1
|
Kumar S, Basu M, Ghosh MK. E3 ubiquitin ligases and deubiquitinases in colorectal cancer: Emerging molecular insights and therapeutic opportunities. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119827. [PMID: 39187067 DOI: 10.1016/j.bbamcr.2024.119827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024]
Abstract
Colorectal cancer (CRC) presents ongoing challenges due to limited treatment effectiveness and a discouraging prognosis, underscoring the need for ground-breaking therapeutic approaches. This review delves into the pivotal role of E3 ubiquitin ligases and deubiquitinases (DUBs), underscoring their role as crucial regulators for tumor suppression and oncogenesis in CRC. We spotlight the diverse impact of E3 ligases and DUBs on CRC's biological processes and their remarkable versatility. We closely examine their specific influence on vital signaling pathways, particularly Wnt/β-catenin and NF-κB. Understanding these regulatory mechanisms is crucial for unravelling the complexities of CRC progression. Importantly, we explore the untapped potential of E3 ligases and DUBs as novel CRC treatment targets, discussing aspects that may guide more effective therapeutic strategies. In conclusion, our concise review illuminates the E3 ubiquitin ligases and deubiquitinases pivotal role in CRC, offering insights to inspire innovative approaches for transforming the treatment landscape in CRC.
Collapse
Affiliation(s)
- Sunny Kumar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201 002, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24 Paraganas, PIN - 743372, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201 002, India.
| |
Collapse
|
2
|
Kaushik A, Parashar S, Ambasta RK, Kumar P. Ubiquitin E3 ligases assisted technologies in protein degradation: Sharing pathways in neurodegenerative disorders and cancer. Ageing Res Rev 2024; 96:102279. [PMID: 38521359 DOI: 10.1016/j.arr.2024.102279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
E3 ligases, essential components of the ubiquitin-proteasome-mediated protein degradation system, play a critical role in cellular regulation. By covalently attaching ubiquitin (Ub) molecules to target proteins, these ligases mark them for degradation, influencing various bioprocesses. With over 600 E3 ligases identified, there is a growing realization of their potential as therapeutic candidates for addressing proteinopathies in cancer and neurodegenerative disorders (NDDs). Recent research has highlighted the need to delve deeper into the intricate roles of E3 ligases as nexus points in the pathogenesis of both cancer and NDDs. Their dysregulation is emerging as a common thread linking these seemingly disparate diseases, necessitating a comprehensive understanding of their molecular intricacies. Herein, we have discussed (i) the fundamental mechanisms through which different types of E3 ligases actively participate in selective protein degradation in cancer and NDDs, followed by an examination of common E3 ligases playing pivotal roles in both situations, emphasising common players. Moving to, (ii) the functional domains and motifs of E3 ligases involved in ubiquitination, we have explored their interactions with specific substrates in NDDs and cancer. Additionally, (iii) we have explored techniques like PROTAC, molecular glues, and other state-of-the-art methods for hijacking neurotoxic and oncoproteins. Lastly, (iv) we have provided insights into ongoing clinical trials, offering a glimpse into the evolving landscape of E3-based therapeutics for cancer and NDDs. Unravelling the intricate network of E3 ligase-mediated regulation holds the key to unlocking targeted therapies that address the specific molecular signatures of individual patients, heralding a new era in personalized medicines.
Collapse
Affiliation(s)
- Aastha Kaushik
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Somya Parashar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Rashmi K Ambasta
- Department of Biotechnology and Microbiology, SRM University-Sonepat, Haryana, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India.
| |
Collapse
|
3
|
Rong Z, Zheng K, Chen J, Jin X. The cross talk of ubiquitination and chemotherapy tolerance in colorectal cancer. J Cancer Res Clin Oncol 2024; 150:154. [PMID: 38521878 PMCID: PMC10960765 DOI: 10.1007/s00432-024-05659-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/20/2024] [Indexed: 03/25/2024]
Abstract
Ubiquitination, a highly adaptable post-translational modification, plays a pivotal role in maintaining cellular protein homeostasis, encompassing cancer chemoresistance-associated proteins. Recent findings have indicated a potential correlation between perturbations in the ubiquitination process and the emergence of drug resistance in CRC cancer. Consequently, numerous studies have spurred the advancement of compounds specifically designed to target ubiquitinates, offering promising prospects for cancer therapy. In this review, we highlight the role of ubiquitination enzymes associated with chemoresistance to chemotherapy via the Wnt/β-catenin signaling pathway, epithelial-mesenchymal transition (EMT), and cell cycle perturbation. In addition, we summarize the application and role of small compounds that target ubiquitination enzymes for CRC treatment, along with the significance of targeting ubiquitination enzymes as potential cancer therapies.
Collapse
Affiliation(s)
- Ze Rong
- Department of Chemoradiotherapy, the Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China.
| | - Kaifeng Zheng
- Department of Chemoradiotherapy, the Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China
| | - Jun Chen
- Department of Chemoradiotherapy, the Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China.
| | - Xiaofeng Jin
- Department of Chemoradiotherapy, the Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China.
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo, 315211, China.
| |
Collapse
|
4
|
Chen J, Feng H, Wang Y, Bai X, Sheng S, Li H, Huang M, Chu X, Lei Z. The involvement of E3 ubiquitin ligases in the development and progression of colorectal cancer. Cell Death Discov 2023; 9:458. [PMID: 38104139 PMCID: PMC10725464 DOI: 10.1038/s41420-023-01760-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023] Open
Abstract
To date, colorectal cancer (CRC) still has limited therapeutic efficacy and poor prognosis and there is an urgent need for novel targets to improve the outcome of CRC patients. The highly conserved ubiquitination modification mediated by E3 ubiquitin ligases is an important mechanism to regulate the expression and function of tumor promoters or suppressors in CRC. In this review, we provide an overview of E3 ligases in modulating various biological processes in CRC, including proliferation, migration, stemness, metabolism, cell death, differentiation and immune response of CRC cells, emphasizing the pluripotency of E3 ubiquitin ligases. We further focus on the role of E3 ligases in regulating vital cellular signal pathways in CRC, such as Wnt/β-catenin pathway and NF-κB pathway. Additionally, considering the potential of E3 ligases as novel targets in the treatment of CRC, we discuss what aspects of E3 ligases can be utilized and exploited for efficient therapeutic strategies.
Collapse
Affiliation(s)
- Jie Chen
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Haimei Feng
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Yiting Wang
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiaoming Bai
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Siqi Sheng
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Huiyu Li
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Mengxi Huang
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China.
| | - Xiaoyuan Chu
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical university, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu Province, China.
| | - Zengjie Lei
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical university, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
5
|
Gurzeler LA, Link M, Ibig Y, Schmidt I, Galuba O, Schoenbett J, Gasser-Didierlaurant C, Parker CN, Mao X, Bitsch F, Schirle M, Couttet P, Sigoillot F, Ziegelmüller J, Uldry AC, Teodorowicz W, Schmiedeberg N, Mühlemann O, Reinhardt J. Drug-induced eRF1 degradation promotes readthrough and reveals a new branch of ribosome quality control. Cell Rep 2023; 42:113056. [PMID: 37651229 DOI: 10.1016/j.celrep.2023.113056] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/15/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023] Open
Abstract
Suppression of premature termination codons (PTCs) by translational readthrough is a promising strategy to treat a wide variety of severe genetic diseases caused by nonsense mutations. Here, we present two potent readthrough promoters-NVS1.1 and NVS2.1-that restore substantial levels of functional full-length CFTR and IDUA proteins in disease models for cystic fibrosis and Hurler syndrome, respectively. In contrast to other readthrough promoters that affect stop codon decoding, the NVS compounds stimulate PTC suppression by triggering rapid proteasomal degradation of the translation termination factor eRF1. Our results show that this occurs by trapping eRF1 in the terminating ribosome, causing ribosome stalls and subsequent ribosome collisions, and activating a branch of the ribosome-associated quality control network, which involves the translational stress sensor GCN1 and the catalytic activity of the E3 ubiquitin ligases RNF14 and RNF25.
Collapse
Affiliation(s)
- Lukas-Adrian Gurzeler
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Marion Link
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Yvonne Ibig
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Isabel Schmidt
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Olaf Galuba
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | | | | | - Xiaohong Mao
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Francis Bitsch
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Markus Schirle
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Philipp Couttet
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Jana Ziegelmüller
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Anne-Christine Uldry
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Wojciech Teodorowicz
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | - Oliver Mühlemann
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| | - Jürgen Reinhardt
- Novartis Institutes for BioMedical Research, Basel, Switzerland.
| |
Collapse
|
6
|
Lv L, Huang B, Yi L, Zhang L. Long non-coding RNA SNHG4 enhances RNF14 mRNA stability to promote the progression of colorectal cancer by recruiting TAF15 protein. Apoptosis 2022; 28:414-431. [PMID: 36482019 DOI: 10.1007/s10495-022-01781-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2022] [Indexed: 12/13/2022]
Abstract
SNHG4 is a lncRNA that was previously reported to promote colorectal cancer (CRC) progression via molecular sponge mechanism. Bioinformatic analysis suggested SNHG4 might scaffold TAF15 protein-RNF14 mRNA interaction. We aimed to investigate the mechanisms of potential SNHG4/TAF15/RNF14 axis in promoting CRC malignant phenotypes. Protein-RNA interaction was determined using RNA immunoprecipitation, pull-down and fluorescence in situ hybridization (FISH) combined immunofluorescence assays. Cell apoptosis rates were quantified using flow cytometry. CCK-8 and colony formation were adopted to determine cell proliferation. Wound healing and transwell assays were employed to assess cell migration and invasion, respectively. Xenograft tumor model was applied to assess the effects of SNHG4 on CRC tumorigenesis in vivo. SNHG4, TAF15 and RNF14 were up-regulated in CRC tissues. SNHG4 overexpression promoted cell proliferation, migration, invasion, and Wnt/β-catenin pathway activation in vitro, as well as tumor growth in vivo. The inhibited malignant phenotypes caused by SNHG4 knockdown were impeded by TAF15 or RNF14 overexpression. Mechanistically, SNHG4 recruited TAF15 protein and thus promoted the interaction between TAF15 protein and RNF14 mRNA, leading to the increased RNF14 mRNA stability. This in turn facilitated the Wnt/β-catenin signal transduction. SNHG4 enhanced RNF14 mRNA stability and activated the Wnt/β-catenin pathway to promote the progression of colorectal cancer by recruiting TAF15 protein.
Collapse
Affiliation(s)
- Lv Lv
- Department of Breast and Thyroid Surgery, Liuzhou People's Hospital, NO.8, Wenchang Road, Liuzhou, 545006, Guangxi, People's Republic of China.
| | - Bojie Huang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
| | - Lu Yi
- Department of Dermatology & Venerology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
| | - Li Zhang
- Department of Breast and Thyroid Surgery, Liuzhou People's Hospital, NO.8, Wenchang Road, Liuzhou, 545006, Guangxi, People's Republic of China
| |
Collapse
|
7
|
Kaplan MM, Flucher BE. Counteractive and cooperative actions of muscle β-catenin and CaV1.1 during early neuromuscular synapse formation. iScience 2022; 25:104025. [PMID: 35340430 PMCID: PMC8941212 DOI: 10.1016/j.isci.2022.104025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/07/2022] [Accepted: 03/01/2022] [Indexed: 11/29/2022] Open
Abstract
Activity-dependent calcium signals in developing muscle play a crucial role in neuromuscular junction (NMJ) formation. However, its downstream effectors and interactions with other regulators of pre- and postsynaptic differentiation are poorly understood. Here, we demonstrate that the skeletal muscle calcium channel CaV1.1 and β-catenin interact in various ways to control NMJ development. They differentially regulate nerve branching and presynaptic innervation patterns during the initial phase of NMJ formation. Conversely, they cooperate in regulating postsynaptic AChR clustering, synapse formation, and the proper organization of muscle fibers in mouse diaphragm. CaV1.1 does not directly regulate β-catenin expression but differentially controls the activity of its transcriptional co-regulators TCF/Lef and YAP. These findings suggest a crosstalk between CaV1.1 and β-catenin in the activity-dependent transcriptional regulation of genes involved in specific pre- and postsynaptic aspects of NMJ formation. Neuromuscular junction formation requires either muscle calcium or β-catenin signaling Complementary actions of CaV1.1 and β-catenin control presynaptic innervation patterns Parallel actions of CaV1.1 and β-catenin are crucial for postsynaptic AChR clustering Loss of CaV1.1 differentially regulates activity of β-catenin targets TCF/Lef and YAP
Collapse
Affiliation(s)
- Mehmet Mahsum Kaplan
- Department of Physiology and Medical Physics, Medical University Innsbruck, 6020 Innsbruck, Austria
- Corresponding author
| | - Bernhard E. Flucher
- Department of Physiology and Medical Physics, Medical University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
8
|
Xiaoli L, Fengbin H, Shihui H, Xi N, Sheng L, Zhou W, Xueqin R, Jiafu W. Detection of genomic structure variants associated with wrinkled skin in Xiang pig by next generation sequencing. Aging (Albany NY) 2021; 13:24710-24739. [PMID: 34837693 PMCID: PMC8660620 DOI: 10.18632/aging.203711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 08/02/2021] [Indexed: 11/25/2022]
Abstract
Wrinkling is prominent manifestation of aging skin. A mutant phenotype characterized by systemic wrinkles and thickened skin was discovered in Xiang pig populations with incidence about 1-3%. The feature in histological structure was epidermal hyperplasia and thickening, collagen fibers disorder. To uncover genetic mechanisms for the mutant phenotype of Xiang pigs with systemic wrinkle (WXP), a genome-wide of structural variations (SVs) in WXP was described by next generation resequencing, taking Xiang pigs (XP) and European pigs (EUP) as compares. Total of 32,308 SVs were detected from three pig groups and 965 SVs were identified specifically from WXP, involving 481 protein-coding genes. These genes were mainly enriched in nuclear structure, ECM components and immunomodulatory pathways. According to gene function and enrichment analysis, we found that 65 candidate SVs in 59 protein genes were probably related with the systemic wrinkle of WXP. Of these, several genes are reported to be associate with aging, such as EIF4G2, NOLC1, XYLT1, FUT8, MDM2 and so on. The insertion/deletion and duplication variations of SVs in these genes resulted in the loss of stop-codon or frameshift mutation, and aberrant alternative splicing of transcripts. These genes are involved in cell lamin filament, intermediate filament cytoskeleton, supramolecular complex, cell differentiation and regulation of macromolecule metabolic process etc. Our study suggested that the loss of function or aberrant expression of these genes lead to structural disorder of nuclear and the extracellular matrix (ECM) in skin cells, which probably was the genetic mechanisms for the mutant phenotype of systemic skin wrinkle of Xiang pig.
Collapse
Affiliation(s)
- Liu Xiaoli
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Hu Fengbin
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Huang Shihui
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Niu Xi
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Li Sheng
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Wang Zhou
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Ran Xueqin
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Wang Jiafu
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang 550025, China
| |
Collapse
|
9
|
Wang B, Rong X, Zhou Y, Liu Y, Sun J, Zhao B, Deng B, Lu L, Lu L, Li Y, Zhou J. Eukaryotic initiation factor 4A3 inhibits Wnt/β-catenin signaling and regulates axis formation in zebrafish embryos. Development 2021; 148:261699. [PMID: 33914867 DOI: 10.1242/dev.198101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/25/2021] [Indexed: 12/31/2022]
Abstract
A key step in the activation of canonical Wnt signaling is the interaction between β-catenin and Tcf/Lefs that forms the transcription activation complex and facilitates the expression of target genes. Eukaryotic initiation factor 4A3 (EIF4A3) is an ATP-dependent DEAD box-family RNA helicase and acts as a core subunit of the exon junction complex (EJC) to control a series of RNA post-transcriptional processes. In this study, we uncover that EIF4A3 functions as a Wnt inhibitor by interfering with the formation of β-catenin/Tcf transcription activation complex. As Wnt stimulation increases, accumulated β-catenin displaces EIF4A3 from a transcriptional complex with Tcf/Lef, allowing the active complex to facilitate the expression of target genes. In zebrafish embryos, eif4a3 depletion inhibited the development of the dorsal organizer and pattern formation of the anterior neuroectoderm by increasing Wnt/β-catenin signaling. Conversely, overexpression of eif4a3 decreased Wnt/β-catenin signaling and inhibited the formation of the dorsal organizer before gastrulation. Our results reveal previously unreported roles of EIF4A3 in the inhibition of Wnt signaling and the regulation of embryonic development in zebrafish.
Collapse
Affiliation(s)
- Bo Wang
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiaozhi Rong
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266003, China
| | - Yumei Zhou
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yunzhang Liu
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jiqin Sun
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Beibei Zhao
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Bei Deng
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Lei Lu
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing 210061, China
| | - Ling Lu
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yun Li
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266003, China
| | - Jianfeng Zhou
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266003, China
| |
Collapse
|
10
|
Wu XT, Wang YH, Cai XY, Dong Y, Cui Q, Zhou YN, Yang XW, Lu WF, Zhang M. RNF115 promotes lung adenocarcinoma through Wnt/β-catenin pathway activation by mediating APC ubiquitination. Cancer Metab 2021; 9:7. [PMID: 33509267 PMCID: PMC7842072 DOI: 10.1186/s40170-021-00243-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/13/2021] [Indexed: 12/20/2022] Open
Abstract
Background Patients with lung adenocarcinoma (LUAD) have high mortality rate and poor prognosis. The LUAD cells display increased aerobic glycolysis, which generates energy required for their survival and proliferation. Deregulation of Wnt/β-catenin signaling pathway induces the metabolism switching and oncogenesis in tumor cells. RING finger protein 115 (RNF115) is an E3 ligase for ubiquitin-mediated degradation. Although the oncogenic functions of RNF115 have been revealed in breast tumor cells, the effect of RNF115 on lung cancer is still not clear. Methods RNF115 expression and its correlation with the features of LUAD patients were analyzed by using public database and our own cohort. The functions of RNF115 in proliferation and energy metabolism in LUAD cells were explored by downregulating or upregulating RNF115 expression. Results We demonstrated that RNF115 was overexpressed in LUAD tissues and its expression was positively correlated with the poor overall survival of LUAD patients. Moreover, RNF115 overexpression inhibited LUAD cell apoptosis and promoted cellular proliferation and metabolism in LUAD cells. On the contrary, RNF115 knockdown displayed reverse effects. Furthermore, the underlying mechanism of the biological function of RNF115 in LUAD was through regulating Wnt/β-catenin pathway via ubiquitination of adenomatous polyposis coli (APC). Conclusion The current study reveals a close association between RNF115 expression and prognostic conditions in LUAD patients and the oncogenic roles of RNF115 in LUAD at the first time. These findings may help establish the foundation for the development of therapeutics strategies and clinical management for lung cancer in future. Supplementary Information The online version contains supplementary material available at 10.1186/s40170-021-00243-y.
Collapse
Affiliation(s)
- Xiao-Ting Wu
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, Xuhui District, Shanghai, 200030, China
| | - Yu-Han Wang
- Department of Integrated Traditional Chinese and Western Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiao-Yue Cai
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, Xuhui District, Shanghai, 200030, China
| | - Yun Dong
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, Xuhui District, Shanghai, 200030, China
| | - Qing Cui
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, Xuhui District, Shanghai, 200030, China
| | - Ya-Ning Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, Xuhui District, Shanghai, 200030, China
| | - Xi-Wen Yang
- LongHua Hospital Shanghai University of Traditional Chinese Medicine/Oncology Division 2, Shanghai, China
| | - Wen-Feng Lu
- Department of Integrated Traditional Chinese and Western Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ming Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, Xuhui District, Shanghai, 200030, China.
| |
Collapse
|
11
|
Wu Z, Wen Y, Fan G, He H, Zhou S, Chen L. HEMGN and SLC2A1 might be potential diagnostic biomarkers of steroid-induced osteonecrosis of femoral head: study based on WGCNA and DEGs screening. BMC Musculoskelet Disord 2021; 22:85. [PMID: 33451334 PMCID: PMC7811219 DOI: 10.1186/s12891-021-03958-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 01/05/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Steroid-induced osteonecrosis of the femoral head (SONFH) is a chronic and crippling bone disease. This study aims to reveal novel diagnostic biomarkers of SONFH. METHODS The GSE123568 dataset based on peripheral blood samples from 10 healthy individuals and 30 SONFH patients was used for weighted gene co-expression network analysis (WGCNA) and differentially expressed genes (DEGs) screening. The genes in the module related to SONFH and the DEGs were extracted for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Genes with |gene significance| > 0.7 and |module membership| > 0.8 were selected as hub genes in modules. The DEGs with the degree of connectivity ≥5 were chosen as hub genes in DEGs. Subsequently, the overlapping genes of hub genes in modules and hub genes in DEGs were selected as key genes for SONFH. And then, the key genes were verified in another dataset, and the diagnostic value of key genes was evaluated by receiver operating characteristic (ROC) curve. RESULTS Nine gene co-expression modules were constructed via WGCNA. The brown module with 1258 genes was most significantly correlated with SONFH and was identified as the key module for SONFH. The results of functional enrichment analysis showed that the genes in the key module were mainly enriched in the inflammatory response, apoptotic process and osteoclast differentiation. A total of 91 genes were identified as hub genes in the key module. Besides, 145 DEGs were identified by DEGs screening and 26 genes were identified as hub genes of DEGs. Overlapping genes of hub genes in the key module and hub genes in DEGs, including RHAG, RNF14, HEMGN, and SLC2A1, were further selected as key genes for SONFH. The diagnostic value of these key genes for SONFH was confirmed by ROC curve. The validation results of these key genes in GSE26316 dataset showed that only HEMGN and SLC2A1 were downregulated in the SONFH group, suggesting that they were more likely to be diagnostic biomarkers of SOFNH than RHAG and RNF14. CONCLUSIONS Our study identified that two key genes, HEMGN and SLC2A1, might be potential diagnostic biomarkers of SONFH.
Collapse
Affiliation(s)
- Zhixin Wu
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan City, 430071, Hubei Province, China
| | - Yinxian Wen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan City, 430071, Hubei Province, China.
| | - Guanlan Fan
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Hangyuan He
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan City, 430071, Hubei Province, China
| | - Siqi Zhou
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan City, 430071, Hubei Province, China
| | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan City, 430071, Hubei Province, China.
| |
Collapse
|
12
|
Söderholm S, Cantù C. The WNT/β‐catenin dependent transcription: A tissue‐specific business. WIREs Mech Dis 2020; 13:e1511. [PMID: 33085215 PMCID: PMC9285942 DOI: 10.1002/wsbm.1511] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022]
Abstract
β‐catenin‐mediated Wnt signaling is an ancient cell‐communication pathway in which β‐catenin drives the expression of certain genes as a consequence of the trigger given by extracellular WNT molecules. The events occurring from signal to transcription are evolutionarily conserved, and their final output orchestrates countless processes during embryonic development and tissue homeostasis. Importantly, a dysfunctional Wnt/β‐catenin pathway causes developmental malformations, and its aberrant activation is the root of several types of cancer. A rich literature describes the multitude of nuclear players that cooperate with β‐catenin to generate a transcriptional program. However, a unified theory of how β‐catenin drives target gene expression is still missing. We will discuss two types of β‐catenin interactors: transcription factors that allow β‐catenin to localize at target regions on the DNA, and transcriptional co‐factors that ultimately activate gene expression. In contrast to the presumed universality of β‐catenin's action, the ensemble of available evidence suggests a view in which β‐catenin drives a complex system of responses in different cells and tissues. A malleable armamentarium of players might interact with β‐catenin in order to activate the right “canonical” targets in each tissue, developmental stage, or disease context. Discovering the mechanism by which each tissue‐specific β‐catenin response is executed will be crucial to comprehend how a seemingly universal pathway fosters a wide spectrum of processes during development and homeostasis. Perhaps more importantly, this could ultimately inform us about which are the tumor‐specific components that need to be targeted to dampen the activity of oncogenic β‐catenin. This article is categorized under:Cancer > Molecular and Cellular Physiology Cancer > Genetics/Genomics/Epigenetics Cancer > Stem Cells and Development
Collapse
Affiliation(s)
- Simon Söderholm
- Wallenberg Centre for Molecular Medicine Linköping University Linköping Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Health Science Linköping University Linköping Sweden
| | - Claudio Cantù
- Wallenberg Centre for Molecular Medicine Linköping University Linköping Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Health Science Linköping University Linköping Sweden
| |
Collapse
|
13
|
Li R, Gong J, Xiao C, Zhu S, Hu Z, Liang J, Li X, Yan X, Zhang X, Li D, Liu W, Chong Y, Jie Y. A comprehensive analysis of the MAGE family as prognostic and diagnostic markers for hepatocellular carcinoma. Genomics 2020; 112:5101-5114. [PMID: 32941982 DOI: 10.1016/j.ygeno.2020.09.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/02/2020] [Accepted: 09/09/2020] [Indexed: 12/24/2022]
Abstract
The Melanoma Antigen Gene (MAGE) family is a large, highly conserved group of proteins which was reported to participate in the progression of multiple cancers in humans. However, the function of distinct MAGE genes in hepatocellular carcinoma (HCC) is largely unclear. In this study, we comprehensively evaluated the expression, clinical significance, genetic alteration, interaction network and functional enrichment of MAGEs in HCC. Our research showed that many MAGE genes were dysregulated in HCC. Among them, MAGEA1, MAGEC2, MAGED1, MAGED2, MAGEF1 and MAGEL2 were significantly associated with clinical stage and differentiation of HCC. MAGED1, MAGED2, MAGEA6, MAGEA12, MAGEA10, MAGEB4, MAGEL2 and MAGEC3 significantly correlated with HCC prognosis. Further functional enrichment analysis suggested the dysregulated MAGEs may play important roles in signal transduction. These results indicate that multiple dysregulated MAGEs might play important roles in the development of HCC and can be exploited as useful biomarkers for diagnosis and treatment in HCC.
Collapse
Affiliation(s)
- Rong Li
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, China; Guangdong province engineering laboratory for transplantation medicine, Guangzhou 510630, China
| | - Jiao Gong
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Cuicui Xiao
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Cell-Gene Therapy Translational Medicine Research Center, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Shuguang Zhu
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Zhongying Hu
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, China
| | - Jinliang Liang
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, China
| | - Xuejiao Li
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, China
| | - Xijing Yan
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xijian Zhang
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Danyang Li
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Wei Liu
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, China; Guangdong province engineering laboratory for transplantation medicine, Guangzhou 510630, China.
| | - Yutian Chong
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, China; Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| | - Yusheng Jie
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, China; Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
14
|
Zhang Z, Ji M, Lv Y, Feng Q, Zheng P, Mao Y, Xu Y, He G, Xu J. A signature predicting relapse based on integrated analysis on relapse-associated alternative mRNA splicing in I-III rectal cancer. Genomics 2020; 112:3274-3283. [PMID: 32544549 DOI: 10.1016/j.ygeno.2020.06.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/03/2020] [Accepted: 06/10/2020] [Indexed: 12/22/2022]
Abstract
Researches focusing on the effects of alternative splicing (AS) on relapse of rectal cancer is little and signature based on the AS is blank. In this study, bioinformatic analysis was performed to identify and analyze the relapse-associated ASs, a signature was also constructed. In conclusion, 829 relapse-associated ASs of 676 mRNA were identified. 603 proteins with 2119 interactions were involved in the PPI (protein-protein interactions) network. 43 relapse-associated ASs and 64 SFs (splicing factors) with 160 interactions were indicated. Finally, we built a robust signature to predict the relapse of I-III rectal cancer with a high AUC (0.98) of ROC at 1 year. Based on the ASs involved in the signature, 4 molecular subgroups that could distinguish the relapse rate in diverse groups were identified. Our research provided an overview of relapse-associated ASs in I-III rectal cancer.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Meiling Ji
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Lv
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qingyang Feng
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peng Zheng
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yihao Mao
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuqiu Xu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guodong He
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianmin Xu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
15
|
Wang P, Dai X, Jiang W, Li Y, Wei W. RBR E3 ubiquitin ligases in tumorigenesis. Semin Cancer Biol 2020; 67:131-144. [PMID: 32442483 DOI: 10.1016/j.semcancer.2020.05.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023]
Abstract
RING-in-between-RING (RBR) E3 ligases are one class of E3 ligases that is characterized by the unique RING-HECT hybrid mechanism to function with E2s to transfer ubiquitin to target proteins for degradation. Emerging evidence has demonstrated that RBR E3 ligases play essential roles in neurodegenerative diseases, infection, inflammation and cancer. Accumulated evidence has revealed that RBR E3 ligases exert their biological functions in various types of cancers by modulating the degradation of tumor promoters or suppressors. Hence, we summarize the differential functions of RBR E3 ligases in a variety of human cancers. In general, ARIH1, RNF14, RNF31, RNF144B, RNF216, and RBCK1 exhibit primarily oncogenic roles, whereas ARIH2, PARC and PARK2 mainly have tumor suppressive functions. Moreover, the underlying mechanisms by which different RBR E3 ligases are involved in tumorigenesis and progression are also described. We discuss the further investigation is required to comprehensively understand the critical role of RBR E3 ligases in carcinogenesis. We hope our review can stimulate the researchers to deeper explore the mechanism of RBR E3 ligases-mediated carcinogenesis and to develop useful inhibitors of these oncogenic E3 ligases for cancer therapy.
Collapse
Affiliation(s)
- Peter Wang
- School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China
| | - Xiaoming Dai
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA, USA
| | - Wenxiao Jiang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Yuyun Li
- School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA, USA.
| |
Collapse
|
16
|
Abstract
MODY (Maturity Onset Diabetes of the Young) is a type of diabetes resulting from a pathogenic effect of gene mutations. Up to date, 13 MODY genes are known. Gene HNF1A is one of the most common causes of MODY diabetes (HNF1A-MODY; MODY3). This gene is polymorphic and more than 1200 pathogenic and non-pathogenic HNF1A variants were described in its UTRs, exons and introns. For HNF1A-MODY, not just gene but also phenotype heterogeneity is typical. Although there are some clinical instructions, HNF1A-MODY patients often do not meet every diagnostic criteria or they are still misdiagnosed as type 1 and type 2 diabetics. There is a constant effort to find suitable biomarkers to help with in distinguishing of MODY3 from Type 1 Diabetes (T1D) and Type 2 Diabetes (T2D). DNA sequencing is still necessary for unambiguous confirmation of clinical suspicion of MODY. NGS (Next Generation Sequencing) methods brought discoveries of multiple new gene variants and new instructions for their pathogenicity classification were required. The most actual problem is classification of variants with uncertain significance (VUS) which is a stumbling-block for clinical interpretation. Since MODY is a hereditary disease, DNA analysis of family members is helpful or even crucial. This review is updated summary about HNF1A-MODY genetics, pathophysiology, clinics functional studies and variant classification.
Collapse
|
17
|
The Role of Ubiquitination in Regulating Embryonic Stem Cell Maintenance and Cancer Development. Int J Mol Sci 2019; 20:ijms20112667. [PMID: 31151253 PMCID: PMC6600158 DOI: 10.3390/ijms20112667] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/19/2019] [Accepted: 05/28/2019] [Indexed: 12/18/2022] Open
Abstract
Ubiquitination regulates nearly every aspect of cellular events in eukaryotes. It modifies intracellular proteins with 76-amino acid polypeptide ubiquitin (Ub) and destines them for proteolysis or activity alteration. Ubiquitination is generally achieved by a tri-enzyme machinery involving ubiquitin activating enzymes (E1), ubiquitin conjugating enzymes (E2) and ubiquitin ligases (E3). E1 activates Ub and transfers it to the active cysteine site of E2 via a transesterification reaction. E3 coordinates with E2 to mediate isopeptide bond formation between Ub and substrate protein. The E1-E2-E3 cascade can create diverse types of Ub modifications, hence effecting distinct outcomes on the substrate proteins. Dysregulation of ubiquitination results in severe consequences and human diseases. There include cancers, developmental defects and immune disorders. In this review, we provide an overview of the ubiquitination machinery and discuss the recent progresses in the ubiquitination-mediated regulation of embryonic stem cell maintenance and cancer biology.
Collapse
|
18
|
Jin PY, Zheng ZH, Lu HJ, Yan J, Zheng GH, Zheng YL, Wu DM, Lu J. Roles of β-catenin, TCF-4, and survivin in nasopharyngeal carcinoma: correlation with clinicopathological features and prognostic significance. Cancer Cell Int 2019; 19:48. [PMID: 30867651 PMCID: PMC6396483 DOI: 10.1186/s12935-019-0764-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/21/2019] [Indexed: 12/24/2022] Open
Abstract
Background Nasopharyngeal carcinoma (NPC) is a common malignant tumor of the head and neck region with poorly understood progression and prognosis. The present study aims at exploring whether the expression of β-catenin, TCF-4, and survivin affects clinicopathological features and prognostic significance in NPC. Methods We enrolled 164 patients with NPC and 70 patients with chronic nasopharyngitis (CNP) in this study. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC) were conducted to evaluate the expression of β-catenin, TCF-4, and survivin. Spearman’s rank correlation analysis and Pearson correlation analysis were used to measure the correlation of β-catenin, TCF-4, and survivin. Risk factors for prognosis and survival conditions of NPC patients were analyzed by Cox proportional hazards model and Kaplan–Meier curves. Results The results obtained revealed that mRNA and protein expression of β-catenin, TCF-4, and survivin was higher in NPC tissues than in CNP tissues. Positive correlations amongst β-catenin, TCF-4, and survivin were identified by Spearman’s rank correlation analysis and Pearson correlation analysis. There was a significant correlation in expression of β-catenin, TCF-4, and survivin with EBV DNA, EBV-VCA-IgA, EBV-EA-IgA, T stage, N stage, and clinicopathological stages. Lower overall survival (OS), distant metastasis-free survival (DMFS), local recurrence-free survival (LRFS), and disease-free survival (DFS) rates were detected in NPC patients with positive expression of β-catenin, TCF-4, and survivin, in contrast to those with negative expression. Cox proportional hazards model demonstrated that β-catenin, TCF-4, and survivin protein positive expression were independent risk factors for OS and DFS of NPC prognosis; there was an evident correlation between clinicopathological stages, TCF-4, and EBV-EA-IgA and OS, DMFS, LRFS, and DFS of NPC. Conclusions The aforementioned results indicate that β-catenin, TCF-4, and survivin proteins are highly expressed in NPC, which can be used as factors to predict the malignancy of NPC. In addition, positive expression of β-catenin, TCF-4, and survivin are potential risk factors that lead to an unfavorable prognosis of OS and DFS in NPC patients.
Collapse
Affiliation(s)
- Pei-Ying Jin
- 1Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan District, Xuzhou, 221116 Jiangsu People's Republic of China
| | - Zi-Hui Zheng
- 2State Key Laboratory Cultivation Base For TCM Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, 210023 People's Republic of China
| | - Hong-Jie Lu
- 1Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan District, Xuzhou, 221116 Jiangsu People's Republic of China
| | - Jing Yan
- 3Emergency Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221009 People's Republic of China
| | - Gui-Hong Zheng
- 1Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan District, Xuzhou, 221116 Jiangsu People's Republic of China
| | - Yuan-Lin Zheng
- 1Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan District, Xuzhou, 221116 Jiangsu People's Republic of China
| | - Dong-Mei Wu
- 1Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan District, Xuzhou, 221116 Jiangsu People's Republic of China
| | - Jun Lu
- 1Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan District, Xuzhou, 221116 Jiangsu People's Republic of China
| |
Collapse
|
19
|
Sierra RA, Hoverter NP, Ramirez RN, Vuong LM, Mortazavi A, Merrill BJ, Waterman ML, Donovan PJ. TCF7L1 suppresses primitive streak gene expression to support human embryonic stem cell pluripotency. Development 2018; 145:dev.161075. [PMID: 29361574 DOI: 10.1242/dev.161075] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/04/2018] [Indexed: 12/20/2022]
Abstract
Human embryonic stem cells (hESCs) are exquisitely sensitive to WNT ligands, which rapidly cause differentiation. Therefore, hESC self-renewal requires robust mechanisms to keep the cells in a WNT inactive but responsive state. How they achieve this is largely unknown. We explored the role of transcriptional regulators of WNT signaling, the TCF/LEFs. As in mouse ESCs, TCF7L1 is the predominant family member expressed in hESCs. Genome-wide, it binds a gene cohort involved in primitive streak formation at gastrulation, including NODAL, BMP4 and WNT3 Comparing TCF7L1-bound sites with those bound by the WNT signaling effector β-catenin indicates that TCF7L1 acts largely on the WNT signaling pathway. TCF7L1 overlaps less with the pluripotency regulators OCT4 and NANOG than in mouse ESCs. Gain- and loss-of-function studies indicate that TCF7L1 suppresses gene cohorts expressed in the primitive streak. Interestingly, we find that BMP4, another driver of hESC differentiation, downregulates TCF7L1, providing a mechanism of BMP and WNT pathway intersection. Together, our studies indicate that TCF7L1 plays a major role in maintaining hESC pluripotency, which has implications for human development during gastrulation.
Collapse
Affiliation(s)
- Robert A Sierra
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Nathan P Hoverter
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Ricardo N Ramirez
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Linh M Vuong
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Bradley J Merrill
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Marian L Waterman
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697, USA
| | - Peter J Donovan
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA .,Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
20
|
RNF4-Dependent Oncogene Activation by Protein Stabilization. Cell Rep 2018; 16:3388-3400. [PMID: 27653698 PMCID: PMC5125238 DOI: 10.1016/j.celrep.2016.08.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 06/27/2016] [Accepted: 08/05/2016] [Indexed: 11/28/2022] Open
Abstract
Ubiquitylation regulates signaling pathways critical for cancer development and, in many cases, targets proteins for degradation. Here, we report that ubiquitylation by RNF4 stabilizes otherwise short-lived oncogenic transcription factors, including β-catenin, Myc, c-Jun, and the Notch intracellular-domain (N-ICD) protein. RNF4 enhances the transcriptional activity of these factors, as well as Wnt- and Notch-dependent gene expression. While RNF4 is a SUMO-targeted ubiquitin ligase, protein stabilization requires the substrate’s phosphorylation, rather than SUMOylation, and binding to RNF4’s arginine-rich motif domain. Stabilization also involves generation of unusual polyubiquitin chains and docking of RNF4 to chromatin. Biologically, RNF4 enhances the tumor phenotype and is essential for cancer cell survival. High levels of RNF4 mRNA correlate with poor survival of a subgroup of breast cancer patients, and RNF4 protein levels are elevated in 30% of human colon adenocarcinomas. Thus, RNF4-dependent ubiquitylation translates transient phosphorylation signal(s) into long-term protein stabilization, resulting in enhanced oncoprotein activation.
Collapse
|
21
|
Functional significance and therapeutic implication of ring-type E3 ligases in colorectal cancer. Oncogene 2017; 37:148-159. [PMID: 28925398 PMCID: PMC5770599 DOI: 10.1038/onc.2017.313] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 06/29/2017] [Accepted: 07/31/2017] [Indexed: 02/07/2023]
Abstract
Accumulative studies revealed that E3 ubiquitin ligases have important roles in colorectal carcinogenesis. The pathogenic mechanisms of colorectal cancer (CRC) initiation and progression are complex and heterogeneous, involving somatic mutations, abnormal gene fusion, deletion or amplification and epigenetic alteration, which may cause aberrant expression or altered function of E3 ligases in CRC. Defects of E3 ligases have been reported to be involved in the molecular etiology and pathogenesis of CRC. The aberrant expressed E3 ligases can function as either oncogenes or tumor suppressors depending on ubiquiting target substrates in CRC. Recently, considerable progress has been made in our understanding of the potential roles of E3 ligase-mediated ubiquitylation in colorectal carcinogenesis. There are mainly two subtypes of E3 ubiquitin ligases in humans, as defined by the presence of either a HECT domain or a RING finger domain on the basis of structural similitude. Most cancer-associated E3 ligases participate in regulating the cell cycle, apoptosis, gene transcription, cell signaling and DNA repair, the critical parts of CRC tumorigenesis. In this review, we have provided a comprehensive summary of abnormally expressed E3 ligases and their related pivotal mechanistic effects in CRC. In particular, we have highlighted the function of RING-type E3 ubiquitin enzymes in modulating cancer signaling pathways, immunity and tumor microenvironment in CRC development and progression; their mechanism(s) of action in CRC involving both ubiquitylation-dependent and ubiquitylation-independent effects; and the potential of RING E3 ligases as molecular biomarkers for predicting patient prognosis and as therapeutic targets in CRC. A better understanding of E3 ligase-mediated substrates' ubiquitylation involved in the development of CRC will provide new insights into the pathophysiology mechanisms of CRC, and unravel novel prognostic markers and therapeutic strategies for CRC.
Collapse
|
22
|
Abstract
The RBR (RING-BetweenRING-RING) or TRIAD [two RING fingers and a DRIL (double RING finger linked)] E3 ubiquitin ligases comprise a group of 12 complex multidomain enzymes. This unique family of E3 ligases includes parkin, whose dysfunction is linked to the pathogenesis of early-onset Parkinson's disease, and HOIP (HOIL-1-interacting protein) and HOIL-1 (haem-oxidized IRP2 ubiquitin ligase 1), members of the LUBAC (linear ubiquitin chain assembly complex). The RBR E3 ligases share common features with both the larger RING and HECT (homologous with E6-associated protein C-terminus) E3 ligase families, directly catalysing ubiquitin transfer from an intrinsic catalytic cysteine housed in the C-terminal domain, as well as recruiting thioester-bound E2 enzymes via a RING domain. Recent three-dimensional structures and biochemical findings of the RBRs have revealed novel protein domain folds not previously envisioned and some surprising modes of regulation that have raised many questions. This has required renaming two of the domains in the RBR E3 ligases to more accurately reflect their structures and functions: the C-terminal Rcat (required-for-catalysis) domain, essential for catalytic activity, and a central BRcat (benign-catalytic) domain that adopts the same fold as the Rcat, but lacks a catalytic cysteine residue and ubiquitination activity. The present review discusses how three-dimensional structures of RBR (RING1-BRcat-Rcat) E3 ligases have provided new insights into our understanding of the biochemical mechanisms of these important enzymes in ubiquitin biology.
Collapse
|
23
|
Chodaparambil JV, Pate KT, Hepler MRD, Tsai BP, Muthurajan UM, Luger K, Waterman ML, Weis WI. Molecular functions of the TLE tetramerization domain in Wnt target gene repression. EMBO J 2014; 33:719-31. [PMID: 24596249 DOI: 10.1002/embj.201387188] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Wnt signaling activates target genes by promoting association of the co-activator β-catenin with TCF/LEF transcription factors. In the absence of β-catenin, target genes are silenced by TCF-mediated recruitment of TLE/Groucho proteins, but the molecular basis for TLE/TCF-dependent repression is unclear. We describe the unusual three-dimensional structure of the N-terminal Q domain of TLE1 that mediates tetramerization and binds to TCFs. We find that differences in repression potential of TCF/LEFs correlates with their affinities for TLE-Q, rather than direct competition between β-catenin and TLE for TCFs as part of an activation-repression switch. Structure-based mutation of the TLE tetramer interface shows that dimers cannot mediate repression, even though they bind to TCFs with the same affinity as tetramers. Furthermore, the TLE Q tetramer, not the dimer, binds to chromatin, specifically to K20 methylated histone H4 tails, suggesting that the TCF/TLE tetramer complex promotes structural transitions of chromatin to mediate repression.
Collapse
Affiliation(s)
- Jayanth V Chodaparambil
- Departments of Structural Biology and Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Ingham AB, Osborne SA, Menzies M, Briscoe S, Chen W, Kongsuwan K, Reverter A, Jeanes A, Dalrymple BP, Wijffels G, Seymour R, Hudson NJ. RNF14 is a regulator of mitochondrial and immune function in muscle. BMC SYSTEMS BIOLOGY 2014; 8:10. [PMID: 24472305 PMCID: PMC3906743 DOI: 10.1186/1752-0509-8-10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 01/21/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND Muscle development and remodelling, mitochondrial physiology and inflammation are thought to be inter-related and to have implications for metabolism in both health and disease. However, our understanding of their molecular control is incomplete. RESULTS In this study we have confirmed that the ring finger 14 protein (RNF14), a poorly understood transcriptional regulator, influences the expression of both mitochondrial and immune-related genes. The prediction was based on a combination of network connectivity and differential connectivity in cattle (a non-model organism) and mice data sets, with a focus on skeletal muscle. They assigned similar probability to mammalian RNF14 playing a regulatory role in mitochondrial and immune gene expression. To try and resolve this apparent ambiguity we performed a genome-wide microarray expression analysis on mouse C2C12 myoblasts transiently transfected with two Rnf14 transcript variants that encode 2 naturally occurring but different RNF14 protein isoforms. The effect of both constructs was significantly different to the control samples (untransfected cells and cells transfected with an empty vector). Cluster analyses revealed that transfection with the two Rnf14 constructs yielded discrete expression signatures from each other, but in both cases a substantial set of genes annotated as encoding proteins related to immune function were perturbed. These included cytokines and interferon regulatory factors. Additionally, transfection of the longer transcript variant 1 coordinately increased the expression of 12 (of the total 13) mitochondrial proteins encoded by the mitochondrial genome, 3 of which were significant in isolated pair-wise comparisons (Mt-coxII, Mt-nd2 and mt-nd4l). This apparent additional mitochondrial function may be attributable to the RWD protein domain that is present only in the longer RNF14 isoform. CONCLUSIONS RNF14 influences the expression of both mitochondrial and immune related genes in a skeletal muscle context, and has likely implications for the inter-relationship between bioenergetic status and inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Nicholas J Hudson
- CSIRO Animal, Food and Health Sciences, 306 Carmody Road, St, Lucia, Queensland, Australia.
| |
Collapse
|
25
|
|