1
|
Abstract
Bats are infamous reservoirs of deadly human viruses. While retroviruses, such as the human immunodeficiency virus (HIV), are among the most significant of virus families that have jumped from animals into humans, whether bat retroviruses have the potential to infect and cause disease in humans remains unknown. Recent reports of retroviruses circulating in bat populations builds on two decades of research describing the fossil records of retroviral sequences in bat genomes and of viral metagenomes extracted from bat samples. The impact of the global COVID-19 pandemic demands that we pay closer attention to viruses hosted by bats and their potential as a zoonotic threat. Here we review current knowledge of bat retroviruses and explore the question of whether they represent a threat to humans.
Collapse
Affiliation(s)
- Joshua A. Hayward
- Health Security Program, Life Sciences Discipline, Burnet Institute, Melbourne, VIC, Australia
- Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Gilda Tachedjian
- Health Security Program, Life Sciences Discipline, Burnet Institute, Melbourne, VIC, Australia
- Department of Microbiology, Monash University, Clayton, VIC, Australia
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Presence of complete murine viral genome sequences in patient-derived xenografts. Nat Commun 2021; 12:2031. [PMID: 33795676 PMCID: PMC8017013 DOI: 10.1038/s41467-021-22200-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
Patient-derived xenografts are crucial for drug development but their use is challenged by issues such as murine viral infection. We evaluate the scope of viral infection and its impact on patient-derived xenografts by taking an unbiased data-driven approach to analyze unmapped RNA-Seq reads from 184 experiments. We find and experimentally validate the extensive presence of murine viral sequence reads covering entire viral genomes in patient-derived xenografts. The existence of viral sequences inside tumor cells is further confirmed by single cell sequencing data. Extensive chimeric reads containing both viral and human sequences are also observed. Furthermore, we find significantly changed expression levels of many cancer-, immune-, and drug metabolism-related genes in samples with high virus load. Our analyses indicate a need to carefully evaluate the impact of viral infection on patient-derived xenografts for drug development. They also point to a need for attention to quality control of patient-derived xenograft experiments.
Collapse
|
3
|
Lawson JS, Glenn WK. Evidence for a causal role by human papillomaviruses in prostate cancer - a systematic review. Infect Agent Cancer 2020; 15:41. [PMID: 32684946 PMCID: PMC7359253 DOI: 10.1186/s13027-020-00305-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/25/2020] [Indexed: 12/17/2022] Open
Abstract
It is hypothesised that high risk for cancer human papillomaviruses (HPVs) have a causal role in prostate cancer. In 26 case control studies, high risk HPVs have been identified in benign and prostate cancers. High risk HPVs were identified in 325 (22.6%) of 1284 prostate cancers and in 113 (8.6%) of 1313 normal or benign prostate controls (p = 0.001). High risk HPVs of the same type have been identified in both normal and benign prostate tissues prior to the development of HPV positive prostate cancer. High risk HPVs can be associated with inflammatory prostatitis leading to benign prostate hyperplasia and later prostate cancer. Normal human prostate epithelial cells can be immortalised by experimental exposure to HPVs. HPVs are probably sexually transmitted. The role of HPVs in prostate cancer is complex and differs from HPVs associated cervical cancer. HPV infections may initiate prostate oncogenesis directly and influence oncogenesis indirectly via APOBEC enzymes. HPVs may collaborate with other pathogens in prostate oncogenesis. Although HPVs are only one of many pathogens that have been identified in prostate cancer, they are the only infectious pathogen which can be prevented by vaccination. A causal role for HPVs in prostate cancer is highly likely.
Collapse
Affiliation(s)
- James S Lawson
- School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, Australia
| | - Wendy K Glenn
- School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, Australia
| |
Collapse
|
4
|
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related deaths in both the USA and the world. Recent research has demonstrated the involvement of the gut microbiota in CRC development and progression. Microbial biomarkers of disease have focused primarily on the bacterial component of the microbiome; however, the viral portion of the microbiome, consisting of both bacteriophages and eukaryotic viruses, together known as the virome, has been lesser studied. Here we review the recent advancements in high-throughput sequencing (HTS) technologies and bioinformatics, which have enabled scientists to better understand how viruses might influence the development of colorectal cancer. We discuss the contemporary findings revealing modulations in the virome and their correlation with CRC development and progression. While a variety of challenges still face viral HTS detection in clinical specimens, we consider herein numerous next steps for future basic and clinical research. Clinicians need to move away from a single infectious agent model for disease etiology by grasping new, more encompassing etiological paradigms, in which communities of various microbial components interact with each other and the host. The reporting and indexing of patient health information, socioeconomic data, and other relevant metadata will enable identification of predictive variables and covariates of viral presence and CRC development. Altogether, the virome has a more profound role in carcinogenesis and cancer progression than once thought, and viruses, specific for either human cells or bacteria, are clinically relevant in understanding CRC pathology, patient prognosis, and treatment development.
Collapse
|
5
|
Tracey AT, Murray KS, Coleman JA, Kim K. Patient-Derived Xenograft Models in Urological Malignancies: Urothelial Cell Carcinoma and Renal Cell Carcinoma. Cancers (Basel) 2020; 12:cancers12020439. [PMID: 32069881 PMCID: PMC7072311 DOI: 10.3390/cancers12020439] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 12/17/2022] Open
Abstract
The engraftment of human tumor tissues into immunodeficient host mice to generate patient-derived xenograft (PDX) models has become increasingly utilized for many types of cancers. By capturing the unique genomic and molecular properties of the parental tumor, PDX models enable analysis of patient-specific clinical responses. PDX models are an important platform to address the contribution of inter-tumoral heterogeneity to therapeutic sensitivity, tumor evolution, and the mechanisms of treatment resistance. With the increasingly important role played by targeted therapies in urological malignancies, the establishment of representative PDX models can contribute to improved facilitation and adoption of precision medicine. In this review of the evolving role of the PDX in urothelial cancer and kidney cancer, we discuss the essential elements of successful graft development, effective translational application, and future directions for clinical models.
Collapse
Affiliation(s)
- Andrew T. Tracey
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (A.T.T.); (J.A.C.)
| | - Katie S. Murray
- Department of Surgery, Division of Urology, University of Missouri, Columbia, MO 65211, USA;
| | - Jonathan A. Coleman
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (A.T.T.); (J.A.C.)
| | - Kwanghee Kim
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Correspondence: ; Tel.: +1-646-422-4432
| |
Collapse
|
6
|
Janowski AB, Wang D. Infection and Propagation of Astrovirus VA1 in Cell Culture. CURRENT PROTOCOLS IN MICROBIOLOGY 2019; 52:e73. [PMID: 30444308 PMCID: PMC6340763 DOI: 10.1002/cpmc.73] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Astrovirus VA1/HMO-C (VA1) is the representative genotype of mamastrovirus 9, a species of the single-stranded, positive-sense RNA viral family, Astroviridae. Astroviruses have been traditionally considered pathogens of the gastrointestinal tract but they have been recently associated with neurological diseases in humans, cattle, mink, sheep, and pigs. VA1 is the astrovirus genotype most commonly identified from human cases of meningoencephalitis and has been recently propagated in cell culture. VA1 can now be used as a model system to study pathogenesis of the neurological diseases associated with astrovirus infection. In this article, we describe two fundamental assays to quantify replication and propagation of VA1, a quantitative reverse transcription-PCR (qRT-PCR) to measure viral RNA and a 50% tissue culture infectious dose (TCID50 ) assay to measure infectious viral particles. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Andrew B Janowski
- Washington University School of Medicine, Campus Box 8230, 660 S. Euclid Ave, St. Louis, MO 63110 USA., Phone: 314-286-1124, Fax: 314-362-1232,
| | - David Wang
- Washington University School of Medicine, Campus Box 8230, 660 S. Euclid Ave, St. Louis, MO 63110 USA., Phone: 314-286-1124, Fax: 314-362-1232,
| |
Collapse
|
7
|
Anderson M, Kashanchi F, Jacobson S. Role of Exosomes in Human Retroviral Mediated Disorders. J Neuroimmune Pharmacol 2018; 13:279-291. [PMID: 29656370 DOI: 10.1007/s11481-018-9784-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/15/2018] [Indexed: 02/07/2023]
Abstract
Retroviruses comprise an ancient and varied group of viruses with the unique ability to integrate DNA from an RNA transcript into the genome, a subset of which are able to integrate in humans. The timing of these integrations during human history has dictated whether these viruses have remained exogenous and given rise to various human diseases or have become inseparable from the host genome (endogenous retroviruses). Given the ability of retroviruses to integrate into the host and subsequently co-opt host cellular process for viral propagation, retroviruses have been shown to be closely associated with several cellular processes including exosome formation. Exosomes are 30-150 nm unilamellar extracellular vesicles that originate from intraluminal vesicles (ILVs) that form in the endosomal compartment. Exosomes have been shown to be important in intercellular communication and immune cell function. Almost every cell type studied has been shown to produce these types of vesicles, with the cell type dictating the contents, which include proteins, mRNA, and miRNAs. Importantly, recent evidence has shown that infection by viruses, including retroviruses, alter the contents and subsequent function of produced exosomes. In this review, we will discuss the important retroviruses associated with human health and disease. Furthermore, we will delve into the impact of exosome formation and manipulation by integrated retroviruses on human health, survival, and human retroviral disease pathogenesis.
Collapse
Affiliation(s)
- Monique Anderson
- National Institute of Neurological Disorders and Stroke, Neuroimmunology Branch, Viral Immunology Section, National Institutes of Health, Bethesda, MD, 20892, USA. .,Department of Pathology, Molecular and Cellular Basis of Disease Graduate Program, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA.
| | - Fatah Kashanchi
- National Center for Biodefense and Infectious Disease, Laboratory of Molecular Virology, George Mason University, Manassas, VA, 20110, USA
| | - Steven Jacobson
- National Institute of Neurological Disorders and Stroke, Neuroimmunology Branch, Viral Immunology Section, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
8
|
Baig FA, Mirza T, Hamid A, Syed S, Jamal Q. Ductal variant of prostate adenocarcinoma harbor Xenotropic murine leukemia virus related virus (XMRV) infection: a novel finding in subtype of prostate cancer. Turk J Urol 2017; 43:268-272. [PMID: 28861296 DOI: 10.5152/tud.2017.85451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 02/21/2017] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Xenotropic murine leukemia virus related virus (XMRV), is the first gammaretrovirus identified a decade ago, in human tissue bearing adenocarcinoma of prostate, followed by several researches documenting little or no prevalence of XMRV in prostate cancer samples. However, the status of XMRV within subtype of prostate adenocarcinoma has not been investigated yet. In this study, we investigated the relationship between XMRV and broad spectrum morphological entities of prostate adenocarcinoma, including acinar, ductal and other rare subtypes. MATERIAL AND METHODS The prevalence of XMRV DNA in different histological subtypes of prostate adenocarcinoma was examined after characterizing the tumors into groups, using formalin-fixed, paraffin-embedded tissue samples from newly diagnosed prostate adenocarcinomas and archival prostate cancer tissue from our XMRV case control analysis. Broad-spectrum XMRV DNA amplification was performed by end-point polymerase chain reaction, using commercially available primer set. RESULTS The study included 100 patients with prostate cancer. XMRV DNA was detected in 4 of 8 (50%) ductal adenocarcinomas, exhibiting papillary and cribriform histological features. XMRV DNA was not detected in any other variant of adenocarcinoma including acinar (0/91) and mucinous carcinomas (0/1). Majority of XMRV positive cases were biologically aggressive and present cancer at an early age upon diagnosis. CONCLUSION Ductal adenocarcinomas demonstrate a significant association of XMRV DNA while other histological variants of prostate adenocarcinoma seem unrelated to XMRV infection.
Collapse
Affiliation(s)
- Faraz Ahmed Baig
- Department of Pathology, College of Medicine, Ziauddin University, Karachi, Pakistan
| | - Talat Mirza
- Department of Pathology, Dow International Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | - Amna Hamid
- Department of Nephrology, Kidney Center - Postgraduate Training Institute, Karachi, Pakistan
| | - Serajuddaula Syed
- Department of Pathology, College of Medicine, Ziauddin University, Karachi, Pakistan
| | - Qamar Jamal
- Department of Pathology, College of Medicine, Ziauddin University, Karachi, Pakistan
| |
Collapse
|
9
|
The Human Virome: Implications for Clinical Practice in Transplantation Medicine. J Clin Microbiol 2017; 55:2884-2893. [PMID: 28724557 DOI: 10.1128/jcm.00489-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Advances in DNA sequencing technology have provided an unprecedented opportunity to study the human virome. Transplant recipients and other immunocompromised hosts are at particular risk for developing virus-related pathology; thus, the impact of the virome on health and disease may be even more relevant in this population. Here, we discuss technical considerations in studying the human virome, the current literature on the virome in transplant recipients, and near-future applications of sequence-based findings that can further our understanding of viruses in transplantation medicine.
Collapse
|
10
|
Imada K, Shiota M, Kuroiwa K, Sugimoto M, Abe T, Kohashi K, Yokomizo A, Eto M, Naito S, Oda Y. FOXO3a Expression Regulated by ERK Signaling is Inversely Correlated With Y-Box Binding Protein-1 Expression in Prostate Cancer. Prostate 2017; 77:145-153. [PMID: 27699813 DOI: 10.1002/pros.23254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 08/29/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND FOXO3a is a member of the forkhead O transcription factors. FOXO3a induces the factors that contribute to cell cycle arrest and is considered a tumor suppressor in several malignant tumors. Y-box binding protein-1 (YB-1) is a multifunctional protein whose high expression is correlated with poor prognoses in various malignant tumors. In the current study, we investigated the relationship between FOXO3a and YB-1 to validate their functional roles in prostate cancer. METHODS Western blotting and cytotoxicity assays were conducted in prostate cancer cells, LNCaP, and 22Rv1 cells. We also evaluated the protein expressions of FOXO3a and YB-1 in human prostate cancer tissues, using radical prostatectomy specimens. Then, we investigated the correlations between protein expressions and clinicopathologic parameters. RESULTS We found that both FOXO3a and YB-1 proteins were phosphorylated by ERK signaling, resulting in FOXO3a inactivation and YB-1 activation in LNCaP and 22Rv1 cells. Inversely, inhibition of MEK or treatment with metformin activated FOXO3a through inactivation of ERK signaling and suppressed the viability of LNCaP and 22Rv1 cells in a dose-dependent manner. In immunohistochemical analysis, FOXO3a nuclear expression was inversely correlated with YB-1 nuclear expression (P < 0.0001). Furthermore, high FOXO3a nuclear expression was inversely correlated with a higher Gleason grade (P < 0.0001) and higher preoperative PSA (P = 0.0437). CONCLUSIONS These results showed that in prostate cancer, FOXO3a, and YB-1 play inverse reciprocal roles as a tumor-suppressor gene and oncogene, respectively, through their master regulator ERK. Prostate 77:145-153, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kenjiro Imada
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kentaro Kuroiwa
- Department of Urology, Miyazaki Prefectural Miyazaki Hospital, Miyazaki, Japan
| | - Masaaki Sugimoto
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuro Abe
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenichi Kohashi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akira Yokomizo
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Seiji Naito
- Division of Urology, Harasanshin General Hospital, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
11
|
Transspecies Transmission of Gammaretroviruses and the Origin of the Gibbon Ape Leukaemia Virus (GaLV) and the Koala Retrovirus (KoRV). Viruses 2016; 8:v8120336. [PMID: 27999419 PMCID: PMC5192397 DOI: 10.3390/v8120336] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/07/2016] [Accepted: 12/14/2016] [Indexed: 01/05/2023] Open
Abstract
Transspecies transmission of retroviruses is a frequent event, and the human immunodeficiency virus-1 (HIV-1) is a well-known example. The gibbon ape leukaemia virus (GaLV) and koala retrovirus (KoRV), two gammaretroviruses, are also the result of a transspecies transmission, however from a still unknown host. Related retroviruses have been found in Southeast Asian mice although the sequence similarity was limited. Viruses with a higher sequence homology were isolated from Melomys burtoni, the Australian and Indonesian grassland melomys. However, only the habitats of the koalas and the grassland melomys in Australia are overlapping, indicating that the melomys virus may not be the precursor of the GaLV. Viruses closely related to GaLV/KoRV were also detected in bats. Therefore, given the fact that the habitats of the gibbons in Thailand and the koalas in Australia are far away, and that bats are able to fly over long distances, the hypothesis that retroviruses of bats are the origin of GaLV and KoRV deserves consideration. Analysis of previous transspecies transmissions of retroviruses may help to evaluate the potential of transmission of related retroviruses in the future, e.g., that of porcine endogenous retroviruses (PERVs) during xenotransplantation using pig cells, tissues or organs.
Collapse
|
12
|
Nitta T, Ha D, Galvez F, Miyazawa T, Fan H. Human and murine APOBEC3s restrict replication of koala retrovirus by different mechanisms. Retrovirology 2015; 12:68. [PMID: 26253512 PMCID: PMC4528783 DOI: 10.1186/s12977-015-0193-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 07/23/2015] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Koala retrovirus (KoRV) is an endogenous and exogenous retrovirus of koalas that may cause lymphoma. As for many other gammaretroviruses, the KoRV genome can potentially encode an alternate form of Gag protein, glyco-gag. RESULTS In this study, a convenient assay for assessing KoRV infectivity in vitro was employed: the use of DERSE cells (initially developed to search for infectious xenotropic murine leukemia-like viruses). Using infection of DERSE and other human cell lines (HEK293T), no evidence for expression of glyco-gag by KoRV was found, either in expression of glyco-gag protein or changes in infectivity when the putative glyco-gag reading frame was mutated. Since glyco-gag mediates resistance of Moloney murine leukemia virus to the restriction factor APOBEC3, the sensitivity of KoRV (wt or putatively mutant for glyco-gag) to restriction by murine (mA3) or human APOBEC3s was investigated. Both mA3 and hA3G potently inhibited KoRV infectivity. Interestingly, hA3G restriction was accompanied by extensive G → A hypermutation during reverse transcription while mA3 restriction was not. Glyco-gag status did not affect the results. CONCLUSIONS These results indicate that the mechanisms of APOBEC3 restriction of KoRV by hA3G and mA3 differ (deamination dependent vs. independent) and glyco-gag does not play a role in the restriction.
Collapse
Affiliation(s)
- Takayuki Nitta
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, 92697-3905, USA.
- Cancer Research Institute, University of California, Irvine, Irvine, CA, 92697-3905, USA.
- Department of Biology, Savannah State University, 3219 College St, Savannah, GA, 31404-5254, USA.
| | - Dat Ha
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, 92697-3905, USA.
- Cancer Research Institute, University of California, Irvine, Irvine, CA, 92697-3905, USA.
| | - Felipe Galvez
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, 92697-3905, USA.
- Cancer Research Institute, University of California, Irvine, Irvine, CA, 92697-3905, USA.
| | - Takayuki Miyazawa
- Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Hung Fan
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, 92697-3905, USA.
- Cancer Research Institute, University of California, Irvine, Irvine, CA, 92697-3905, USA.
| |
Collapse
|
13
|
Shimode S, Nakagawa S, Miyazawa T. Multiple invasions of an infectious retrovirus in cat genomes. Sci Rep 2015; 5:8164. [PMID: 25641657 PMCID: PMC4313119 DOI: 10.1038/srep08164] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/07/2015] [Indexed: 01/08/2023] Open
Abstract
Endogenous retroviruses (ERVs) are remnants of ancient retroviral infections of host germ-line cells. While most ERVs are defective, some are active and express viral proteins. The RD-114 virus is a replication-competent feline ERV, and several feline cell lines produce infectious RD-114 viral particles. All domestic cats are considered to have an ERV locus encoding a replication-competent RD-114 virus in their genomes; however, the locus has not been identified. In this study, we investigated RD-114 virus-related proviral loci in genomes of domestic cats, and found that none were capable of producing infectious viruses. We also found that all domestic cats have an RD-114 virus-related sequence on chromosome C2, termed RDRS C2a, but populations of the other RDRSs are different depending on the regions where cats live or breed. Our results indicate that RDRS C2a, the oldest RD-114-related provirus, entered the host genome before an ancestor of domestic cats started diverging and the other new RDRSs might have integrated into migrating cats in Europe. We also show that infectious RD-114 virus can be resurrected by the recombination between two non-infectious RDRSs. From these data, we conclude that cats do not harbor infectious RD-114 viral loci in their genomes and RD-114-related viruses invaded cat genomes multiple times.
Collapse
Affiliation(s)
- Sayumi Shimode
- Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8501, Japan
| | - So Nakagawa
- Department of Molecular Life Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Takayuki Miyazawa
- Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|