1
|
Baumberger C, Anríquez G, Galdames P, Palma T, Gonzalez MA, Orozco K, Oyarzun C, Rojas C, Marambio V, Ruiz S, Di Pillo F, Schultz-Cherry S, Jimenez-Bluhm P, Rushton J, Hamilton-West C. Exposure Practices to Animal-Origin Influenza A Virus at the Animal-Human Interface in Poultry and Swine Backyard Farms. Zoonoses Public Health 2025; 72:42-54. [PMID: 39304348 DOI: 10.1111/zph.13182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/02/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
AIM Backyard production systems (BPS) represent an interface of contact between people, domestic and wild animals. Studies conducted in Chile during the last decade have provided extensive evidence of influenza A virus (IAV) circulation in backyard poultry and swine. The aim of this study was to investigate exposure practices of humans to animal-origin IAV within backyards. METHODS AND RESULTS Backyard farmers and household members of a total of 101 BPS in the proximity of wetlands located throughout Chile were interviewed between 2021 and 2022. Data were collected on the nature of human-animal contacts through participation in productive activities conducted within backyards, which was used to estimate participants' exposure risk to animal-origin IAV. Additionally, RT-qPCR and serologic IAV active surveillance was carried out in backyard animals. Multilinear regression was used to identify factors associated with exposure risk. Overall, IAV prevalence was 10.1% (95% CI: 4.7%-15.5%) and seroprevalence was 43.5% (95% CI: 29.7%-54.2%), both at the BPS level. Of 180 interviewees, 86% reported participating regularly in poultry or swine exposure activities within the backyard. A greater participation of male participants was observed when evaluating swine exposure activities, while female participation was greater for some activities related to poultry handling. Handwashing was a very extended hygiene practice; however, the use of personal protective equipment was uncommon. Different factors related to participants, households and backyards were associated with an increased exposure risk of participants to animal-origin IAV: (i) older age, (ii) less years of education, (iii) no off-farm work, (iv) greater backyard production value and (v) greater household consumption of backyard products. CONCLUSION These results indicate the circulation of IAV in BPS and the frequent human-animal contact at this interface, highlighting the need for awareness campaigns and educational programmes aimed at backyard farmers on prevention and biosecurity measures in the management of backyard animals.
Collapse
Affiliation(s)
- Cecilia Baumberger
- Departamento de Medicina Preventiva, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Campus sur Universidad de Chile, Santiago, Chile
| | - Gustavo Anríquez
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for the Integrated Development of Territories (CEDIT), Santiago, Chile
| | - Pablo Galdames
- Departamento de Medicina Preventiva, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Tamara Palma
- Departamento de Medicina Preventiva, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - María Antonieta Gonzalez
- Departamento de Medicina Preventiva, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Katherinne Orozco
- Departamento de Medicina Preventiva, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Cristobal Oyarzun
- Departamento de Medicina Preventiva, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Camila Rojas
- Departamento de Medicina Preventiva, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Victor Marambio
- Departamento de Medicina Preventiva, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Campus sur Universidad de Chile, Santiago, Chile
| | - Soledad Ruiz
- Escuela de Medicina Veterinaria, Facultad de Ciencias Biológicas, Facultad de Medicina y Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de las Américas, Santiago, Chile
| | - Francisca Di Pillo
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de las Américas, Santiago, Chile
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Pedro Jimenez-Bluhm
- Escuela de Medicina Veterinaria, Facultad de Ciencias Biológicas, Facultad de Medicina y Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jonathan Rushton
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Christopher Hamilton-West
- Departamento de Medicina Preventiva, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
2
|
Palù G, Roggero PF, Calistri A. Could H5N1 bird flu virus be the cause of the next human pandemic? Front Microbiol 2024; 15:1477738. [PMID: 39439938 PMCID: PMC11493729 DOI: 10.3389/fmicb.2024.1477738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Affiliation(s)
- Giorgio Palù
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | | - Arianna Calistri
- Department of Molecular Medicine, University of Padua, Padua, Italy
| |
Collapse
|
3
|
Tiwari A, Meriläinen P, Lindh E, Kitajima M, Österlund P, Ikonen N, Savolainen-Kopra C, Pitkänen T. Avian Influenza outbreaks: Human infection risks for beach users - One health concern and environmental surveillance implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173692. [PMID: 38825193 DOI: 10.1016/j.scitotenv.2024.173692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Despite its popularity for water activities, such as swimming, surfing, fishing, and rafting, inland and coastal bathing areas occasionally experience outbreaks of highly pathogenic avian influenza virus (HPAI), including A(H5N1) clade 2.3.4.4b. Asymptomatic infections and symptomatic outbreaks often impact many aquatic birds, which increase chances of spill-over events to mammals and pose concerns for public health. This review examined the existing literature to assess avian influenza virus (AIV) transmission risks to beachgoers and the general population. A comprehensive understanding of factors governing such crossing of the AIV host range is currently lacking. There is limited knowledge on key factors affecting risk, such as species-specific interactions with host cells (including binding, entry, and replication via viral proteins hemagglutinin, neuraminidase, nucleoprotein, and polymerase basic protein 2), overcoming host restrictions, and innate immune response. AIV efficiently transmits between birds and to some extent between marine scavenger mammals in aquatic environments via consumption of infected birds. However, the current literature lacks evidence of zoonotic AIV transmission via contact with the aquatic environment or consumption of contaminated water. The zoonotic transmission risk of the circulating A(H5N1) clade 2.3.4.4b virus to the general population and beachgoers is currently low. Nevertheless, it is recommended to avoid direct contact with sick or dead birds and to refrain from bathing in locations where mass bird mortalities are reported. Increasing reports of AIVs spilling over to non-human mammals have raised valid concerns about possible virus mutations that lead to crossing the species barrier and subsequent risk of human infections and outbreaks.
Collapse
Affiliation(s)
- Ananda Tiwari
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Neulaniementie 4, Kuopio FI-70701, Finland; Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, Helsinki FI-00014, Finland.
| | - Päivi Meriläinen
- Environmental Health Unit, Finnish Institute for Health and Welfare, Neulaniementie 4, Kuopio FI-70701, Finland
| | - Erika Lindh
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Mannerheimintie 166, Helsinki FI-00271, Finland
| | - Masaaki Kitajima
- Research Center for Water Environment Technology, School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Pamela Österlund
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Mannerheimintie 166, Helsinki FI-00271, Finland
| | - Niina Ikonen
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Mannerheimintie 166, Helsinki FI-00271, Finland
| | - Carita Savolainen-Kopra
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Mannerheimintie 166, Helsinki FI-00271, Finland
| | - Tarja Pitkänen
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Neulaniementie 4, Kuopio FI-70701, Finland; Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, Helsinki FI-00014, Finland
| |
Collapse
|
4
|
PA Mutations Inherited during Viral Evolution Act Cooperatively To Increase Replication of Contemporary H5N1 Influenza Virus with an Expanded Host Range. J Virol 2020; 95:JVI.01582-20. [PMID: 33028722 PMCID: PMC7737735 DOI: 10.1128/jvi.01582-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/04/2020] [Indexed: 12/12/2022] Open
Abstract
Clade 2.2.1 avian influenza viruses (H5N1) are unique to Egypt and have caused the highest number of human H5N1 influenza cases worldwide, presenting a serious global public health threat. These viruses may have the greatest evolutionary potential for adaptation from avian hosts to human hosts. Using a comprehensive phylogenetic approach, we identified several novel clade 2.2.1 virus polymerase mutations that increased viral replication in vitro in human cells and in vivo in mice. These mutations were in the polymerase PA subunit and acted cooperatively with the E627K mutation in the PB2 polymerase subunit to provide higher replication in contemporary clade 2.2.1.2 viruses than in ancestral clade 2.2.1 viruses. These data indicated that ongoing clade 2.2.1 dissemination in the field has driven PA mutations to modify viral replication to enable host range expansion, with a higher public health risk for humans. Adaptive mutations and/or reassortments in avian influenza virus polymerase subunits PA, PB1, and PB2 are one of the major factors enabling the virus to overcome the species barrier to infect humans. The majority of human adaptation polymerase mutations have been identified in PB2; fewer adaptation mutations have been characterized in PA and PB1. Clade 2.2.1 avian influenza viruses (H5N1) are unique to Egypt and generally carry the human adaptation PB2-E627K substitution during their dissemination in nature. In this study, we identified other human adaptation polymerase mutations by analyzing phylogeny-associated PA mutations that H5N1 clade 2.2.1 viruses have accumulated during their evolution in the field. This analysis identified several PA mutations that produced increased replication by contemporary clade 2.2.1.2 viruses in vitro in human cells and in vivo in mice compared to ancestral clade 2.2.1 viruses. The PA mutations acted cooperatively to increase viral polymerase activity and replication in both avian and human cells, with the effect being more prominent in human cells at 33°C than at 37°C. These results indicated that PA mutations have a role in establishing contemporary clade 2.2.1.2 virus infections in poultry and in adaptation to infect mammals. Our study provided data on the mechanism for PA mutations to accumulate during avian influenza virus evolution and extend the viral host range. IMPORTANCE Clade 2.2.1 avian influenza viruses (H5N1) are unique to Egypt and have caused the highest number of human H5N1 influenza cases worldwide, presenting a serious global public health threat. These viruses may have the greatest evolutionary potential for adaptation from avian hosts to human hosts. Using a comprehensive phylogenetic approach, we identified several novel clade 2.2.1 virus polymerase mutations that increased viral replication in vitro in human cells and in vivo in mice. These mutations were in the polymerase PA subunit and acted cooperatively with the E627K mutation in the PB2 polymerase subunit to provide higher replication in contemporary clade 2.2.1.2 viruses than in ancestral clade 2.2.1 viruses. These data indicated that ongoing clade 2.2.1 dissemination in the field has driven PA mutations to modify viral replication to enable host range expansion, with a higher public health risk for humans.
Collapse
|
5
|
Ibrahim M, Zakaria S, Bazid AHI, Kilany WH, Zain El-Abideen MA, Ali A. A single dose of inactivated oil-emulsion bivalent H5N8/H5N1 vaccine protects chickens against the lethal challenge of both highly pathogenic avian influenza viruses. Comp Immunol Microbiol Infect Dis 2020; 74:101601. [PMID: 33307456 DOI: 10.1016/j.cimid.2020.101601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/31/2022]
Abstract
In this study, two highly pathogenic avian influenza (HPAI) H5N8 viruses were isolated from chicken and geese in 2018 and 2019 (Chicken/ME-2018 and Geese/Egypt/MG4/2019). The hemagglutinin and neuraminidase gene analyses revealed their close relatedness to the clade-2.3.4.4b H5N8 viruses isolated from Egypt and Eurasian countries. A monovalent inactivated oil-emulsion vaccine containing a reassortant virus with HA gene of the Chicken/ME-2018/H5N8 strain and a bivalent vaccine containing same reassortant virus plus a previously generated reassortant H5N1 strain (CK/Eg/RG-173CAL/17). The safety of both vaccines was evaluated in specific-pathogen-free (SPF) chickens. To evaluate the efficacy of the prepared vaccines, 2-week-old SPF chickens were vaccinated with 0.5 mL of a vaccine formula containing 108/EID50 /dose from each strain via the subcutaneous route. Vaccinated birds were challenged with either wild-type HPAI-H5N8 or H5N1 viruses separately at 3 weeks post-vaccine. Results revealed that both vaccines induced protective hemagglutination-inhibiting (HI) antibody titers as early as 2 weeks PV (≥5.0 log2). Vaccinated birds were protected clinically against both subtypes (100 % protection). HPAI-H5N1 virus shedding was significantly reduced in birds that were vaccinated with the bivalent vaccine; meanwhile, HPAI-H5N8 virus shedding was completely neutralized in both tracheal and cloacal swabs after 3 days post-infection in birds that had been vaccinated with either vaccine. In conclusion, the developed bivalent vaccine proved to be efficient in protecting chickens clinically and reduced virus shedding via the respiratory and digestive tracts. The applicability of the multivalent avian influenza vaccines further supported their value to facilitate vaccination programs in endemic countries.
Collapse
Affiliation(s)
- Mahmoud Ibrahim
- Birds and Rabbit Medicine Department, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Minoufiya, 22857, Egypt
| | - Salah Zakaria
- Middle East for Vaccine Company (MEVAC™), Second Industrial Area, El-Salhyia El-Gededa, Sharkia, 44671, Egypt; Virology Department, Faculty of Veterinary Medicine, University of Sadat City Sadat City, Minoufiya, 22857, Egypt
| | - Abdel-Hamid I Bazid
- Virology Department, Faculty of Veterinary Medicine, University of Sadat City Sadat City, Minoufiya, 22857, Egypt
| | - Walid H Kilany
- Reference Laboratory for Veterinary Quality Control on Poultry Production (RLQP), AHRI, ARC, 12818 Giza, Egypt
| | - Mohamed A Zain El-Abideen
- Reference Laboratory for Veterinary Quality Control on Poultry Production (RLQP), AHRI, ARC, 12818 Giza, Egypt
| | - Ahmed Ali
- Poultry Diseases Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt.
| |
Collapse
|
6
|
Mummah RO, Hoff NA, Rimoin AW, Lloyd-Smith JO. Controlling emerging zoonoses at the animal-human interface. ONE HEALTH OUTLOOK 2020; 2:17. [PMID: 33073176 PMCID: PMC7550773 DOI: 10.1186/s42522-020-00024-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 07/09/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND For many emerging or re-emerging pathogens, cases in humans arise from a mixture of introductions (via zoonotic spillover from animal reservoirs or geographic spillover from endemic regions) and secondary human-to-human transmission. Interventions aiming to reduce incidence of these infections can be focused on preventing spillover or reducing human-to-human transmission, or sometimes both at once, and typically are governed by resource constraints that require policymakers to make choices. Despite increasing emphasis on using mathematical models to inform disease control policies, little attention has been paid to guiding rational disease control at the animal-human interface. METHODS We introduce a modeling framework to analyze the impacts of different disease control policies, focusing on pathogens exhibiting subcritical transmission among humans (i.e. pathogens that cannot establish sustained human-to-human transmission). We quantify the relative effectiveness of measures to reduce spillover (e.g. reducing contact with animal hosts), human-to-human transmission (e.g. case isolation), or both at once (e.g. vaccination), across a range of epidemiological contexts. RESULTS We provide guidelines for choosing which mode of control to prioritize in different epidemiological scenarios and considering different levels of resource and relative costs. We contextualize our analysis with current zoonotic pathogens and other subcritical pathogens, such as post-elimination measles, and control policies that have been applied. CONCLUSIONS Our work provides a model-based, theoretical foundation to understand and guide policy for subcritical zoonoses, integrating across disciplinary and species boundaries in a manner consistent with One Health principles.
Collapse
Affiliation(s)
- Riley O. Mummah
- Department of Ecology and Evolutionary Biology, University of California, 610 Charles E Young Dr S, Los Angeles, CA 90095 USA
- Department of Epidemiology, University of California, Los Angeles, CA 90095 USA
| | - Nicole A. Hoff
- Department of Epidemiology, University of California, Los Angeles, CA 90095 USA
| | - Anne W. Rimoin
- Department of Epidemiology, University of California, Los Angeles, CA 90095 USA
| | - James O. Lloyd-Smith
- Department of Ecology and Evolutionary Biology, University of California, 610 Charles E Young Dr S, Los Angeles, CA 90095 USA
- Fogarty International Center, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
7
|
Arai Y, Kawashita N, Ibrahim MS, Elgendy EM, Daidoji T, Ono T, Takagi T, Nakaya T, Matsumoto K, Watanabe Y. PB2 mutations arising during H9N2 influenza evolution in the Middle East confer enhanced replication and growth in mammals. PLoS Pathog 2019; 15:e1007919. [PMID: 31265471 PMCID: PMC6629154 DOI: 10.1371/journal.ppat.1007919] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/15/2019] [Accepted: 06/14/2019] [Indexed: 01/09/2023] Open
Abstract
Avian influenza virus H9N2 has been endemic in birds in the Middle East, in particular in Egypt with multiple cases of human infections since 1998. Despite concerns about the pandemic threat posed by H9N2, little is known about the biological properties of H9N2 in this epicentre of infection. Here, we investigated the evolutionary dynamics of H9N2 in the Middle East and identified phylogeny-associated PB2 mutations that acted cooperatively to increase H9N2 replication/transcription in human cells. The accumulation of PB2 mutations also correlated with an increase in H9N2 virus growth in the upper and lower airways of mice and in virulence. These mutations clustered on a solvent-exposed region in the PB2-627 domain in proximity to potential interfaces with host factors. These PB2 mutations have been found at high prevalence during evolution of H9N2 in the field, indicating that they have provided a selective advantage for viral adaptation to infect poultry. Therefore, continuous prevalence of H9N2 virus in the Middle East has generated a far more fit or optimized replication phenotype, leading to an expanded viral host range, including to mammals, which may pose public health risks beyond the current outbreaks. The G1-like clade of H9N2 influenza viruses can undergo genetic reassortment with other influenza virus subtypes to produce novel zoonotic viruses, such as the Gs/GD lineage H5N1, H7N9, H10N8, and H5N8 viruses. Since 1998, the G1-like subclade of H9N2 influenza virus has been widely circulating in birds in Central Asia and the Middle East and a number of human cases have been reported. However, little is known about the biological properties of H9N2 viruses in this epicentre of infection. Our data showed that, during about two decades of evolution in nature, G1-like subclade strains evolved to produce strains with appreciably higher replication phenotypes in Central Asia and the Middle East, which led to their expanded host range, including to humans. Therefore, G1-like subclade strains in these areas may accumulate mutations to produce novel viruses and the large gene pool in these areas would enable reassortment with other influenza viruses. This study indicated the need for studies of H9N2 viruses in such areas to monitor their evolutionary dynamics and possible genetic changes.
Collapse
Affiliation(s)
- Yasuha Arai
- Department of Infectious Diseases, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Norihito Kawashita
- Faculty of Science and Engineering, Kindai University, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Madiha Salah Ibrahim
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Emad Mohamed Elgendy
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Tomo Daidoji
- Department of Infectious Diseases, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takao Ono
- The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Tatsuya Takagi
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Takaaki Nakaya
- Department of Infectious Diseases, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuhiko Matsumoto
- The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Yohei Watanabe
- Department of Infectious Diseases, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
- * E-mail:
| |
Collapse
|
8
|
Genetic Compatibility of Reassortants between Avian H5N1 and H9N2 Influenza Viruses with Higher Pathogenicity in Mammals. J Virol 2019; 93:JVI.01969-18. [PMID: 30463961 PMCID: PMC6363993 DOI: 10.1128/jvi.01969-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 12/25/2022] Open
Abstract
Close interaction between avian influenza (AI) viruses and humans in Egypt appears to have resulted in many of the worldwide cases of human infections by both H5N1 and H9N2 AI viruses. Egypt is regarded as a hot spot of AI virus evolution. Although no natural reassortant of H5N1 and H9N2 AI viruses has been reported so far, their cocirculation in Egypt may allow emergence of reassortants that may present a significant public health risk. Using reverse genetics, we report here the first comprehensive data showing that H5N1-N9N2 reassortants have fairly high genetic compatibility and possibly higher pathogenicity in mammals, including humans, than the parental viruses. Our results provide insight into the emergence potential of avian H5N1-H9N2 reassortants that may pose a high public health risk. The cocirculation of H5N1 and H9N2 avian influenza viruses in birds in Egypt provides reassortment opportunities between these two viruses. However, little is known about the emergence potential of reassortants derived from Egyptian H5N1 and H9N2 viruses and about the biological properties of such reassortants. To evaluate the potential public health risk of reassortants of these viruses, we used reverse genetics to generate the 63 possible reassortants derived from contemporary Egyptian H5N1 and H9N2 viruses, containing the H5N1 surface gene segments and combinations of the H5N1 and H9N2 internal gene segments, and analyzed their genetic compatibility, replication ability, and virulence in mice. Genes in the reassortants showed remarkably high compatibility. The replication of most reassortants was higher than the parental H5N1 virus in human cells. Six reassortants were thought to emerge in birds under neutral or positive selective pressure, and four of them had higher pathogenicity in vivo than the parental H5N1 and H9N2 viruses. Our results indicated that H5N1-H9N2 reassortants could be transmitted efficiently to mammals with significant public health risk if they emerge in Egypt, although the viruses might not emerge frequently in birds. IMPORTANCE Close interaction between avian influenza (AI) viruses and humans in Egypt appears to have resulted in many of the worldwide cases of human infections by both H5N1 and H9N2 AI viruses. Egypt is regarded as a hot spot of AI virus evolution. Although no natural reassortant of H5N1 and H9N2 AI viruses has been reported so far, their cocirculation in Egypt may allow emergence of reassortants that may present a significant public health risk. Using reverse genetics, we report here the first comprehensive data showing that H5N1-N9N2 reassortants have fairly high genetic compatibility and possibly higher pathogenicity in mammals, including humans, than the parental viruses. Our results provide insight into the emergence potential of avian H5N1-H9N2 reassortants that may pose a high public health risk.
Collapse
|
9
|
Characterization of H5N1 Influenza Virus Quasispecies with Adaptive Hemagglutinin Mutations from Single-Virus Infections of Human Airway Cells. J Virol 2018; 92:JVI.02004-17. [PMID: 29563293 DOI: 10.1128/jvi.02004-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/14/2018] [Indexed: 01/08/2023] Open
Abstract
Transmission of avian influenza (AI) viruses to mammals involves phylogenetic bottlenecks that select small numbers of variants for transmission to new host species. However, little is known about the AI virus quasispecies diversity that produces variants for virus adaptation to humans. Here, we analyzed the hemagglutinin (HA) genetic diversity produced during AI H5N1 single-virus infection of primary human airway cells and characterized the phenotypes of these variants. During single-virus infection, HA variants emerged with increased fitness to infect human cells. These variants generally had decreased HA thermostability, an indicator of decreased transmissibility, that appeared to compensate for their increase in α2,6-linked sialic acid (α2,6 Sia) binding specificity and/or in the membrane fusion pH threshold, each of which is an advantageous mutational change for viral infection of human airway epithelia. An HA variant with increased HA thermostability also emerged but could not outcompete variants with less HA thermostability. These results provided data on HA quasispecies diversity in human airway cells.IMPORTANCE The diversity of the influenza virus quasispecies that emerges from a single infection is the starting point for viral adaptation to new hosts. A few studies have investigated AI virus quasispecies diversity during human adaptation using clinical samples. However, those studies could be appreciably affected by individual variability and multifactorial respiratory factors, which complicate identification of quasispecies diversity produced by selective pressure for increased adaptation to infect human airway cells. Here, we found that detectable HA genetic diversity was produced by H5N1 single-virus infection of human airway cells. Most of the HA variants had increased fitness to infect human airway cells but incurred a fitness cost of less HA stability. To our knowledge, this is the first report to characterize the adaptive changes of AI virus quasispecies produced by infection of human airway cells. These results provide a better perspective on AI virus adaptation to infect humans.
Collapse
|
10
|
Host-adaptive mechanism of H5N1 avian influenza virus hemagglutininn. Uirusu 2017; 65:187-198. [PMID: 27760917 DOI: 10.2222/jsv.65.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The H5N1 subtype is a highly pathogenic avian influenza virus currently circulating in birds in parts of Asia and northeast Africa, which has caused fatal human infections since 1997. Continuous circulation of the virus in endemic areas has allowed genetically diverse viruses to emerge, increasing the risk of H5N1 human infection. Although human infections with H5N1 have to date been limited, experimental evidence of the aerosol transmission of mutated viruses in a mammalian infection model has revealed the pandemic potential of H5N1 virus. One of the most important viral factors for host-adaptation of influenza virus is hemagglutinin (HA), which is the principal antigen on the viral surface and is responsible for viral binding to host receptors as well as endosomal membrane fusion. Our recent reports suggest that a fine balance of the HA properties, including receptor binding specificity and pH stability, is crucial for replication in human respiratory epithelia. This review provides an overview of current knowledge on the host-adaptive mechanism of H5N1 virus HA.
Collapse
|
11
|
Gu M, Li Q, Gao R, He D, Xu Y, Xu H, Xu L, Wang X, Hu J, Liu X, Hu S, Peng D, Jiao X, Liu X. The T160A hemagglutinin substitution affects not only receptor binding property but also transmissibility of H5N1 clade 2.3.4 avian influenza virus in guinea pigs. Vet Res 2017; 48:7. [PMID: 28166830 PMCID: PMC5294818 DOI: 10.1186/s13567-017-0410-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 12/12/2016] [Indexed: 01/30/2023] Open
Abstract
We generated and characterized site-directed HA mutants on the genetic backbone of H5N1 clade 2.3.4 virus preferentially binding to α-2,3 receptors in order to identify the key determinants in hemagglutinin rendering the dual affinity to both α-2,3 (avian-type) and α-2,6 (human-type) linked sialic acid receptors of the current clade 2.3.4.4 H5NX subtype avian influenza reassortants. The results show that the T160A substitution resulted in the loss of a glycosylation site at 158N and led not only to enhanced binding specificity for human-type receptors but also transmissibility among guinea pigs, which could be considered as an important molecular marker for assessing pandemic potential of H5 subtype avian influenza isolates.
Collapse
Affiliation(s)
- Min Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Qunhui Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Ruyi Gao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Dongchang He
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yunpeng Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Haixu Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Lijun Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Yangzhou Entry-Exit Inspection and Quarantine Bureau, Yangzhou, Jiangsu, 225009, China
| | - Xiaoquan Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Jiao Hu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xiaowen Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Shunlin Hu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, 225009, China
| | - Xinan Jiao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, 225009, China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China. .,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China. .,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
12
|
Elgendy EM, Arai Y, Kawashita N, Daidoji T, Takagi T, Ibrahim MS, Nakaya T, Watanabe Y. Identification of polymerase gene mutations that affect viral replication in H5N1 influenza viruses isolated from pigeons. J Gen Virol 2017; 98:6-17. [PMID: 27926816 DOI: 10.1099/jgv.0.000674] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Highly pathogenic avian influenza virus H5N1 infects a wide range of host species, with a few cases of sporadic pigeon infections reported in the Middle East and Asia. However, the role of pigeons in the ecology and evolution of H5N1 viruses remains unclear. We previously reported two H5N1 virus strains, isolated from naturally infected pigeons in Egypt, that have several unique mutations in their viral polymerase genes. Here, we investigated the effect of these mutations on H5N1 polymerase activity and viral growth and identified three mutations that affected viral polymerase activity. The results showed that the PB1-V3D mutation significantly decreased polymerase activity and viral growth in both mammalian and avian cells. In contrast, the PB2-K627E and PA-K158R mutations had moderate effects: PB2-K627E decreased and PA-K158R increased polymerase activity. Structural homology modelling indicated that the PB1-V3D residue was located in the PB1 core region that interacts with PA, predicting that the PB1 mutation would produce a stronger interaction between PB1 and PA that results in decreased replication of pigeon-derived H5N1 viruses. Our results identified several unique mutations responsible for changes in polymerase activity in H5N1 virus strains isolated from infected pigeons, emphasizing the importance of avian influenza surveillance in pigeons and in studying the possible role of pigeon-derived H5N1 viruses in avian influenza virus evolution.
Collapse
Affiliation(s)
- Emad Mohamed Elgendy
- Department of Microbiology, Faculty of Veterinary Medicine, Damanhour University, Damanhur, Egypt.,Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yasuha Arai
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Norihito Kawashita
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Tomo Daidoji
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tatsuya Takagi
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Madiha Salah Ibrahim
- Department of Microbiology, Faculty of Veterinary Medicine, Damanhour University, Damanhur, Egypt.,Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takaaki Nakaya
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yohei Watanabe
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
13
|
Development of Nano-Carbon Biosensors Using Glycan for Host Range Detection of Influenza Virus. CONDENSED MATTER 2016. [DOI: 10.3390/condmat1010007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Elgendy EM, Watanabe Y, Daidoji T, Arai Y, Ikuta K, Ibrahim MS, Nakaya T. Genetic characterization of highly pathogenic avian influenza H5N1 viruses isolated from naturally infected pigeons in Egypt. Virus Genes 2016; 52:867-871. [PMID: 27369428 DOI: 10.1007/s11262-016-1369-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/23/2016] [Indexed: 12/18/2022]
Abstract
Avian influenza viruses impose serious public health burdens with significant mortality and morbidity not only in poultry but also in humans. While poultry susceptibility to avian influenza virus infection is well characterized, pigeons have been thought to have low susceptibility to these viruses. However, recent studies reported natural pigeon infections with highly pathogenic avian influenza H5N1 viruses. In Egypt, which is one of the H5N1 endemic areas for birds, pigeons are raised in towers built on farms in backyards and on house roofs, providing a potential risk for virus transmission from pigeons to humans. In this study, we performed genetic analysis of two H5N1 virus strains that were isolated from naturally infected pigeons in Egypt. Genetic and phylogenetic analyses showed that these viruses originated from Egyptian H5N1 viruses that were circulating in chickens or ducks. Several unique mutations, not reported before in any Egyptian isolates, were detected in the internal genes (i.e., polymerase residues PB1-V3D, PB1-K363R, PA-A369V, and PA-V602I; nucleoprotein residue NP-R38K; and nonstructural protein residues NS1-D120N and NS2-F55C). Our findings suggested that pigeons are naturally infected with H5N1 virus and can be a potential reservoir for transmission to humans, and showed the importance of genetic analysis of H5N1 internal genes.
Collapse
Affiliation(s)
- Emad Mohamed Elgendy
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, 465 Kawaramachi-hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Damanhur University, Damanhur, Egypt
| | - Yohei Watanabe
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, 465 Kawaramachi-hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan.
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Tomo Daidoji
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, 465 Kawaramachi-hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yasuha Arai
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, 465 Kawaramachi-hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazuyoshi Ikuta
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Madiha Salah Ibrahim
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, 465 Kawaramachi-hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Damanhur University, Damanhur, Egypt
| | - Takaaki Nakaya
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, 465 Kawaramachi-hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan.
| |
Collapse
|
15
|
Arai Y, Kawashita N, Daidoji T, Ibrahim MS, El-Gendy EM, Takagi T, Takahashi K, Suzuki Y, Ikuta K, Nakaya T, Shioda T, Watanabe Y. Novel Polymerase Gene Mutations for Human Adaptation in Clinical Isolates of Avian H5N1 Influenza Viruses. PLoS Pathog 2016; 12:e1005583. [PMID: 27097026 PMCID: PMC4838241 DOI: 10.1371/journal.ppat.1005583] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/28/2016] [Indexed: 11/18/2022] Open
Abstract
A major determinant in the change of the avian influenza virus host range to humans is the E627K substitution in the PB2 polymerase protein. However, the polymerase activity of avian influenza viruses with a single PB2-E627K mutation is still lower than that of seasonal human influenza viruses, implying that avian viruses require polymerase mutations in addition to PB2-627K for human adaptation. Here, we used a database search of H5N1 clade 2.2.1 virus sequences with the PB2-627K mutation to identify other polymerase adaptation mutations that have been selected in infected patients. Several of the mutations identified acted cooperatively with PB2-627K to increase viral growth in human airway epithelial cells and mouse lungs. These mutations were in multiple domains of the polymerase complex other than the PB2-627 domain, highlighting a complicated avian-to-human adaptation pathway of avian influenza viruses. Thus, H5N1 viruses could rapidly acquire multiple polymerase mutations that function cooperatively with PB2-627K in infected patients for optimal human adaptation. Avian influenza (AI) virus H5N1 subtype strains have been sporadically transmitted to humans with high mortality (>60%), presenting a serious global health threat. In particular, 63% of recent human H5N1 infection cases worldwide have been reported in Egypt, which is now regarded as a hot spot for H5N1 virus evolution. H5N1 clade 2.2.1 viruses are unique to Egypt and probably have the greatest evolutionary potential for adaptation from avian to human hosts. Here, using a comprehensive database approach, we identified various novel polymerase mutations in clade 2.2.1 virus strains, isolated from patients, that enabled enhanced viral replication in both human airway epithelial cells and mouse lungs. Interestingly, the mutations identified acted cooperatively with the PB2-E627K mutation, the most well-known human adaptation mutation, to produce a further increase in viral replication in human hosts. These results provide the first broad-spectrum data on the polymerase characteristics of AI viruses that have been selected in infected patients, and also give new insight into the human adaptation mechanisms of AI viruses.
Collapse
Affiliation(s)
- Yasuha Arai
- Department of Viral infection, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Norihito Kawashita
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tomo Daidoji
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Madiha S. Ibrahim
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Microbiology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Emad M. El-Gendy
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Microbiology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Tatsuya Takagi
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Kazuo Takahashi
- Department of Laboratory Examination, International University of Health and Welfare Hospital, Tochigi, Japan
| | - Yasuo Suzuki
- Health Science Hills, College of Life and Health Sciences, Chubu University, Aichi, Japan
| | - Kazuyoshi Ikuta
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takaaki Nakaya
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tatsuo Shioda
- Department of Viral infection, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yohei Watanabe
- Department of Viral infection, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
- * E-mail:
| |
Collapse
|
16
|
Characterization of H5N1 influenza virus variants with hemagglutinin mutations isolated from patients. mBio 2015; 6:mBio.00081-15. [PMID: 25852160 PMCID: PMC4453573 DOI: 10.1128/mbio.00081-15] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
A change in viral hemagglutinin (HA) receptor binding specificity from α2,3- to α2,6-linked sialic acid is necessary for highly pathogenic avian influenza (AI) virus subtype H5N1 to become pandemic. However, details of the human-adaptive change in the H5N1 virus remain unknown. Our database search of H5N1 clade 2.2.1 viruses circulating in Egypt identified multiple HA mutations that had been selected in infected patients. Using reverse genetics, we found that increases in both human receptor specificity and the HA pH threshold for membrane fusion were necessary to facilitate replication of the virus variants in human airway epithelia. Furthermore, variants with enhanced replication in human cells had decreased HA stability, apparently to compensate for the changes in viral receptor specificity and membrane fusion activity. Our findings showed that H5N1 viruses could rapidly adapt to growth in the human airway microenvironment by altering their HA properties in infected patients and provided new insights into the human-adaptive mechanisms of AI viruses. Circulation between bird and human hosts may allow H5N1 viruses to acquire amino acid changes that increase fitness for human infections. However, human-adaptive changes in H5N1 viruses have not been adequately investigated. In this study, we found that multiple HA mutations were actually selected in H5N1-infected patients and that H5N1 variants with some of these HA mutations had increased human-type receptor specificity and increased HA membrane fusion activity, both of which are advantageous for viral replication in human airway epithelia. Furthermore, HA mutants selected during viral replication in patients were likely to have less HA stability, apparently as a compensatory mechanism. These results begin to clarify the picture of the H5N1 human-adaptive mechanism.
Collapse
|
17
|
Watanabe Y, Ito T, Ibrahim MS, Arai Y, Hotta K, Phuong HVM, Hang NLK, Mai LQ, Soda K, Yamaoka M, Poetranto ED, Wulandari L, Hiramatsu H, Daidoji T, Kubota-Koketsu R, Sriwilaijaroen N, Nakaya T, Okuno Y, Takahashi T, Suzuki T, Ito T, Hotta H, Yamashiro T, Hayashi T, Morita K, Ikuta K, Suzuki Y. A novel immunochromatographic system for easy-to-use detection of group 1 avian influenza viruses with acquired human-type receptor binding specificity. Biosens Bioelectron 2014; 65:211-9. [PMID: 25461160 PMCID: PMC7125538 DOI: 10.1016/j.bios.2014.10.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/09/2014] [Accepted: 10/09/2014] [Indexed: 02/06/2023]
Abstract
A switch of viral hemagglutinin receptor binding specificity from bird-type α2,3- to human-type α2,6-linked sialic acid is necessary for an avian influenza virus to become a pandemic virus. In this study, an easy-to-use strip test to detect receptor binding specificity of influenza virus was developed. A biotinylated anti-hemagglutinin antibody that bound a broad range of group 1 influenza A viruses and latex-conjugated α2,3 (blue) and α2,6 (red) sialylglycopolymers were used in an immunochromatographic strip test, with avidin and lectin immobilized on a nitrocellulose membrane at test and control lines, respectively. Accumulation of a sialylglycopolymer–virus–antibody complex at the test line was visualized by eye. The strip test could be completed in 30 min and did not require special equipment or skills, thereby avoiding some disadvantages of current methods for analyzing receptor binding specificity of influenza virus. The strip test could detect the receptor binding specificity of a wide range of influenza viruses, as well as small increases in the binding affinity of variant H5N1 viruses to α2,6 sialylglycans at viral titers >128 hemagglutination units. The strip test results were in agreement with those of ELISA virus binding assays, with correlations >0.95. In conclusion, the immunochromatographic strip test developed in this study should be useful for monitoring potential changes in the receptor binding specificity of group 1 influenza A viruses in the field. A novel immunochromatographic strip test system was developed. The strip test was developed to detect influenza virus receptor binding specificity. The strip test was applicable to a broad range of group 1 influenza A viruses. The strip detected faint increases in human-type specificity of variant H5N1 viruses. The system could be applied for easy monitoring the viral pandemic potential.
Collapse
Affiliation(s)
- Yohei Watanabe
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan.
| | - Tetsuo Ito
- KAINOS Laboratories, Inc., Tokyo 113-0033, Japan
| | - Madiha S Ibrahim
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Yasuha Arai
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Kozue Hotta
- Center for Infectious Disease Research in Asia and Africa, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; Vietnam Research Station, Nagasaki University, c/o National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | - Hoang Vu Mai Phuong
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | - Nguyen Le Khanh Hang
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | - Le Quynh Mai
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | - Kosuke Soda
- Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Masaoki Yamaoka
- Center for Infectious Diseases, Graduate School of Medicine, Kobe University, Hyogo 650-0017, Japan
| | - Emmanuel Djoko Poetranto
- Indonesia-Japan Collaborative Research Center, Institute of Tropical Disease, Airlangga University, Surabaya 60115, Indonesia
| | - Laksmi Wulandari
- Indonesia-Japan Collaborative Research Center, Institute of Tropical Disease, Airlangga University, Surabaya 60115, Indonesia
| | - Hiroaki Hiramatsu
- Health Science Hills, College of Life and Health Sciences, Chubu University, Aichi 487-8501, Japan
| | - Tomo Daidoji
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Ritsuko Kubota-Koketsu
- Kanonji Institute, The Research Foundation for Microbial Diseases of Osaka University, Kagawa 768-0061, Japan
| | - Nongluk Sriwilaijaroen
- Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand; Health Science Hills, College of Life and Health Sciences, Chubu University, Aichi 487-8501, Japan
| | - Takaaki Nakaya
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yoshinobu Okuno
- Kanonji Institute, The Research Foundation for Microbial Diseases of Osaka University, Kagawa 768-0061, Japan
| | - Tadanobu Takahashi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Takashi Suzuki
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Toshihiro Ito
- Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Hak Hotta
- Center for Infectious Diseases, Graduate School of Medicine, Kobe University, Hyogo 650-0017, Japan
| | - Tetsu Yamashiro
- Center for Infectious Disease Research in Asia and Africa, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; Vietnam Research Station, Nagasaki University, c/o National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | | | - Kouichi Morita
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Kazuyoshi Ikuta
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Yasuo Suzuki
- Health Science Hills, College of Life and Health Sciences, Chubu University, Aichi 487-8501, Japan.
| |
Collapse
|
18
|
Human monoclonal antibodies derived from a patient infected with 2009 pandemic influenza A virus broadly cross-neutralize group 1 influenza viruses. Biochem Biophys Res Commun 2014; 450:42-8. [PMID: 24858683 DOI: 10.1016/j.bbrc.2014.05.060] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 05/15/2014] [Indexed: 11/20/2022]
Abstract
Influenza viruses are a continuous threat to human public health because of their ability to evolve rapidly through genetic drift and reassortment. Three human monoclonal antibodies (HuMAbs) were generated in this study, 1H11, 2H5 and 5G2, and they cross-neutralize a diverse range of group 1 influenza A viruses, including seasonal H1N1, 2009 pandemic H1N1 (H1N1pdm) and avian H5N1 and H9N2. The three HuMAbs were prepared by fusing peripheral blood lymphocytes from an H1N1pdm-infected patient with a newly developed fusion partner cell line, SPYMEG. All the HuMAbs had little hemagglutination inhibition activity but had strong membrane-fusion inhibition activity against influenza viruses. A protease digestion assay showed the HuMAbs targeted commonly a short α-helix region in the stalk of the hemagglutinin. Furthermore, Ile45Phe and Glu47Gly double substitutions in the α-helix region made the HA unrecognizable by the HuMAbs. These two amino acid residues are highly conserved in the HAs of H1N1, H5N1 and H9N2 viruses. The HuMAbs reported here may be potential candidates for the development of therapeutic antibodies against group 1 influenza viruses.
Collapse
|