNA bending, bridging, or forming aggregates. EbfC is a nucleoid-associated protein identified first in Borrelia burgdorferi, belonging to YbaB/EbfC family of NAPs capable of binding and altering DNA conformation. YbaB, an ortholog of EbfC found in Escherichia coli and Haemophilus influenzae, also acts as a transcriptional regulator. YbaB has a novel tweezer-like structure and binds DNA as homodimers. The homologs of YbaB are found in almost all bacterial species, suggesting a conserved function, yet the physiological role of YbaB protein in many bacteria is not well understood. In this study, we characterized the YbaB/EbfC family DNA-binding protein in Caulobacter crescentus. C. crescentus has one YbaB/EbfC family gene annotated in the genome (YbaBCc) and it shares 41% sequence identity with YbaB/EbfC family NAPs. Computational modeling revealed tweezer-like structure of YbaBCc, a characteristic of YbaB/EbfC family of NAPs. N-terminal–CFP tagged YbaBCc localized with the nucleoid and is able to compact DNA. Unlike B. burgdorferi EbfC protein, YbaBCc protein is a non-specific DNA-binding protein in C. crescentus. Moreover, YbaBCc shields DNA against enzymatic degradation. Collectively, our findings reveal that YbaBCc is a small histone-like protein and may play a role in bacterial chromosome structuring and gene regulation in C. crescentus.
Collapse
Affiliation(s)
- Parul Pal
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, India
| | - Malvika Modi
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, India
| | - Shashank Ravichandran
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Ragothaman M Yennamalli
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Richa Priyadarshini
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, India
| |
Collapse
|
14
|
Kamagata K, Itoh Y, Tan C, Mano E, Wu Y, Mandali S, Takada S, Johnson RC. Testing mechanisms of DNA sliding by architectural DNA-binding proteins: dynamics of single wild-type and mutant protein molecules in vitro and in vivo. Nucleic Acids Res 2021; 49:8642-8664. [PMID: 34352099 PMCID: PMC8421229 DOI: 10.1093/nar/gkab658] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/10/2021] [Accepted: 07/22/2021] [Indexed: 01/06/2023] Open
Abstract
Architectural DNA-binding proteins (ADBPs) are abundant constituents of eukaryotic or bacterial chromosomes that bind DNA promiscuously and function in diverse DNA reactions. They generate large conformational changes in DNA upon binding yet can slide along DNA when searching for functional binding sites. Here we investigate the mechanism by which ADBPs diffuse on DNA by single-molecule analyses of mutant proteins rationally chosen to distinguish between rotation-coupled diffusion and DNA surface sliding after transient unbinding from the groove(s). The properties of yeast Nhp6A mutant proteins, combined with molecular dynamics simulations, suggest Nhp6A switches between two binding modes: a static state, in which the HMGB domain is bound within the minor groove with the DNA highly bent, and a mobile state, where the protein is traveling along the DNA surface by means of its flexible N-terminal basic arm. The behaviors of Fis mutants, a bacterial nucleoid-associated helix-turn-helix dimer, are best explained by mobile proteins unbinding from the major groove and diffusing along the DNA surface. Nhp6A, Fis, and bacterial HU are all near exclusively associated with the chromosome, as packaged within the bacterial nucleoid, and can be modeled by three diffusion modes where HU exhibits the fastest and Fis the slowest diffusion.
Collapse
Affiliation(s)
- Kiyoto Kamagata
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Yuji Itoh
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Cheng Tan
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Eriko Mano
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Yining Wu
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Sridhar Mandali
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1737, USA
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Reid C Johnson
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1737, USA.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
15
|
Muskhelishvili G, Sobetzko P, Mehandziska S, Travers A. Composition of Transcription Machinery and Its Crosstalk with Nucleoid-Associated Proteins and Global Transcription Factors. Biomolecules 2021; 11:biom11070924. [PMID: 34206477 PMCID: PMC8301835 DOI: 10.3390/biom11070924] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 11/24/2022] Open
Abstract
The coordination of bacterial genomic transcription involves an intricate network of interdependent genes encoding nucleoid-associated proteins (NAPs), DNA topoisomerases, RNA polymerase subunits and modulators of transcription machinery. The central element of this homeostatic regulatory system, integrating the information on cellular physiological state and producing a corresponding transcriptional response, is the multi-subunit RNA polymerase (RNAP) holoenzyme. In this review article, we argue that recent observations revealing DNA topoisomerases and metabolic enzymes associated with RNAP supramolecular complex support the notion of structural coupling between transcription machinery, DNA topology and cellular metabolism as a fundamental device coordinating the spatiotemporal genomic transcription. We analyse the impacts of various combinations of RNAP holoenzymes and global transcriptional regulators such as abundant NAPs, on genomic transcription from this viewpoint, monitoring the spatiotemporal patterns of couplons—overlapping subsets of the regulons of NAPs and RNAP sigma factors. We show that the temporal expression of regulons is by and large, correlated with that of cognate regulatory genes, whereas both the spatial organization and temporal expression of couplons is distinctly impacted by the regulons of NAPs and sigma factors. We propose that the coordination of the growth phase-dependent concentration gradients of global regulators with chromosome configurational dynamics determines the spatiotemporal patterns of genomic expression.
Collapse
Affiliation(s)
- Georgi Muskhelishvili
- School of Natural Sciences, Agricultural University of Georgia, David Aghmashenebeli Alley 24, Tbilisi 0159, Georgia
- Correspondence:
| | - Patrick Sobetzko
- Department of Chromosome Biology, Philipps-Universität Marburg, LOEWE-Zentrum für Synthetische Mikrobiologie, Hans-Meerwein-Straße, 35043 Marburg, Germany;
| | - Sanja Mehandziska
- School of Engineering and Science, Campus Ring 1, Jacobs University Bremen, 28759 Bremen, Germany;
| | - Andrew Travers
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK;
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
16
|
Abstract
Acetylation was initially discovered as a post-translational modification (PTM) on the unstructured, highly basic N-terminal tails of eukaryotic histones in the 1960s. Histone acetylation constitutes part of the "histone code", which regulates chromosome compaction and various DNA processes such as gene expression, recombination, and DNA replication. In bacteria, nucleoid-associated proteins (NAPs) are responsible these functions in that they organize and compact the chromosome and regulate some DNA processes. The highly conserved DNABII family of proteins are considered functional homologues of eukaryotic histones despite having no sequence or structural conservation. Within the past decade, a growing interest in Nε-lysine acetylation led to the discovery that hundreds of bacterial proteins are acetylated with diverse cellular functions, in direct contrast to the original thought that this was a rare phenomenon. Similarly, other previously undiscovered bacterial PTMs, like serine, threonine, and tyrosine phosphorylation, have also been characterized. In this review, the various PTMs that were discovered among DNABII family proteins, specifically histone-like protein (HU) orthologues, from large-scale proteomic studies are discussed. The functional significance of these modifications and the enzymes involved are also addressed. The discovery of novel PTMs on these proteins begs this question: is there a histone-like code in bacteria?
Collapse
Affiliation(s)
- Valerie J Carabetta
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey 08103, United States
| |
Collapse
|
17
|
Structure-based inhibitors targeting the alpha-helical domain of the Spiroplasma melliferum histone-like HU protein. Sci Rep 2020; 10:15128. [PMID: 32934267 PMCID: PMC7493962 DOI: 10.1038/s41598-020-72113-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/25/2020] [Indexed: 11/30/2022] Open
Abstract
Here we report bisphenol derivatives of fluorene (BDFs) as a new type of chemical probes targeting a histone-like HU protein, a global regulator of bacterial nucleoids, via its dimerization interface perturbation. BDFs were identified by virtual screening and molecular docking that targeted the core of DNA-binding β-saddle-like domain of the HU protein from Spiroplasma melliferum. However, NMR spectroscopy, complemented with molecular dynamics and site-directed mutagenesis, indicated that the actual site of the inhibitors’ intervention consists of residues from the α-helical domain of one monomer and the side portion of the DNA-binding domain of another monomer. BDFs inhibited DNA-binding properties of HU proteins from mycoplasmas S. melliferum, Mycoplasma gallicepticum and Escherichia coli with half-maximum inhibitory concentrations in the range between 5 and 10 µM. In addition, BDFs demonstrated antimicrobial activity against mycoplasma species, but not against E. coli, which is consistent with the compensatory role of other nucleoid-associated proteins in the higher bacteria. Further evaluation of antimicrobial effects of BDFs against various bacteria and viruses will reveal their pharmacological potential, and the allosteric inhibition mode reported here, which avoids direct competition for the binding site with DNA, should be considered in the development of small molecule inhibitors of nucleoid-associated proteins as well as other types of DNA-binding multimeric proteins.
Collapse
|
18
|
Krogh TJ, Franke A, Møller-Jensen J, Kaleta C. Elucidating the Influence of Chromosomal Architecture on Transcriptional Regulation in Prokaryotes - Observing Strong Local Effects of Nucleoid Structure on Gene Regulation. Front Microbiol 2020; 11:2002. [PMID: 32983020 PMCID: PMC7491251 DOI: 10.3389/fmicb.2020.02002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/29/2020] [Indexed: 11/13/2022] Open
Abstract
Both intrinsic and extrinsic mechanisms regulating bacterial expression have been elucidated and described, however, such studies have mainly focused on local effects on the two-dimensional structure of the prokaryote genome while long-range as well as spatial interactions influencing gene expression are still only poorly understood. In this paper, we investigate the association between co-expression and distance between genes, using RNA-seq data at multiple growth phases in order to illuminate whether such conserved patterns are an indication of a gene regulatory mechanism relevant for prokaryotic cell proliferation, adaption, and evolution. We observe recurrent sinusoidal patterns in correlation of pairwise expression as function of genomic distance and rule out that these are caused by transcription-induced supercoiling gradients, gene clustering in operons, or association with regulatory transcription factors (TFs). By comparing spatial proximity for pairs of genomic bins with their correlation of pairwise expression, we further observe a high co-expression proportional with the spatial proximity. Based on these observations, we propose that the observed patterns are related to nucleoid structure as a product of transcriptional spilling, where genes actively influence transcription of spatially proximal genes through increases within shared local pools of RNA polymerases (RNAP), and actively spilling transcription onto neighboring genes.
Collapse
Affiliation(s)
- Thøger Jensen Krogh
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Andre Franke
- Institute of Clinical Molecular Biology (IKMB), Christian-Albrechts-University Kiel, Kiel, Germany
| | - Jakob Møller-Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Christoph Kaleta
- Institute of Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
19
|
Remesh SG, Verma SC, Chen JH, Ekman AA, Larabell CA, Adhya S, Hammel M. Nucleoid remodeling during environmental adaptation is regulated by HU-dependent DNA bundling. Nat Commun 2020; 11:2905. [PMID: 32518228 PMCID: PMC7283360 DOI: 10.1038/s41467-020-16724-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/19/2020] [Indexed: 01/26/2023] Open
Abstract
Bacterial nucleoid remodeling dependent on conserved histone-like protein, HU is one of the determining factors in global gene regulation. By imaging of near-native, unlabeled E. coli cells by soft X-ray tomography, we show that HU remodels nucleoids by promoting the formation of a dense condensed core surrounded by less condensed isolated domains. Nucleoid remodeling during cell growth and environmental adaptation correlate with pH and ionic strength controlled molecular switch that regulated HUαα dependent intermolecular DNA bundling. Through crystallographic and solution-based studies we show that these effects mechanistically rely on HUαα promiscuity in forming multiple electrostatically driven multimerization interfaces. Changes in DNA bundling consequently affects gene expression globally, likely by constrained DNA supercoiling. Taken together our findings unveil a critical function of HU–DNA interaction in nucleoid remodeling that may serve as a general microbial mechanism for transcriptional regulation to synchronize genetic responses during the cell cycle and adapt to changing environments. HU is among the most conserved and abundant nucleoid-associated proteins in eubacteria. Here the authors investigate the role of histone-like proteins (HU) in the 3D organization of the bacteria DNA and show via soft X-ray tomography the process of nucleoid remodeling.
Collapse
Affiliation(s)
- Soumya G Remesh
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA.,Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Subhash C Verma
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Jian-Hua Chen
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Anatomy, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Axel A Ekman
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Anatomy, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Carolyn A Larabell
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Anatomy, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Sankar Adhya
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
20
|
Gray WT, Govers SK, Xiang Y, Parry BR, Campos M, Kim S, Jacobs-Wagner C. Nucleoid Size Scaling and Intracellular Organization of Translation across Bacteria. Cell 2020; 177:1632-1648.e20. [PMID: 31150626 DOI: 10.1016/j.cell.2019.05.017] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/01/2019] [Accepted: 05/08/2019] [Indexed: 01/10/2023]
Abstract
The scaling of organelles with cell size is thought to be exclusive to eukaryotes. Here, we demonstrate that similar scaling relationships hold for the bacterial nucleoid. Despite the absence of a nuclear membrane, nucleoid size strongly correlates with cell size, independent of changes in DNA amount and across various nutrient conditions. This correlation is observed in diverse bacteria, revealing a near-constant ratio between nucleoid and cell size for a given species. As in eukaryotes, the nucleocytoplasmic ratio in bacteria varies greatly among species. This spectrum of nucleocytoplasmic ratios is independent of genome size, and instead it appears linked to the average population cell size. Bacteria with different nucleocytoplasmic ratios have a cytoplasm with different biophysical properties, impacting ribosome mobility and localization. Together, our findings identify new organizational principles and biophysical features of bacterial cells, implicating the nucleocytoplasmic ratio and cell size as determinants of the intracellular organization of translation.
Collapse
Affiliation(s)
- William T Gray
- Microbial Sciences Institute, Yale University, West Haven, CT, USA; Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Sander K Govers
- Microbial Sciences Institute, Yale University, West Haven, CT, USA; Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Yingjie Xiang
- Microbial Sciences Institute, Yale University, West Haven, CT, USA; Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT, USA
| | - Bradley R Parry
- Microbial Sciences Institute, Yale University, West Haven, CT, USA; Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Manuel Campos
- Microbial Sciences Institute, Yale University, West Haven, CT, USA; Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Sangjin Kim
- Microbial Sciences Institute, Yale University, West Haven, CT, USA; Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT, USA
| | - Christine Jacobs-Wagner
- Microbial Sciences Institute, Yale University, West Haven, CT, USA; Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
21
|
Yousuf M, Iuliani I, Veetil RT, Seshasayee A, Sclavi B, Cosentino Lagomarsino M. Early fate of exogenous promoters in E. coli. Nucleic Acids Res 2020; 48:2348-2356. [PMID: 31960057 PMCID: PMC7049719 DOI: 10.1093/nar/gkz1196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/05/2019] [Accepted: 12/20/2019] [Indexed: 01/12/2023] Open
Abstract
Gene gain by horizontal gene transfer is a major pathway of genome innovation in bacteria. The current view posits that acquired genes initially need to be silenced and that a bacterial chromatin protein, H-NS, plays a role in this silencing. However, we lack direct observation of the early fate of a horizontally transferred gene to prove this theory. We combine sequencing, flow cytometry and sorting, followed by microscopy to monitor gene expression and its variability after large-scale random insertions of a reporter gene in a population of Escherichia coli bacteria. We find that inserted promoters have a wide range of gene-expression variability related to their location. We find that high-expression clones carry insertions that are not correlated with H-NS binding. Conversely, binding of H-NS correlates with silencing. Finally, while most promoters show a common level of extrinsic noise, some insertions show higher noise levels. Analysis of these high-noise clones supports a scenario of switching due to transcriptional interference from divergent ribosomal promoters. Altogether, our findings point to evolutionary pathways where newly-acquired genes are not necessarily silenced, but may immediately explore a wide range of expression levels to probe the optimal ones.
Collapse
Affiliation(s)
- Malikmohamed Yousuf
- LBPA, UMR 8113, CNRS, ENS Paris-Saclay, 61 Avenue du President Wilson, 94235 Cachan, France
- Current Affiliation: Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Ilaria Iuliani
- LBPA, UMR 8113, CNRS, ENS Paris-Saclay, 61 Avenue du President Wilson, 94235 Cachan, France
- Current Affiliation: LCQB, UMR 7238, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| | - Reshma T Veetil
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, Karnataka, India
- School of Life science, The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru 560064, Karnataka, India
| | - Aswin Sai Narain Seshasayee
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, Karnataka, India
| | - Bianca Sclavi
- LBPA, UMR 8113, CNRS, ENS Paris-Saclay, 61 Avenue du President Wilson, 94235 Cachan, France
- Current Affiliation: LCQB, UMR 7238, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| | - Marco Cosentino Lagomarsino
- Sorbonne Université, Campus Pierre and Marie Curie, 4 Place Jussieu, 75005 Paris, France
- CNRS, UMR7238, 4 Place Jussieu, 75005 Paris, France
- Current Affiliation: IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20143 Milan, Italy
- Current Affiliation: Physics Department, University of Milan, and I.N.F.N., Via Celoria 16, 20133 Milan, Italy
| |
Collapse
|
22
|
Travers A, Muskhelishvili G. Chromosomal Organization and Regulation of Genetic Function in Escherichia coli Integrates the DNA Analog and Digital Information. EcoSal Plus 2020; 9:10.1128/ecosalplus.ESP-0016-2019. [PMID: 32056535 PMCID: PMC11168577 DOI: 10.1128/ecosalplus.esp-0016-2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Indexed: 12/22/2022]
Abstract
In this article, we summarize our current understanding of the bacterial genetic regulation brought about by decades of studies using the Escherichia coli model. It became increasingly evident that the cellular genetic regulation system is organizationally closed, and a major challenge is to describe its circular operation in quantitative terms. We argue that integration of the DNA analog information (i.e., the probability distribution of the thermodynamic stability of base steps) and digital information (i.e., the probability distribution of unique triplets) in the genome provides a key to understanding the organizational logic of genetic control. During bacterial growth and adaptation, this integration is mediated by changes of DNA supercoiling contingent on environmentally induced shifts in intracellular ionic strength and energy charge. More specifically, coupling of dynamic alterations of the local intrinsic helical repeat in the structurally heterogeneous DNA polymer with structural-compositional changes of RNA polymerase holoenzyme emerges as a fundamental organizational principle of the genetic regulation system. We present a model of genetic regulation integrating the genomic pattern of DNA thermodynamic stability with the gene order and function along the chromosomal OriC-Ter axis, which acts as a principal coordinate system organizing the regulatory interactions in the genome.
Collapse
Affiliation(s)
- Andrew Travers
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | | |
Collapse
|
23
|
Georgoulis A, Louka M, Mylonas S, Stavros P, Nounesis G, Vorgias CE. Consensus protein engineering on the thermostable histone-like bacterial protein HUs significantly improves stability and DNA binding affinity. Extremophiles 2020; 24:293-306. [PMID: 31980943 DOI: 10.1007/s00792-020-01154-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 01/06/2020] [Indexed: 11/28/2022]
Abstract
Consensus-based protein engineering strategy has been applied to various proteins and it can lead to the design of proteins with enhanced biological performance. Histone-like HUs comprise a protein family with sequence variety within a highly conserved 3D-fold. HU function includes compacting and regulating bacterial DNA in a wide range of biological conditions in bacteria. To explore the possible impact of consensus-based design in the thermodynamic stability of HU proteins, the approach was applied using a dataset of sequences derived from a group of 40 mesostable, thermostable, and hyperthermostable HUs. The consensus-derived HU protein was named HUBest, since it is expected to perform best. The synthetic HU gene was overexpressed in E. coli and the recombinant protein was purified. Subsequently, HUBest was characterized concerning its correct folding and thermodynamic stability, as well as its ability to interact with plasmid DNA. A substantial increase in HUBest stability at high temperatures is observed. HUBest has significantly improved biological performance at ambience temperature, presenting very low Kd values for binding plasmid DNA as indicated from the Gibbs energy profile of HUBest. This Kd may be associated to conformational changes leading to decreased thermodynamic stability and, therefore, higher flexibility at ambient temperature.
Collapse
Affiliation(s)
- Anastasios Georgoulis
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 157 01, Zografou, Greece
| | - Maria Louka
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 157 01, Zografou, Greece
| | - Stratos Mylonas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 157 01, Zografou, Greece
| | - Philemon Stavros
- Biomolecular Physics Laboratory, INRASTES, National Centre for Scientific Research "Demokritos", 153 10, Agia Paraskevi, Greece
| | - George Nounesis
- Biomolecular Physics Laboratory, INRASTES, National Centre for Scientific Research "Demokritos", 153 10, Agia Paraskevi, Greece
| | - Constantinos E Vorgias
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 157 01, Zografou, Greece.
| |
Collapse
|
24
|
Muskhelishvili G, Forquet R, Reverchon S, Meyer S, Nasser W. Coherent Domains of Transcription Coordinate Gene Expression During Bacterial Growth and Adaptation. Microorganisms 2019; 7:microorganisms7120694. [PMID: 31847191 PMCID: PMC6956064 DOI: 10.3390/microorganisms7120694] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/28/2019] [Accepted: 12/09/2019] [Indexed: 01/07/2023] Open
Abstract
Recent studies strongly suggest that in bacteria, both the genomic pattern of DNA thermodynamic stability and the order of genes along the chromosomal origin-to-terminus axis are highly conserved and that this spatial organization plays a crucial role in coordinating genomic transcription. In this article, we explore the relationship between genomic sequence organization and transcription in the commensal bacterium Escherichia coli and the plant pathogen Dickeya. We argue that, while in E. coli the gradient of DNA thermodynamic stability and gene order along the origin-to-terminus axis represent major organizational features orchestrating temporal gene expression, the genomic sequence organization of Dickeya is more complex, demonstrating extended chromosomal domains of thermodynamically distinct DNA sequences eliciting specific transcriptional responses to various kinds of stress encountered during pathogenic growth. This feature of the Dickeya genome is likely an adaptation to the pathogenic lifestyle utilizing differences in genomic sequence organization for the selective expression of virulence traits. We propose that the coupling of DNA thermodynamic stability and genetic function provides a common organizational principle for the coordinated expression of genes during both normal and pathogenic bacterial growth.
Collapse
Affiliation(s)
| | - Raphaël Forquet
- INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Univ. Lyon, Université Lyon 1, F-69622 Villeurbanne, France; (R.F.); (S.R.); (S.M.)
| | - Sylvie Reverchon
- INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Univ. Lyon, Université Lyon 1, F-69622 Villeurbanne, France; (R.F.); (S.R.); (S.M.)
| | - Sam Meyer
- INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Univ. Lyon, Université Lyon 1, F-69622 Villeurbanne, France; (R.F.); (S.R.); (S.M.)
| | - William Nasser
- INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Univ. Lyon, Université Lyon 1, F-69622 Villeurbanne, France; (R.F.); (S.R.); (S.M.)
- Correspondence:
| |
Collapse
|
25
|
Abstract
How genomes are organized within cells and how the 3D architecture of a genome influences cellular functions are significant questions in biology. A bacterial genomic DNA resides inside cells in a highly condensed and functionally organized form called nucleoid (nucleus-like structure without a nuclear membrane). The Escherichia coli chromosome or nucleoid is composed of the genomic DNA, RNA, and protein. The nucleoid forms by condensation and functional arrangement of a single chromosomal DNA with the help of chromosomal architectural proteins and RNA molecules as well as DNA supercoiling. Although a high-resolution structure of a bacterial nucleoid is yet to come, five decades of research has established the following salient features of the E. coli nucleoid elaborated below: 1) The chromosomal DNA is on the average a negatively supercoiled molecule that is folded as plectonemic loops, which are confined into many independent topological domains due to supercoiling diffusion barriers; 2) The loops spatially organize into megabase size regions called macrodomains, which are defined by more frequent physical interactions among DNA sites within the same macrodomain than between different macrodomains; 3) The condensed and spatially organized DNA takes the form of a helical ellipsoid radially confined in the cell; and 4) The DNA in the chromosome appears to have a condition-dependent 3-D structure that is linked to gene expression so that the nucleoid architecture and gene transcription are tightly interdependent, influencing each other reciprocally. Current advents of high-resolution microscopy, single-molecule analysis and molecular structure determination of the components are expected to reveal the total structure and function of the bacterial nucleoid.
Collapse
Affiliation(s)
- Subhash C. Verma
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (SCV); (SLA)
| | - Zhong Qian
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sankar L. Adhya
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (SCV); (SLA)
| |
Collapse
|
26
|
Dahlke K, Sing CE. Influence of Nucleoid-Associated Proteins on DNA Supercoiling. J Phys Chem B 2019; 123:10152-10162. [PMID: 31710235 DOI: 10.1021/acs.jpcb.9b07436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
DNA supercoiling, where the DNA strand forms a writhe to relieve torsional stress, plays a vital role in packaging the genetic material in cells. Experiment, simulation, and theory have all demonstrated how supercoiling emerges due to the over- or underwinding of the DNA strand. Nucleoid-associated proteins (NAPs) help structure DNA in prokaryotes, yet the role that they play in the supercoiling process has not been as thoroughly investigated. We develop a coarse-grained simulation to model DNA supercoiling in the presence of proteins, providing a rigorous physical understanding of how NAPs affect supercoiling behavior. Specifically, we demonstrate how the force and torque necessary to form supercoils are affected by the presence of NAPs. NAPs that bend DNA stabilize the supercoil, thus shifting the transition between extended and supercoiled DNAs. We develop a theory to explain how NAP binding affects DNA supercoiling. This provides insight into how NAPs modulate DNA compaction via a combination of supercoiling and local protein-dependent deformations.
Collapse
Affiliation(s)
- Katelyn Dahlke
- Department of Chemical and Biomolecular Engineering , University of Illinois Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Charles E Sing
- Department of Chemical and Biomolecular Engineering , University of Illinois Urbana-Champaign , Urbana , Illinois 61801 , United States
| |
Collapse
|
27
|
Hognon C, Garaude S, Timmins J, Chipot C, Dehez F, Monari A. Molecular Bases of DNA Packaging in Bacteria Revealed by All-Atom Molecular Dynamics Simulations: The Case of Histone-Like Proteins in Borrelia burgdorferi. J Phys Chem Lett 2019; 10:7200-7207. [PMID: 31693374 DOI: 10.1021/acs.jpclett.9b02978] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
DNA compaction is essential to ensure the packaging of the genetic material in living cells and also plays a key role in the epigenetic regulation of gene expression. In both humans and bacteria, DNA packaging is achieved by specific well-conserved proteins. Here, by means of all-atom molecular dynamics simulations, including the determination of relevant free-energy profiles, we rationalize the molecular bases for this remarkable process in bacteria, illustrating the crucial role played by positively charged amino acids of a small histone-like protein. We also present compelling evidence that this histone-like protein alone can induce strong bending of a DNA duplex around its core domain, a process that requires overcoming a major free-energy barrier.
Collapse
Affiliation(s)
- Cécilia Hognon
- Université de Lorraine and CNRS, LPCT UMR 7019 , F-54000 Nancy , France
| | - Simon Garaude
- Université de Lorraine and CNRS, LPCT UMR 7019 , F-54000 Nancy , France
| | - Joanna Timmins
- Université Grenoble Alpes , CNRS, CEA, IBS , F-38000 Grenoble , France
| | - Christophe Chipot
- Université de Lorraine and CNRS, LPCT UMR 7019 , F-54000 Nancy , France
- Department of Physics , University of Illinois at Urbana-Champaign , 1110 West Green Street , Urbana , Illinois 61801 , United States
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign , 54506 Vandoeuvre-lès-Nancy Cedex, France
| | - François Dehez
- Université de Lorraine and CNRS, LPCT UMR 7019 , F-54000 Nancy , France
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign , 54506 Vandoeuvre-lès-Nancy Cedex, France
| | - Antonio Monari
- Université de Lorraine and CNRS, LPCT UMR 7019 , F-54000 Nancy , France
| |
Collapse
|
28
|
Hocher A, Rojec M, Swadling JB, Esin A, Warnecke T. The DNA-binding protein HTa from Thermoplasma acidophilum is an archaeal histone analog. eLife 2019; 8:52542. [PMID: 31710291 PMCID: PMC6877293 DOI: 10.7554/elife.52542] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/10/2019] [Indexed: 02/06/2023] Open
Abstract
Histones are a principal constituent of chromatin in eukaryotes and fundamental to our understanding of eukaryotic gene regulation. In archaea, histones are widespread but not universal: several lineages have lost histone genes. What prompted or facilitated these losses and how archaea without histones organize their chromatin remains largely unknown. Here, we elucidate primary chromatin architecture in an archaeon without histones, Thermoplasma acidophilum, which harbors a HU family protein (HTa) that protects part of the genome from micrococcal nuclease digestion. Charting HTa-based chromatin architecture in vitro, in vivo and in an HTa-expressing E. coli strain, we present evidence that HTa is an archaeal histone analog. HTa preferentially binds to GC-rich sequences, exhibits invariant positioning throughout the growth cycle, and shows archaeal histone-like oligomerization behavior. Our results suggest that HTa, a DNA-binding protein of bacterial origin, has converged onto an architectural role filled by histones in other archaea.
Collapse
Affiliation(s)
- Antoine Hocher
- MRC London Institute of Medical Sciences (LMS), London, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College, London, United Kingdom
| | - Maria Rojec
- MRC London Institute of Medical Sciences (LMS), London, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College, London, United Kingdom
| | - Jacob B Swadling
- MRC London Institute of Medical Sciences (LMS), London, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College, London, United Kingdom
| | - Alexander Esin
- MRC London Institute of Medical Sciences (LMS), London, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College, London, United Kingdom
| | - Tobias Warnecke
- MRC London Institute of Medical Sciences (LMS), London, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College, London, United Kingdom
| |
Collapse
|
29
|
Kamashev DE, Rakitina TV, Matyushkina DS, Evsyutina DV, Vanyushkina AA, Agapova YK, Anisimova VE, Drobyshev AL, Butenko IO, Pobeguts OV, Fisunov GY. Proteome of HU-Lacking E. coli Studied by Means of 2D Gel Electrophoresis. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162019050029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Flores-Ríos R, Quatrini R, Loyola A. Endogenous and Foreign Nucleoid-Associated Proteins of Bacteria: Occurrence, Interactions and Effects on Mobile Genetic Elements and Host's Biology. Comput Struct Biotechnol J 2019; 17:746-756. [PMID: 31303979 PMCID: PMC6606824 DOI: 10.1016/j.csbj.2019.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 02/08/2023] Open
Abstract
Mobile Genetic Elements (MGEs) are mosaics of functional gene modules of diverse evolutionary origin and are generally divergent from the hosts´ genetic background. Existing biases in base composition and codon usage of these elements` genes impose transcription and translation limitations that may affect the physical and regulatory integration of MGEs in new hosts. Stable appropriation of the foreign DNA depends on a number of host factors among which are the Nucleoid-Associated Proteins (NAPs). These small, basic, highly abundant proteins bind and bend DNA, altering its topology and folding, thereby affecting all known essential DNA metabolism related processes. Both chromosomally- (endogenous) and MGE- (foreign) encoded NAPs have been shown to exist in bacteria. While the role of host-encoded NAPs in xenogeneic silencing of both episomal (plasmids) and integrative MGEs (pathogenicity islands and prophages) is well acknowledged, less is known about the role of MGE-encoded NAPs in the foreign elements biology or their influence on the host's chromosome expression dynamics. Here we review existing literature on the topic, present examples on the positive and negative effects that endogenous and foreign NAPs exert on global transcriptional gene expression, MGE integrative and excisive recombination dynamics, persistence and transfer to suitable hosts and discuss the nature and relevance of synergistic and antagonizing higher order interactions between diverse types of NAPs.
Collapse
Affiliation(s)
| | - Raquel Quatrini
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, Santiago, Chile.,Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
| | - Alejandra Loyola
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, Santiago, Chile
| |
Collapse
|
31
|
Sutormin D, Rubanova N, Logacheva M, Ghilarov D, Severinov K. Single-nucleotide-resolution mapping of DNA gyrase cleavage sites across the Escherichia coli genome. Nucleic Acids Res 2019; 47:1373-1388. [PMID: 30517674 PMCID: PMC6379681 DOI: 10.1093/nar/gky1222] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/19/2018] [Accepted: 11/23/2018] [Indexed: 12/31/2022] Open
Abstract
An important antibiotic target, DNA gyrase is an essential bacterial enzyme that introduces negative supercoils into DNA and relaxes positive supercoils accumulating in front of moving DNA and RNA polymerases. By altering the superhelical density, gyrase may regulate expression of bacterial genes. The information about how gyrase is distributed along genomic DNA and whether its distribution is affected by drugs is scarce. During catalysis, gyrase cleaves both DNA strands forming a covalently bound intermediate. By exploiting the ability of several topoisomerase poisons to stabilize this intermediate we developed a ChIP-Seq-based approach to locate, with single nucleotide resolution, DNA gyrase cleavage sites (GCSs) throughout the Escherichia coli genome. We identified an extended gyrase binding motif with phased 10-bp G/C content variation, indicating that bending ability of DNA contributes to gyrase binding. We also found that GCSs are enriched in extended regions located downstream of highly transcribed operons. Transcription inhibition leads to redistribution of gyrase suggesting that the enrichment is functionally significant. Our method can be applied for precise mapping of prokaryotic and eukaryotic type II topoisomerases cleavage sites in a variety of organisms and paves the way for future studies of various topoisomerase inhibitors.
Collapse
Affiliation(s)
- Dmitry Sutormin
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Natalia Rubanova
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia
| | - Maria Logacheva
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia
| | - Dmitry Ghilarov
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia
- Malopolska Centre of Biotechnology, Jagiellonian University, 30387 Cracow, Poland
| | - Konstantin Severinov
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia
- Waksman Institute for Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
32
|
Oliveira Paiva AM, Friggen AH, Qin L, Douwes R, Dame RT, Smits WK. The Bacterial Chromatin Protein HupA Can Remodel DNA and Associates with the Nucleoid in Clostridium difficile. J Mol Biol 2019; 431:653-672. [PMID: 30633871 DOI: 10.1016/j.jmb.2019.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/19/2018] [Accepted: 01/02/2019] [Indexed: 12/15/2022]
Abstract
The maintenance and organization of the chromosome plays an important role in the development and survival of bacteria. Bacterial chromatin proteins are architectural proteins that bind DNA and modulate its conformation, and by doing so affect a variety of cellular processes. No bacterial chromatin proteins of Clostridium difficile have been characterized to date. Here, we investigate aspects of the C. difficile HupA protein, a homologue of the histone-like HU proteins of Escherichia coli. HupA is a 10-kDa protein that is present as a homodimer in vitro and self-interacts in vivo. HupA co-localizes with the nucleoid of C. difficile. It binds to the DNA without a preference for the DNA G + C content. Upon DNA binding, HupA induces a conformational change in the substrate DNA in vitro and leads to compaction of the chromosome in vivo. The present study is the first to characterize a bacterial chromatin protein in C. difficile and opens the way to study the role of chromosomal organization in DNA metabolism and on other cellular processes in this organism.
Collapse
Affiliation(s)
- Ana M Oliveira Paiva
- Department of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, Leiden, the Netherlands; Center for Microbial Cell Biology, Leiden, the Netherlands
| | - Annemieke H Friggen
- Department of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, Leiden, the Netherlands; Center for Microbial Cell Biology, Leiden, the Netherlands
| | - Liang Qin
- Faculty of Science, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands; Center for Microbial Cell Biology, Leiden, the Netherlands
| | - Roxanne Douwes
- Department of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, Leiden, the Netherlands
| | - Remus T Dame
- Faculty of Science, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands; Center for Microbial Cell Biology, Leiden, the Netherlands
| | - Wiep Klaas Smits
- Department of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, Leiden, the Netherlands; Center for Microbial Cell Biology, Leiden, the Netherlands.
| |
Collapse
|
33
|
Milanez GP, Werle CH, Amorim MR, Ribeiro RA, Tibo LHS, Roque-Barreira MC, Oliveira AF, Brocchi M. HU-Lacking Mutants of Salmonella enterica Enteritidis Are Highly Attenuated and Can Induce Protection in Murine Model of Infection. Front Microbiol 2018; 9:1780. [PMID: 30186241 PMCID: PMC6113365 DOI: 10.3389/fmicb.2018.01780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/16/2018] [Indexed: 01/31/2023] Open
Abstract
Salmonella enterica infection is a major public health concern worldwide, particularly when associated with other medical conditions. The serovars Typhimurium and Enteritidis are frequently associated with an invasive illness that primarily affects immunocompromised adults and children with HIV, malaria, or malnutrition. These serovars can also cause infections in a variety of animal hosts, and they are the most common isolates in poultry materials. Here, we described S. Enteritidis mutants, where hupA and hupB genes were deleted, and evaluated their potential use as live-attenuated vaccine candidates. In vitro, the mutants behaved like S. Typhimurium described previously, but there were some particularities in macrophage invasion and survival experiments. The virulence and immunogenicity of the mutant lacking both hupA and hupB (PT4ΔhupAB) were evaluated in a BALB/c mice model. This mutant was highly attenuated and could, therefore, be administrated at doses higher than 109 CFU/treatment, which was sufficient to protect all treated mice challenged with the wild-type parental strain with a single dose. Additionally, the PT4ΔhupAB strain induced production of specific IgG and IgA antibodies against Salmonella and TH1-related cytokines (IFN-γ and TNF-α), indicating that this strain can induce systemic and mucosal protection in the murine model. Additional studies are needed to better understand the mechanisms that lead to attenuation of the double-mutant PT4ΔhupAB and to elucidate the immune response induced by immunization using this strain. However, our data allow us to state that hupAB mutants could be potential candidates to be explore as live-attenuated vaccines.
Collapse
Affiliation(s)
- Guilherme P Milanez
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Catierine H Werle
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Mariene R Amorim
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Rafael A Ribeiro
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Luiz H S Tibo
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Maria Cristina Roque-Barreira
- Department of Cellular and Molecular Biology, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Aline F Oliveira
- Department of Cellular and Molecular Biology, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Marcelo Brocchi
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| |
Collapse
|
34
|
Dahlke K, Sing CE. Force-extension behavior of DNA in the presence of DNA-bending nucleoid associated proteins. J Chem Phys 2018; 148:084902. [PMID: 29495783 DOI: 10.1063/1.5016177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Interactions between nucleoid associated proteins (NAPs) and DNA affect DNA polymer conformation, leading to phenomena such as concentration dependent force-extension behavior. These effects, in turn, also impact the local binding behavior of the protein, such as high forces causing proteins to unbind, or proteins binding favorably to locally bent DNA. We develop a coarse-grained NAP-DNA simulation model that incorporates both force- and concentration-dependent behaviors, in order to study the interplay between NAP binding and DNA conformation. This model system includes multi-state protein binding and unbinding, motivated by prior work, but is now dependent on the local structure of the DNA, which is related to external forces acting on the DNA strand. We observe the expected qualitative binding behavior, where more proteins are bound at lower forces than at higher forces. Our model also includes NAP-induced DNA bending, which affects DNA elasticity. We see semi-quantitative matching of our simulated force-extension behavior to the reported experimental data. By using a coarse-grained simulation, we are also able to look at non-equilibrium behaviors, such as dynamic extension of a DNA strand. We stretch a DNA strand at different rates and at different NAP concentrations to observe how the time scales of the system (such as pulling time and unbinding time) work in concert. When these time scales are similar, we observe measurable rate-dependent changes in the system, which include the number of proteins bound and the force required to extend the DNA molecule. This suggests that the relative time scales of different dynamic processes play an important role in the behavior of NAP-DNA systems.
Collapse
Affiliation(s)
- K Dahlke
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - C E Sing
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
35
|
Guan Z, Wang Y, Gao L, Zhang W, Lu X. Effects of the histone-like protein HU on cellulose degradation and biofilm formation of Cytophaga hutchinsonii. Appl Microbiol Biotechnol 2018; 102:6593-6611. [PMID: 29876607 DOI: 10.1007/s00253-018-9071-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/26/2018] [Accepted: 04/29/2018] [Indexed: 01/23/2023]
Abstract
Cytophaga hutchinsonii, belonging to Bacteroidetes, is speculated to use a novel cell-contact mode to digest cellulose. In this study, we identified a histone-like protein HU, CHU_2750, in C. hutchinsonii, whose transcription could be induced by crystalline but not amorphous cellulose. We constructed a CHU_2750-deleted mutant and expressed CHU_2750 in Escherichia coli to study the gene's functions. Our results showed that although the deletion of CHU_2750 was not lethal to C. hutchinsonii, the mutant displayed an abnormal filamentous morphology, loose nucleoid, and obvious defects in the degradation of crystalline cellulose and cell motility. Further study indicated that the mutant displayed significantly decreased cell surface and intracellular endoglucanase activities but with β-glucosidase activities similar to the wild-type strain. Analyses by real-time quantitative PCR revealed that the transcription levels of many genes involved in cellulose degradation and/or cell motility were significantly downregulated in the mutant. In addition, we found that CHU_2750 was important for biofilm formation of C. hutchinsonii. The main extracellular components of the biofilm were analyzed, and the results showed that the mutant yielded significantly less exopolysaccharide but more extracellular DNA and protein than the wild-type strain. Collectively, our findings demonstrated that CHU_2750 is important for cellulose degradation, cell motility, and biofilm formation of C. hutchinsonii by modulating transcription of certain related genes, and it is the first identified transcriptional regulator in these processes of C. hutchinsonii. Our study shed more light on the mechanisms of cellulose degradation, cell motility, and biofilm formation by C. hutchinsonii.
Collapse
Affiliation(s)
- Zhiwei Guan
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China.,School of Life Science, Qilu Normal University, Jinan, 250200, China
| | - Ying Wang
- Central Laboratory, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, 223300, China
| | - Lijuan Gao
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China
| | - Weican Zhang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China
| | - Xuemei Lu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China.
| |
Collapse
|
36
|
The Origin of Chromosomal Replication Is Asymmetrically Positioned on the Mycobacterial Nucleoid, and the Timing of Its Firing Depends on HupB. J Bacteriol 2018. [PMID: 29531181 DOI: 10.1128/jb.00044-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The bacterial chromosome undergoes dynamic changes in response to ongoing cellular processes and adaptation to environmental conditions. Among the many proteins involved in maintaining this dynamism, the most abundant is the nucleoid-associated protein (NAP) HU. In mycobacteria, the HU homolog, HupB, possesses an additional C-terminal domain that resembles that of eukaryotic histones H1/H5. Recently, we demonstrated that the highly abundant HupB protein occupies the entirety of the Mycobacterium smegmatis chromosome and that the HupB-binding sites exhibit a bias from the origin (oriC) to the terminus (ter). In this study, we used HupB fused with enhanced green fluorescent protein (EGFP) to perform the first analysis of chromosome dynamics and to track the oriC and replication machinery directly on the chromosome during the mycobacterial cell cycle. We show that the chromosome is located in an off-center position that reflects the unequal division and growth of mycobacterial cells. Moreover, unlike the situation in E. coli, the sister oriC regions of M. smegmatis move asymmetrically along the mycobacterial nucleoid. Interestingly, in this slow-growing organism, the initiation of the next round of replication precedes the physical separation of sister chromosomes. Finally, we show that HupB is involved in the precise timing of replication initiation.IMPORTANCE Although our view of mycobacterial nucleoid organization has evolved considerably over time, we still know little about the dynamics of the mycobacterial nucleoid during the cell cycle. HupB is a highly abundant mycobacterial nucleoid-associated protein (NAP) with an indispensable histone-like tail. It was previously suggested as a potential target for antibiotic therapy against tuberculosis. Here, we fused HupB with enhanced green fluorescent protein (EGFP) to study the dynamics of the mycobacterial chromosome in real time and to monitor the replication process directly on the chromosome. Our results reveal that, unlike the situation in Escherichia coli, the nucleoid of an apically growing mycobacterium is positioned asymmetrically within the cell throughout the cell cycle. We show that HupB is involved in controlling the timing of replication initiation. Since tuberculosis remains a serious health problem, studies concerning mycobacterial cell biology are of great importance.
Collapse
|
37
|
Ferrándiz MJ, Carreño D, Ayora S, de la Campa AG. HU of Streptococcus pneumoniae Is Essential for the Preservation of DNA Supercoiling. Front Microbiol 2018; 9:493. [PMID: 29662473 PMCID: PMC5890176 DOI: 10.3389/fmicb.2018.00493] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/02/2018] [Indexed: 01/11/2023] Open
Abstract
The histone-like protein HU is a conserved nucleoid-associated protein that is involved in the maintenance of the bacterial chromosome architecture. It is the only known nucleoid-associated protein in Streptococcus pneumoniae, but it has not been studied. The pneumococcal gene encoding this protein, hlp, is shown herein to be essential for cell viability. Its disruption was only possible either when it was duplicated in the chromosome and its expression induced from the P Zn promoter, or when hlp was cloned into a plasmid under the control of the inducible P mal promoter. In vitro assays indicated that pneumococcal HU shows a preference for binding to supercoiled DNA rather than to linear or nicked DNA. In vivo experiments in which the amount of HU was manipulated showed a relationship between the amount of HU and the level of DNA supercoiling. A twofold reduction in the amount of HU triggered a 21% increase in DNA relaxation in untreated cells. However, in cells treated with novobiocin, a drug that relaxes DNA by inhibiting DNA gyrase, a 35% increase in DNA relaxation was observed, instead of the expected 20% in cells with a constitutive HU amount. Conversely, a fourfold HU increase caused only 14% of DNA relaxation in the presence of novobiocin. Taken together, these results support an essential role for HU in the maintenance of DNA supercoiling in S. pneumoniae.
Collapse
Affiliation(s)
- María-José Ferrándiz
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - David Carreño
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Silvia Ayora
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Adela G de la Campa
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain.,Presidencia, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
38
|
Timofeev VI, Altukhov DA, Talyzina AA, Agapova YK, Vlaskina AV, Korzhenevskiy DA, Kleymenov SY, Bocharov EV, Rakitina TV. Structural plasticity and thermal stability of the histone-like protein from Spiroplasma melliferum are due to phenylalanine insertions into the conservative scaffold. J Biomol Struct Dyn 2017; 36:4392-4404. [PMID: 29283021 DOI: 10.1080/07391102.2017.1417162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The histone-like (HU) protein is one of the major nucleoid-associated proteins of the bacterial nucleoid, which shares high sequence and structural similarity with IHF but differs from the latter in DNA-specificity. Here, we perform an analysis of structural-dynamic properties of HU protein from Spiroplasma melliferum and compare its behavior in solution to that of another mycoplasmal HU from Mycoplasma gallisepticum. The high-resolution heteronuclear NMR spectroscopy was coupled with molecular-dynamics study and comparative analysis of thermal denaturation of both mycoplasmal HU proteins. We suggest that stacking interactions in two aromatic clusters in the HUSpm dimeric interface determine not only high thermal stability of the protein, but also its structural plasticity experimentally observed as slow conformational exchange. One of these two centers of stacking interactions is highly conserved among the known HU and IHF proteins. Second aromatic core described recently in IHFs and IHF-like proteins is considered as a discriminating feature of IHFs. We performed an electromobility shift assay to confirm high affinities of HUSpm to both normal and distorted dsDNA, which are the characteristics of HU protein. MD simulations of HUSpm with alanine mutations of the residues forming the non-conserved aromatic cluster demonstrate its role in dimer stabilization, as both partial and complete distortion of the cluster enhances local flexibility of HUSpm.
Collapse
Affiliation(s)
- Vladimir I Timofeev
- a National Research Centre 'Kurchatov Institute', Kurchatov Complex of NBICS-Technologies , Akad. Kurchatova sqr., 1, Moscow 123182 , Russian Federation.,b Federal Scientific Research Center 'Crystallography and Photonics' RAS , Leninskii pr., 59, Moscow 119333 , Russian Federation
| | - Dmitry A Altukhov
- a National Research Centre 'Kurchatov Institute', Kurchatov Complex of NBICS-Technologies , Akad. Kurchatova sqr., 1, Moscow 123182 , Russian Federation
| | - Anna A Talyzina
- c Moscow Institute of Physics and Technology , Institutskiy per., 9, Dolgoprudny, Moscow Region 141700 , Russian Federation
| | - Yulia K Agapova
- a National Research Centre 'Kurchatov Institute', Kurchatov Complex of NBICS-Technologies , Akad. Kurchatova sqr., 1, Moscow 123182 , Russian Federation
| | - Anna V Vlaskina
- a National Research Centre 'Kurchatov Institute', Kurchatov Complex of NBICS-Technologies , Akad. Kurchatova sqr., 1, Moscow 123182 , Russian Federation
| | - Dmitry A Korzhenevskiy
- a National Research Centre 'Kurchatov Institute', Kurchatov Complex of NBICS-Technologies , Akad. Kurchatova sqr., 1, Moscow 123182 , Russian Federation
| | - Sergey Yu Kleymenov
- d Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences , Leninsky Prospekt. 33, bld. 2, Moscow 119071 , Russian Federation.,e Russian Academy of Sciences, Koltzov Institute of Developmental Biology , ul. Vavilova, 26, Moscow 119334 , Russian Federation
| | - Eduard V Bocharov
- a National Research Centre 'Kurchatov Institute', Kurchatov Complex of NBICS-Technologies , Akad. Kurchatova sqr., 1, Moscow 123182 , Russian Federation.,f Shemyakin&Ovchinnikov Institute of Bioorganic Chemistry RAS , str. Miklukho-Maklaya 16/10, Moscow 117997 , Russian Federation
| | - Tatiana V Rakitina
- a National Research Centre 'Kurchatov Institute', Kurchatov Complex of NBICS-Technologies , Akad. Kurchatova sqr., 1, Moscow 123182 , Russian Federation.,f Shemyakin&Ovchinnikov Institute of Bioorganic Chemistry RAS , str. Miklukho-Maklaya 16/10, Moscow 117997 , Russian Federation
| |
Collapse
|
39
|
Chromosomal organization of transcription: in a nutshell. Curr Genet 2017; 64:555-565. [PMID: 29184972 DOI: 10.1007/s00294-017-0785-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/20/2017] [Accepted: 11/20/2017] [Indexed: 01/25/2023]
Abstract
Early studies of transcriptional regulation focused on individual gene promoters defined specific transcription factors as central agents of genetic control. However, recent genome-wide data propelled a different view by linking spatially organized gene expression patterns to chromosomal dynamics. Therefore, the major problem in contemporary molecular genetics concerned with transcriptional gene regulation is to establish a unifying model that reconciles these two views. This problem, situated at the interface of polymer physics and network theory, requires development of an integrative methodology. In this review, we discuss recent achievements in classical model organism E. coli and provide some novel insights gained from studies of a bacterial plant pathogen, D. dadantii. We consider DNA topology and the basal transcription machinery as key actors of regulation, in which activation of functionally relevant genes is coupled to and coordinated with the establishment of extended chromosomal domains of coherent transcription. We argue that the spatial organization of genome plays a fundamental role in its own regulation.
Collapse
|
40
|
Kamashev D, Agapova Y, Rastorguev S, Talyzina AA, Boyko KM, Korzhenevskiy DA, Vlaskina A, Vasilov R, Timofeev VI, Rakitina TV. Comparison of histone-like HU protein DNA-binding properties and HU/IHF protein sequence alignment. PLoS One 2017; 12:e0188037. [PMID: 29131864 PMCID: PMC5683647 DOI: 10.1371/journal.pone.0188037] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/12/2017] [Indexed: 12/12/2022] Open
Abstract
Background The structure and function of bacterial nucleoid are controlled by histone-like proteins of HU/IHF family, omnipresent in bacteria and also founding archaea and some eukaryotes.HU protein binds dsDNA without sequence specificity and avidly binds DNA structures with propensity to be inclined such as forks, three/four-way junctions, nicks, overhangs and DNA bulges. Sequence comparison of thousands of known histone-like proteins from diverse bacteria phyla reveals relation between HU/IHF sequence, DNA–binding properties and other protein features. Methodology and principal findings Performed alignment and clusterization of the protein sequences show that HU/IHF family proteins can be unambiguously divided into three groups, HU proteins, IHF_A and IHF_B proteins. HU proteins, IHF_A and IHF_B proteins are further partitioned into several clades for IHF and HU; such a subdivision is in good agreement with bacterial taxonomy. We also analyzed a hundred of 3D fold comparative models built for HU sequences from all revealed HU clades. It appears that HU fold remains similar in spite of the HU sequence variations. We studied DNA–binding properties of HU from N. gonorrhoeae, which sequence is similar to one of E.coli HU, and HU from M. gallisepticum and S. melliferum which sequences are distant from E.coli protein. We found that in respect to dsDNA binding, only S. melliferum HU essentially differs from E.coli HU. In respect to binding of distorted DNA structures, S. melliferum HU and E.coli HU have similar properties but essentially different from M. gallisepticum HU and N. gonorrhea HU. We found that in respect to dsDNA binding, only S. melliferum HU binds DNA in non-cooperative manner and both mycoplasma HU bend dsDNA stronger than E.coli and N. gonorrhoeae. In respect to binding to distorted DNA structures, each HU protein has its individual profile of affinities to various DNA-structures with the increased specificity to DNA junction. Conclusions and significance HU/IHF family proteins sequence alignment and classification are updated. Comparative modeling demonstrates that HU protein 3D folding’s even more conservative than HU sequence. For the first time, DNA binding characteristics of HU from N. gonorrhoeae, M. gallisepticum and S. melliferum are studied. Here we provide detailed analysis of the similarity and variability of DNA-recognizing and bending of four HU proteins from closely and distantly related HU clades.
Collapse
Affiliation(s)
- Dmitri Kamashev
- Kurchatov Complex of NBICS-Technologies, National Research Center «Kurchatov Institute», Moscow, Russian Federation
- * E-mail:
| | - Yulia Agapova
- Kurchatov Complex of NBICS-Technologies, National Research Center «Kurchatov Institute», Moscow, Russian Federation
| | - Sergey Rastorguev
- Kurchatov Complex of NBICS-Technologies, National Research Center «Kurchatov Institute», Moscow, Russian Federation
| | - Anna A. Talyzina
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russian Federation
| | - Konstantin M. Boyko
- Kurchatov Complex of NBICS-Technologies, National Research Center «Kurchatov Institute», Moscow, Russian Federation
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Dmitry A. Korzhenevskiy
- Kurchatov Complex of NBICS-Technologies, National Research Center «Kurchatov Institute», Moscow, Russian Federation
| | - Anna Vlaskina
- Kurchatov Complex of NBICS-Technologies, National Research Center «Kurchatov Institute», Moscow, Russian Federation
| | - Raif Vasilov
- Kurchatov Complex of NBICS-Technologies, National Research Center «Kurchatov Institute», Moscow, Russian Federation
| | - Vladimir I. Timofeev
- Kurchatov Complex of NBICS-Technologies, National Research Center «Kurchatov Institute», Moscow, Russian Federation
- Federal Scientific Research Center “Crystallography and Photonics”, RAS, Moscow, Russian Federation
| | - Tatiana V. Rakitina
- Kurchatov Complex of NBICS-Technologies, National Research Center «Kurchatov Institute», Moscow, Russian Federation
- Shemyakin&Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russian Federation
| |
Collapse
|
41
|
Abstract
In bacteria, chromosomal DNA must be efficiently compacted to fit inside the small cell compartment while remaining available for the proteins involved in replication, segregation, and transcription. Among the nucleoid-associated proteins (NAPs) responsible for maintaining this highly organized and yet dynamic chromosome structure, the HU protein is one of the most conserved and highly abundant. HupB, a homologue of HU, was recently identified in mycobacteria. This intriguing mycobacterial NAP is composed of two domains: an N-terminal domain that resembles bacterial HU, and a long and distinctive C-terminal domain that contains several PAKK/KAAK motifs, which are characteristic of the H1/H5 family of eukaryotic histones. In this study, we analyzed the in vivo binding of HupB on the chromosome scale. By using PALM (photoactivated localization microscopy) and ChIP-Seq (chromatin immunoprecipitation followed by deep sequencing), we observed that the C-terminal domain is indispensable for the association of HupB with the nucleoid. Strikingly, the in vivo binding of HupB displayed a bias from the origin (oriC) to the terminus (ter) of the mycobacterial chromosome (numbers of binding sites decreased toward ter). We hypothesized that this binding mode reflects a role for HupB in organizing newly replicated oriC regions. Thus, HupB may be involved in coordinating replication with chromosome segregation.IMPORTANCE We currently know little about the organization of the mycobacterial chromosome and its dynamics during the cell cycle. Among the mycobacterial nucleoid-associated proteins (NAPs) responsible for chromosome organization and dynamics, HupB is one of the most intriguing. It contains a long and distinctive C-terminal domain that harbors several PAKK/KAAK motifs, which are characteristic of the eukaryotic histone H1/H5 proteins. The HupB protein is also known to be crucial for the survival of tubercle bacilli during infection. Here, we provide in vivo experimental evidence showing that the C-terminal domain of HupB is crucial for its DNA binding. Our results suggest that HupB may be involved in organizing newly replicated regions and could help coordinate chromosome replication with segregation. Given that tuberculosis (TB) remains a serious worldwide health problem (10.4 million new TB cases were diagnosed in 2015, according to WHO) and new multidrug-resistant Mycobacterium tuberculosis strains are continually emerging, further studies of the biological function of HupB are needed to determine if this protein could be a prospect for novel antimicrobial drug development.
Collapse
|
42
|
Abebe AH, Aranovich A, Fishov I. HU content and dynamics in Escherichia coli during the cell cycle and at different growth rates. FEMS Microbiol Lett 2017; 364:4157278. [PMID: 28961819 DOI: 10.1093/femsle/fnx195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/11/2017] [Indexed: 11/12/2022] Open
Abstract
DNA-binding proteins play an important role in maintaining bacterial chromosome structure and functions. Heat-unstable (HU) histone-like protein is one of the most abundant of these proteins and participates in all major chromosome-related activities. Owing to its low sequence specificity, HU fusions with fluorescent proteins were used for general staining of the nucleoid, aiming to reveal its morphology and dynamics. We have exploited a single chromosomal copy of hupA-egfp fusion under the native promoter and used quantitative microscopy imaging to investigate the amount and dynamics of HUα in Escherichia coli cells. We found that in steady-state growing populations the cellular HUα content is proportional to the cell size, whereas its concentration is size independent. Single-cell live microscopy imaging confirmed that the amount of HUα exponentially increases during the cell cycle, but its concentration is maintained constant. This supports the existence of an auto-regulatory mechanism underlying the HUα cellular level, in addition to reflecting the gene copy number. Both the HUα amount and concentration strongly increase with the cell growth rate in different culture media. Unexpectedly, the HU/DNA stoichiometry also remarkably increases with the growth rate. This last finding may be attributed to a higher requirement for maintaining the chromosome structure in nucleoids with higher complexity.
Collapse
Affiliation(s)
- Anteneh Hailu Abebe
- Department of Life Sciences, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 8410501, Israel.,Medical Biotechnology Unit, Institute of Biotechnology, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia
| | - Alexander Aranovich
- Department of Life Sciences, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 8410501, Israel
| | - Itzhak Fishov
- Department of Life Sciences, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 8410501, Israel
| |
Collapse
|
43
|
A specific single-stranded DNA induces a distinct conformational change in the nucleoid-associated protein HU. Biochem Biophys Rep 2017; 8:318-324. [PMID: 28955971 PMCID: PMC5613972 DOI: 10.1016/j.bbrep.2016.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 08/23/2016] [Accepted: 09/29/2016] [Indexed: 11/23/2022] Open
Abstract
In prokaryotic cells, genomic DNA forms an aggregated structure with various nucleoid-associated proteins (NAPs). The functions of genomic DNA are cooperatively modulated by NAPs, of which HU is considered to be one of the most important. HU binds double-stranded DNA (dsDNA) and serves as a structural modulator in the genome architecture. It plays important roles in diverse DNA functions, including replication, segregation, transcription and repair. Interestingly, it has been reported that HU also binds single-stranded DNA (ssDNA) regardless of sequence. However, structural analysis of HU with ssDNA has been lacking, and the functional relevance of this binding remains elusive. In this study, we found that ssDNA induced a significant change in the secondary structure of Thermus thermophilus HU (TtHU), as observed by analysis of circular dichroism spectra. Notably, this change in secondary structure was sequence specific, because the complementary ssDNA or dsDNA did not induce the change. Structural analysis using nuclear magnetic resonance confirmed that TtHU and this ssDNA formed a unique structure, which was different from the previously reported structure of HU in complex with dsDNA. Our data suggest that TtHU undergoes a distinct structural change when it associates with ssDNA of a specific sequence and subsequently exerts a yet-to-be-defined function. We observed the CD spectra and NMR spectra of TtHU bound to various DNA. The specific ssDNA affected the secondary structure of TtHU. The structure of TtHU bound to ssDNA was distinct from the structure bound to dsDNA.
Collapse
|
44
|
Facilitated Dissociation Kinetics of Dimeric Nucleoid-Associated Proteins Follow a Universal Curve. Biophys J 2016; 112:543-551. [PMID: 28012548 DOI: 10.1016/j.bpj.2016.11.3198] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/17/2016] [Accepted: 11/22/2016] [Indexed: 12/15/2022] Open
Abstract
Recent experimental work has demonstrated facilitated dissociation of certain nucleoid-associated proteins that exhibit an unbinding rate that depends on the concentration of freely diffusing proteins or DNA in solution. This concentration dependence arises due to binding competition with these other proteins or DNA. The identity of the binding competitor leads to different qualitative trends, motivating an investigation to understand observed differences in facilitated dissociation. We use a coarse-grained simulation that takes into account the dimeric nature of many nucleoid-associated proteins by allowing an intermediate binding state. The addition of this partially bound state allows the protein to be unbound, partially bound, or fully bound to a DNA strand, leaving opportunities for other molecules in solution to participate in the unbinding mechanism. Previous models postulated symmetric binding energies for each state of the coarse-grained protein corresponding to the symmetry of the dimeric protein; this model relaxes this assumption by assigning different energies for the different steps in the unbinding process. Allowing different unbinding energies not only has equilibrium effects on the system, but kinetic effects as well. We were able to reproduce the unbinding trends seen experimentally for both DNA and protein competitors. All trends collapse to a universal curve regardless of the unbinding energies used or the identity of the dissociation facilitator, suggesting that facilitated dissociation can be described with a single set of scaling parameters that are related to the energy landscape and geometric nature of the competitors.
Collapse
|
45
|
Altukhov DA, Talyzina AA, Agapova YK, Vlaskina AV, Korzhenevskiy DA, Bocharov EV, Rakitina TV, Timofeev VI, Popov VO. Enhanced conformational flexibility of the histone-like (HU) protein from Mycoplasma gallisepticum. J Biomol Struct Dyn 2016; 36:45-53. [PMID: 27884082 DOI: 10.1080/07391102.2016.1264893] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The histone-like (HU) protein is one of the major nucleoid-associated proteins involved in DNA supercoiling and compaction into bacterial nucleoid as well as in all DNA-dependent transactions. This small positively charged dimeric protein binds DNA in a non-sequence specific manner promoting DNA super-structures. The majority of HU proteins are highly conserved among bacteria; however, HU protein from Mycoplasma gallisepticum (HUMgal) has multiple amino acid substitutions in the most conserved regions, which are believed to contribute to its specificity to DNA targets unusual for canonical HU proteins. In this work, we studied the structural dynamic properties of the HUMgal dimer by NMR spectroscopy and MD simulations. The obtained all-atom model displays compliance with the NMR data and confirms the heterogeneous backbone flexibility of HUMgal. We found that HUMgal, being folded into a dimeric conformation typical for HU proteins, has a labile α-helical body with protruded β-stranded arms forming DNA-binding domain that are highly flexible in the absence of DNA. The amino acid substitutions in conserved regions of the protein are likely to affect the conformational lability of the HUMgal dimer that can be responsible for complex functional behavior of HUMgal in vivo, e.g. facilitating its spatial adaptation to non-canonical DNA-targets.
Collapse
Affiliation(s)
- Dmitry A Altukhov
- a National Research Centre 'Kurchatov Institute', Kurchatov Complex of NBICS-Technologies , Akad. Kurchatova sqr., 1, Moscow 123182 , Russian Federation
| | - Anna A Talyzina
- b Moscow Institute of Physics and Technology , Institutskiy per., 9, Dolgoprudny, Moscow Region 141700 , Russian Federation
| | - Yulia K Agapova
- a National Research Centre 'Kurchatov Institute', Kurchatov Complex of NBICS-Technologies , Akad. Kurchatova sqr., 1, Moscow 123182 , Russian Federation
| | - Anna V Vlaskina
- a National Research Centre 'Kurchatov Institute', Kurchatov Complex of NBICS-Technologies , Akad. Kurchatova sqr., 1, Moscow 123182 , Russian Federation
| | - Dmitry A Korzhenevskiy
- a National Research Centre 'Kurchatov Institute', Kurchatov Complex of NBICS-Technologies , Akad. Kurchatova sqr., 1, Moscow 123182 , Russian Federation
| | - Eduard V Bocharov
- a National Research Centre 'Kurchatov Institute', Kurchatov Complex of NBICS-Technologies , Akad. Kurchatova sqr., 1, Moscow 123182 , Russian Federation.,c Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry RAS , str. Miklukho-Maklaya 16/10, Moscow 117997 , Russian Federation
| | - Tatiana V Rakitina
- a National Research Centre 'Kurchatov Institute', Kurchatov Complex of NBICS-Technologies , Akad. Kurchatova sqr., 1, Moscow 123182 , Russian Federation.,c Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry RAS , str. Miklukho-Maklaya 16/10, Moscow 117997 , Russian Federation
| | - Vladimir I Timofeev
- a National Research Centre 'Kurchatov Institute', Kurchatov Complex of NBICS-Technologies , Akad. Kurchatova sqr., 1, Moscow 123182 , Russian Federation.,d Federal Scientific Research Center 'Crystallography and Photonics' RAS , Leninskii pr., 59, Moscow 119333 , Russian Federation
| | - Vladimir O Popov
- a National Research Centre 'Kurchatov Institute', Kurchatov Complex of NBICS-Technologies , Akad. Kurchatova sqr., 1, Moscow 123182 , Russian Federation.,e Bach Institute of Biochemistry , Research Center of Biotechnology of the Russian Academy of Sciences , Leninsky Prospekt. 33, bld. 2, Moscow 119071 , Russian Federation
| |
Collapse
|
46
|
Structural basis of the high thermal stability of the histone-like HU protein from the mollicute Spiroplasma melliferum KC3. Sci Rep 2016; 6:36366. [PMID: 27808161 PMCID: PMC5093408 DOI: 10.1038/srep36366] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/13/2016] [Indexed: 02/07/2023] Open
Abstract
The three-dimensional structure of the histone-like HU protein from the mycoplasma Spiroplasma melliferum KC3 (HUSpm) was determined at 1.4 Å resolution, and the thermal stability of the protein was evaluated by differential scanning calorimetry. A detailed analysis revealed that the three-dimensional structure of the HUSpm dimer is similar to that of its bacterial homologues but is characterized by stronger hydrophobic interactions at the dimer interface. This HUSpm dimer interface lacks salt bridges but is stabilized by a larger number of hydrogen bonds. According to the DSC data, HUSpm has a high denaturation temperature, comparable to that of HU proteins from thermophilic bacteria. To elucidate the structural basis of HUSpm thermal stability, we identified amino acid residues potentially responsible for this property and modified them by site-directed mutagenesis. A comparative analysis of the melting curves of mutant and wild-type HUSpm revealed the motifs that play a key role in protein thermal stability: non-conserved phenylalanine residues in the hydrophobic core, an additional hydrophobic loop at the N-terminal region of the protein, the absence of the internal cavity present at the dimer interface of some HU proteins, and the presence of additional hydrogen bonds between the monomers that are missing in homologous proteins.
Collapse
|
47
|
Muskhelishvili G, Travers A. The regulatory role of DNA supercoiling in nucleoprotein complex assembly and genetic activity. Biophys Rev 2016; 8:5-22. [PMID: 28510220 PMCID: PMC5425797 DOI: 10.1007/s12551-016-0237-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 10/21/2016] [Indexed: 01/06/2023] Open
Abstract
We argue that dynamic changes in DNA supercoiling in vivo determine both how DNA is packaged and how it is accessed for transcription and for other manipulations such as recombination. In both bacteria and eukaryotes, the principal generators of DNA superhelicity are DNA translocases, supplemented in bacteria by DNA gyrase. By generating gradients of superhelicity upstream and downstream of their site of activity, translocases enable the differential binding of proteins which preferentially interact with respectively more untwisted or more writhed DNA. Such preferences enable, in principle, the sequential binding of different classes of protein and so constitute an essential driver of chromatin organization.
Collapse
Affiliation(s)
| | - Andrew Travers
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK.
| |
Collapse
|
48
|
Beber ME, Sobetzko P, Muskhelishvili G, Hütt MT. Interplay of digital and analog control in time-resolved gene expression profiles. ACTA ACUST UNITED AC 2016. [DOI: 10.1140/epjnbp/s40366-016-0035-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
49
|
Genes on a Wire: The Nucleoid-Associated Protein HU Insulates Transcription Units in Escherichia coli. Sci Rep 2016; 6:31512. [PMID: 27545593 PMCID: PMC4992867 DOI: 10.1038/srep31512] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/21/2016] [Indexed: 01/06/2023] Open
Abstract
The extent to which chromosomal gene position in prokaryotes affects local gene expression remains an open question. Several studies have shown that chromosomal re-positioning of bacterial transcription units does not alter their expression pattern, except for a general decrease in gene expression levels from chromosomal origin to terminus proximal positions, which is believed to result from gene dosage effects. Surprisingly, the question as to whether this chromosomal context independence is a cis encoded property of a bacterial transcription unit, or if position independence is a property conferred by factors acting in trans, has not been addressed so far. For this purpose, we established a genetic test system assessing the chromosomal positioning effects by means of identical promoter-fluorescent reporter gene fusions inserted equidistantly from OriC into both chromosomal replichores of Escherichia coli K-12. Our investigations of the reporter activities in mutant cells lacking the conserved nucleoid associated protein HU uncovered various drastic chromosomal positional effects on gene transcription. In addition we present evidence that these positional effects are caused by transcriptional activity nearby the insertion site of our reporter modules. We therefore suggest that the nucleoid-associated protein HU is functionally insulating transcription units, most likely by constraining transcription induced DNA supercoiling.
Collapse
|
50
|
Inoue Y, Tanaka H, Kasho K, Fujimitsu K, Oshima T, Katayama T. Chromosomal location of the DnaA-reactivating sequence DARS2 is important to regulate timely initiation of DNA replication in Escherichia coli. Genes Cells 2016; 21:1015-23. [PMID: 27452301 DOI: 10.1111/gtc.12395] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/20/2016] [Indexed: 01/23/2023]
Abstract
In Escherichia coli, the initiator protein ATP-DnaA promotes initiation of chromosome replication in a timely manner. After initiation, DnaA-bound ATP is hydrolyzed to yield ADP-DnaA, which is inactive in initiation. DnaA-reactivating sequences (DARS1 and DARS2) on the chromosome have predominant roles in catalysis of nucleotide exchange, producing ATP-DnaA from ADP-DnaA, which is prerequisite for timely initiation. Both DARS sequences have a core region containing a cluster of three DnaA-binding sites. DARS2 is more effective in vivo than DARS1, and timely activation of DARS2 depends on binding of two nucleoid-associated proteins, IHF and Fis. DARS2 is located centrally between the chromosomal replication origin oriC and the terminus region terC. We constructed mutants in which DARS2 was translocated to several chromosomal loci, including sites proximal to oriC and to terC. Replication initiation was inhibited in cells in which DARS2 was translocated to terC-proximal sites when the cells were grown at 42 °C, although overall binding efficiency of IHF and Fis to the translocated DARS2 was not affected. Inhibition was largely sustained even in cells lacking MatP, a DNA-binding protein responsible for terC-specific subchromosomal structure. These results suggest that functional regulation of DARS2 is correlated with its chromosomal location under certain conditions.
Collapse
Affiliation(s)
- Yukie Inoue
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Hiroyuki Tanaka
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kazutoshi Kasho
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kazuyuki Fujimitsu
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Taku Oshima
- Division of Genomics of Bacterial Cell Functions, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Tsutomu Katayama
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|