1
|
Yang X, Qin S, Liu X, Zhang N, Chen J, Jin M, Liu F, Wang Y, Guo J, Shi H, Wang C, Chen Y. Meta-Viromic Sequencing Reveals Virome Characteristics of Mosquitoes and Culicoides on Zhoushan Island, China. Microbiol Spectr 2023; 11:e0268822. [PMID: 36651764 PMCID: PMC9927462 DOI: 10.1128/spectrum.02688-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Mosquitoes and biting Culicoides species are arbovirus vectors. Effective virome profile surveillance is essential for the prevention and control of insect-borne diseases. From June to September 2021, we collected eight species of female mosquito and Culicoides on Zhoushan Island, China, and used meta-viromic sequencing to analyze their virome compositions and characteristics. The classified virus reads were distributed in 191 genera in 66 families. The virus sequences in mosquitoes with the largest proportions were Iflaviridae (30.03%), Phasmaviridae (23.09%), Xinmoviridae (21.82%), Flaviviridae (13.44%), and Rhabdoviridae (8.40%). Single-strand RNA+ viruses formed the largest proportions of viruses in all samples. Blood meals indicated that blood-sucking mosquito hosts were mainly chicken, duck, pig, and human, broadly consistent with the habitats where the mosquitoes were collected. Novel viruses of the Orthobunyavirus, Narnavirus, and Iflavirus genera were found in Culicoides by de-novo assembly. The viruses with vertebrate hosts carried by mosquitoes and Culicoides also varied widely. The analysis of unclassified viruses and deep-learning analysis of the "dark matter" in the meta-viromic sequencing data revealed the presence of a large number of unknown viruses. IMPORTANCE The monitoring of the viromes of mosquitoes and Culicoides, widely distributed arbovirus transmission vectors, is crucial to evaluate the risk of infectious disease transmission. In this study, the compositions of the viromes of mosquitoes and Culicoides on Zhoushan Island varied widely and were related mainly to the host species, with different host species having different core viromes. and many unknown sequences in the Culicoides viromes remain to be annotated, suggesting the presence of a large number of unknown viruses.
Collapse
Affiliation(s)
- Xiaojing Yang
- School of Public Health, China Medical University, Shenyang, Liaoning Province, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Shiyu Qin
- College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Xiong Liu
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Na Zhang
- School of Public Health, China Medical University, Shenyang, Liaoning Province, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Jiali Chen
- School of Public Health, China Medical University, Shenyang, Liaoning Province, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Meiling Jin
- School of Public Health, China Medical University, Shenyang, Liaoning Province, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Fangni Liu
- School of Public Health, China Medical University, Shenyang, Liaoning Province, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Yong Wang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Jinpeng Guo
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Hua Shi
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Changjun Wang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Yong Chen
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
2
|
Zhang M, Huang JF, Kang M, Liu XC, Lin HY, Zhao ZY, Ye GQ, Lin SN, Rui J, Xu JW, Zhu YZ, Wang Y, Yang M, Tang SX, Cheng Q, Chen TM. Epidemiological Characteristics and the Dynamic Transmission Model of Dengue Fever in Zhanjiang City, Guangdong Province in 2018. Trop Med Infect Dis 2022; 7:tropicalmed7090209. [PMID: 36136620 PMCID: PMC9501079 DOI: 10.3390/tropicalmed7090209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Background: With the progress of urbanization, the mobility of people has gradually increased, which has led to the further spread of dengue fever. This study evaluated the transmissibility of dengue fever within districts and between different districts in Zhanjiang City to provide corresponding advice for cross-regional prevention and control. Methods: A mathematical model of transmission dynamics was developed to explore the transmissibility of the disease and to compare that between different regions. Results: A total of 467 DF cases (6.38 per 100,000 people) were reported in Zhanjiang City in 2018. In the model, without any intervention, the number of simulated cases in this epidemic reached about 950. The dengue fever transmissions between districts varied within and between regions. When the spread of dengue fever from Chikan Districts to other districts was cut off, the number of cases in other districts dropped significantly or even to zero. When the density of mosquitoes in Xiashan District was controlled, the dengue fever epidemic in Xiashan District was found to be significantly alleviated. Conclusions: When there is a dengue outbreak, timely measures can effectively control it from developing into an epidemic. Different prevention and control measures in different districts could efficiently reduce the risk of disease transmission.
Collapse
Affiliation(s)
- Meng Zhang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Jie-Feng Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Min Kang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
- School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xing-Chun Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Hong-Yan Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Ze-Yu Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Guo-Qiang Ye
- Zhanjiang Municipal Center for Disease Control and Prevention, Zhanjiang 524037, China
| | - Sheng-Nan Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jia Rui
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jing-Wen Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yuan-Zhao Zhu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yao Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Meng Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Shi-Xing Tang
- School of Public Health, Southern Medical University, Guangzhou 510515, China
- Correspondence: (S.-X.T.); (Q.C.); (T.-M.C.); Tel.: +1-4242489768 (Q.C.); +86-13661934715 (T.-M.C.)
| | - Qu Cheng
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94704, USA
- Correspondence: (S.-X.T.); (Q.C.); (T.-M.C.); Tel.: +1-4242489768 (Q.C.); +86-13661934715 (T.-M.C.)
| | - Tian-Mu Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
- Correspondence: (S.-X.T.); (Q.C.); (T.-M.C.); Tel.: +1-4242489768 (Q.C.); +86-13661934715 (T.-M.C.)
| |
Collapse
|
3
|
Arshad V, Talha KM, Baddour LM. Epidemiology of infective endocarditis: novel aspects in the twenty-first century. Expert Rev Cardiovasc Ther 2022; 20:45-54. [PMID: 35081845 DOI: 10.1080/14779072.2022.2031980] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION The epidemiology of infective endocarditis (IE) in this millennium has changed with emergence of new risk factors and reemergence of others. This, coupled with modifications in national guidelines in the setting of a pandemic, prompted an address of the topic. AREAS COVERED Our goal is to provide a contemporary review of IE epidemiology considering changing incidence of rheumatic heart disease (RHD), cardiac device implantation, and injection drug use (IDU), with SARS-CoV-2 pandemic as the backdrop. METHODS PubMed and Google Scholar were used to identify studies of interest. EXPERT OPINION Our experience over the past two decades verifies the notion that there is not one 'textbook' profile of IE. Multiple factors have dramatically impacted IE epidemiology, and these factors differ, based, in part on geography. RHD has declined in many areas of the world, whereas implanted cardiovascular devices-related IE has grown exponentially. Perhaps the most influential, at least in areas of the United States, is injection drug use complicating the opioid epidemic. Healthy younger individuals contracting a potentially life-threatening infection has been tragic. In the past year, epidemiological changes due to the COVID-19 pandemic have also occurred. No doubt, changes will characterize IE in the future and serial review of the topic is warranted.
Collapse
Affiliation(s)
- Verda Arshad
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Khawaja M Talha
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Larry M Baddour
- Department of Cardiovascular Disease, Mayo Clinic School of Medicine and Science, Rochester, Minnesota, USA.,Division of Infectious Diseases, Department of Medicine, Mayo Clinic School of Medicine and Science, Rochester, Minnesota, USA
| |
Collapse
|
4
|
A fatal case of early prosthetic valve endocarditis caused by multidrug-resistant (MDR) - Sphingomonas paucimobilis. IDCases 2021; 24:e01152. [PMID: 34026540 PMCID: PMC8131892 DOI: 10.1016/j.idcr.2021.e01152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/04/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023] Open
Abstract
Sphyngomonas paucimobilis (S. paucimobilis) is a low-pathogenicity, gram-negative bacilli (GNB) that are previously known as an opportunist microorganism. Recent studies have shown that S. paucimobilis is an emerging pathogen causing various infections. Multidrug-resistant GNB has emerged as a major clinical and therapeutic dilemma in various hospital-associated infections. Although rare, S. paucimobilis could be associated with infective endocarditis (IE). Prosthetic valve endocarditis (PVE) is the most severe type of IE, which has high mortality rates despite diagnostic and treatment advances. We report a fatal case of early PVE associated with multidrug-resistant (MDR) - S. paucimobilis complicated with perivalvular abscess, complete heart block, valve detachment, and septic arthritis.
Collapse
|
5
|
Effects of Overwintering on the Survival and Vector Competence of Aedes albopictus in the Urban Life Cycle of Dengue Virus in Guangzhou, China. Virol Sin 2021; 36:755-761. [PMID: 33666834 DOI: 10.1007/s12250-021-00356-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/21/2020] [Indexed: 01/22/2023] Open
Abstract
The Pearl River Delta, where Aedes albopictus (Ae. albopictus) is the only vector for dengue transmission, has exhibited one of the highest dengue burdens in southern China in recent decades. However, whether dengue virus (DENV) can overwinter in Ae. albopictus in the Pearl River Delta has not been determined to date. In this study, 300 field-derived Ae. albopictus mosquitoes from Guangzhou that were infected with the predominant endemic DENV-1 strain were investigated under simulated urban balcony environment from October 16, 2016, to June 16, 2017. The vertical transmission of DENV in the infected overwintering Ae. albopictus was analyzed. The DENV infected overwintering mosquitoes were evaluated for viral load at nine-time points using reverse transcription-quantitative PCR. The vector competence of the infected overwintering Ae. albopictus was also investigated by using suckling mice. Adult mosquitoes and larvae were found during the observation period. The vertical transmission of DENV-1 was documented. The DENV-1-positive rates between overwintering males and females had no difference. The proportion of DENV-1-positive overwintering mosquitoes decreased over time and had no difference beyond three months after the experiment. Overwintering mosquitoes can spread DENV-1 to hosts. No engorged mosquitoes at an ambient temperature below 15 °C were observed. The ratio of engorged mosquitoes was positively correlated with the ambient temperature ranging from 15 to 30 °C. Our results demonstrated that DENV can overwinter in Ae. albopictus in the Pearl River Delta, Ae. albopictus is the competent vector for DENV, and maintain autochthonous dengue outbreaks in the Pearl River Delta through vertical transmission.
Collapse
|
6
|
Pichler V, Mancini E, Micocci M, Calzetta M, Arnoldi D, Rizzoli A, Lencioni V, Paoli F, Bellini R, Veronesi R, Martini S, Drago A, De Liberato C, Ermenegildi A, Pinto J, della Torre A, Caputo B. A Novel Allele Specific Polymerase Chain Reaction (AS-PCR) Assay to Detect the V1016G Knockdown Resistance Mutation Confirms Its Widespread Presence in Aedes albopictus Populations from Italy. INSECTS 2021; 12:insects12010079. [PMID: 33477382 PMCID: PMC7830166 DOI: 10.3390/insects12010079] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 11/16/2022]
Abstract
Polymerase chain reaction (PCR)-based genotyping of mutations in the voltage-sensitive sodium channel (vssc) associated with resistance to pyrethroid insecticides is widely used and represents a potential early warning and monitoring system for insecticide resistance arising in mosquito populations, which are vectors of different human pathogens. In the secondary vector Aedes albopictus-an Asian species that has invaded and colonized the whole world, including temperate regions-sequencing of domain II of the vssc gene is still needed to detect the V1016G mutation associated with pyrethroid resistance. In this study we developed and tested a novel allele-specific PCR (AS-PCR) assay to genotype the V1016G mutation in this species and applied it to the analysis of wild populations from Italy. The results confirm the high accuracy of the novel AS-PCR and highlight frequencies of the V1016G allele as >5% in most sampling sites, with peaks of 20-45% in coastal touristic sites where pyrethroid treatments are extensively implemented, mostly for mosquito nuisance reduction. The high frequency of this mutation observed in Italian Ae. albopictus populations should serve as a warning bell, advocating for increased monitoring and management of a phenomenon which risks neutralizing the only weapon today available to counteract (risks of) arbovirus outbreaks.
Collapse
Affiliation(s)
- Verena Pichler
- Dipartimento di Sanità Pubblica e Malattie Infettive, Università Sapienza, 00185 Rome, Italy; (V.P.); (M.M.); (M.C.)
| | - Emiliano Mancini
- Dipartimento di Biologia e Biotecnologie ‘C. Darwin’, Università Sapienza, 00185 Rome, Italy;
| | - Martina Micocci
- Dipartimento di Sanità Pubblica e Malattie Infettive, Università Sapienza, 00185 Rome, Italy; (V.P.); (M.M.); (M.C.)
| | - Maria Calzetta
- Dipartimento di Sanità Pubblica e Malattie Infettive, Università Sapienza, 00185 Rome, Italy; (V.P.); (M.M.); (M.C.)
| | - Daniele Arnoldi
- Research and Innovation Centre, Department of Biodiversity and Molecular Ecology, Fondazione Edmund Mach, San Michele all’Adige, 38098 Trento, Italy; (D.A.); (A.R.)
| | - Annapaola Rizzoli
- Research and Innovation Centre, Department of Biodiversity and Molecular Ecology, Fondazione Edmund Mach, San Michele all’Adige, 38098 Trento, Italy; (D.A.); (A.R.)
| | - Valeria Lencioni
- Section of Invertebrate Zoology and Hydrobiology, MUSE-Science Museum, 38098 Trento, Italy; (V.L.); (F.P.)
| | - Francesca Paoli
- Section of Invertebrate Zoology and Hydrobiology, MUSE-Science Museum, 38098 Trento, Italy; (V.L.); (F.P.)
| | - Romeo Bellini
- Centro Agricoltura Ambiente “G. Nicoli”, 40014 Crevalcore, Italy; (R.B.); (R.V.)
| | - Rodolfo Veronesi
- Centro Agricoltura Ambiente “G. Nicoli”, 40014 Crevalcore, Italy; (R.B.); (R.V.)
| | | | - Andrea Drago
- Entostudio snc, 35020 Padua, Italy; (S.M.); (A.D.)
| | - Claudio De Liberato
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, 00178 Rome, Italy; (C.D.L.); (A.E.)
| | - Arianna Ermenegildi
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, 00178 Rome, Italy; (C.D.L.); (A.E.)
| | - Joao Pinto
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, 1349-008 Lisboa, Portugal;
| | - Alessandra della Torre
- Dipartimento di Sanità Pubblica e Malattie Infettive, Università Sapienza, 00185 Rome, Italy; (V.P.); (M.M.); (M.C.)
- Correspondence: (A.d.T.); (B.C.)
| | - Beniamino Caputo
- Dipartimento di Sanità Pubblica e Malattie Infettive, Università Sapienza, 00185 Rome, Italy; (V.P.); (M.M.); (M.C.)
- Correspondence: (A.d.T.); (B.C.)
| |
Collapse
|
7
|
Genomic epidemiological characteristics of dengue fever in Guangdong province, China from 2013 to 2017. PLoS Negl Trop Dis 2020; 14:e0008049. [PMID: 32126080 PMCID: PMC7053713 DOI: 10.1371/journal.pntd.0008049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/11/2020] [Indexed: 12/02/2022] Open
Abstract
Dengue fever, a mosquito-borne viral disease in humans, has been endemic in many Southeast Asian countries. Since its first outbreak in 1978 in Foshan, Guangdong province, China, dengue has been continually epidemic in recent years in Guangdong, which raised the concern whether dengue infection is endemic in Guangdong. In this study, we performed phylogenetic, recombinant, and nucleotide variation analyses of 114 complete genome sequences of dengue virus serotypes 1–4 (DENV1-4) collected from 2013 to 2017 in 18 of 21 cities of Guangdong. Phylogenetic analyses revealed that DENV sequences did not form a single cluster, indicating that dengue fever was not endemic in Guangdong, although DENV1-4 co-circulated in Guangdong. Twenty intra-serotype recombinant isolates involving DENV1-4 were detected, but no inter-serotype recombinant events were identified in this study. Additionally, the most recombinant events were detected simultaneously in the gene NS3 of DENV1-4. Nucleotide variation analyses showed that no significant intra-serotype differences were observed, whereas more significant inter-subtype differences were discovered in non-structural genes than in structural genes. Our investigation will facilitate the understanding of the current prevalent status of dengue fever in Guangdong and contribute to designing more effective preventive and control strategies for dengue infection. In 1978, dengue fever was first reported in Guangdong province, China, and this has been continuously prevalent in Guangdong in recent years. This is responsible for the heavy burden on the control of dengue, and raises the concern about whether dengue outbreaks have become endemic in Guangdong. Previous studies based on single E gene or few full-length genome sequences were inconclusive. In this study, we sequenced 114 DENV complete genomes of DENV1-4 obtained from 2013 to 2017 in Guangdong and further analyzed the epidemiological and molecular characteristics. Phylogenetic analyses revealed that dengue fever was not endemic in Guangdong, which was indirectly supported by results of our recombination analyses. Nucleotide variation analyses indicated that purification selection shaped dengue virus population. Our investigation will facilitate the development of more effective epidemiological surveillance strategies for dengue infection.
Collapse
|
8
|
He X, Lang X, Yu J, Zhu L, Qin Z, Liu X, Chen P, Dai C, Chen T, Li X, Chen Y, Zhou D, Fang W, Xiao W, Zhang B, Xie Q, Wu Q, Zhao W. The effects of Japanese encephalitis virus antibodies on Zika virus infection. Med Microbiol Immunol 2020; 209:177-188. [PMID: 32078028 DOI: 10.1007/s00430-020-00658-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 01/15/2020] [Indexed: 12/24/2022]
Abstract
Recently, Zika virus (ZIKV) has become more widespread, thus attracting global attention. The vaccine against Japanese encephalitis virus (JEV) is currently used in China, being included in planned immunisation regimes. Although ZIKV and JEV are closely related mosquito-borne Flaviviruses, and a complex cross-immune response within flaviviruses has been demonstrated, the effect of JEV vaccination on ZIKV infection has not been well described. Thus, this study aimed to explore the impact of different titres of anti-JEV antibodies (Abs) against ZIKV infection using sera from healthy human donors in Guangzhou and anti-JEV rabbit polyclonal antibodies (pAbs) in vitro and vivo. Human anti-JEV Ab titres were tested at decreasing concentrations as the age increased. A neutralising effect on ZIKV infection was observed when anti-JEV Ab titres in human sera or rabbit pAbs were high (the corresponding age was under 30 years). Even though a lower titre in human sera showed no apparent effect, whereas rabbit pAbs had an antibody-dependent enhancement(ADE)effect, we proved an ADE effect in vivo for the first time. This study suggests that individuals over 60 years of age are at high risk for JEV and ZIKV infection, and screening this age group for infection should strengthen. Furthermore, a deep exploration of the relationship between anti-JEV Abs and ZIKV infection is needed.
Collapse
Affiliation(s)
- Xiaoen He
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Xinyue Lang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Jianhai Yu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Li Zhu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Zhiran Qin
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Xuling Liu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Pei Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Chengguqiu Dai
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Tingting Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Xujuan Li
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yangyang Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Dongrui Zhou
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Wanyi Fang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Weiwei Xiao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Bao Zhang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Qian Xie
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Qinghua Wu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
- Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmacy, Southern Medical University, Guangzhou, 510515, China.
| | - Wei Zhao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
- Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmacy, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
9
|
Chen Y, Gao J, Yang L, Li C, Chen R, Xie Z, Ren R. A predominant dengue virus-1 endemic strain and the vector competence of Aedes albopictus from Guangzhou City, China. Acta Trop 2019; 199:104975. [PMID: 30943381 DOI: 10.1016/j.actatropica.2019.03.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/13/2019] [Accepted: 03/29/2019] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Dengue has been a serious public health burden and dengue virus-1 (DENV-1) is the predominant strain in Guangdong province, China. Differences exist in the transmission dynamics amongAedes albopictus and DENV in different geographical regions. However, little is known about the vector competence of indigenous Aedes albopictus for the predominant dengue strain in Guangdong province, China. METHODOLOGY In this study, the field-derivedAedes albopictus collected from Guangzhou city, Guangdong province were infected with the predominant DENV endemic strain DENV-1 GZ201401 by feeding on serially diluted artificial infectious blood or infected suckling mice. DENV-infected mosquitoes were evaluated for viral load at five-time intervals in three tissues, the head, body and legs using reverse transcription-quantitative PCR (RT-qPCR). The vertical transmission of DENV in Ades albopictus was also analysed. Suckling mice were used to assess the transmission of DENV by Aedes albopictus. RESULTS There was no difference in infection rates between mosquitoes infected by infected suckling mice or by artificial infectious blood. The proportion of DENV-1 positive mosquitoes increased over time after an infectious blood meal, but there was no difference in the positive rate beyond 7days after the blood meal. The positive rate of DENV-1 infected mosquitoes increased with the DENV titer in the blood meal. Most of the infections the infected mosquitoes were disseminated more than 7 days after imbibing the artificial infectious blood. The median infective doses (MID50) at 7,14,21 and 28 days after artificial infectious blood meal [7, 14, 21 and 28 days post-infection (dpi)] were 7.86 × 107, 1.57 × 107, 6.39 × 106 and 4.96 × 106 TCID50 (50% tissue culture infective dose)/ml, respectively. The mosquitoes can spread DENV-1 GZ201401 to hosts as early as 3 dpi. The vertical transmission of DENV-1 was documented with a cumulative rate of 17.61%. CONCLUSION Our results demonstrated that Aedes albopictus mosquitoes are competent vectors for DENV-1, and are capable of maintaining autochthonous dengue outbreaks in Guangdong province, China, which may have been promoted by vertical transmission.
Collapse
|
10
|
Oidtman RJ, Lai S, Huang Z, Yang J, Siraj AS, Reiner RC, Tatem AJ, Perkins TA, Yu H. Inter-annual variation in seasonal dengue epidemics driven by multiple interacting factors in Guangzhou, China. Nat Commun 2019; 10:1148. [PMID: 30850598 PMCID: PMC6408462 DOI: 10.1038/s41467-019-09035-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 02/12/2019] [Indexed: 02/07/2023] Open
Abstract
Vector-borne diseases display wide inter-annual variation in seasonal epidemic size due to their complex dependence on temporally variable environmental conditions and other factors. In 2014, Guangzhou, China experienced its worst dengue epidemic on record, with incidence exceeding the historical average by two orders of magnitude. To disentangle contributions from multiple factors to inter-annual variation in epidemic size, we fitted a semi-mechanistic model to time series data from 2005-2015 and performed a series of factorial simulation experiments in which seasonal epidemics were simulated under all combinations of year-specific patterns of four time-varying factors: imported cases, mosquito density, temperature, and residual variation in local conditions not explicitly represented in the model. Our results indicate that while epidemics in most years were limited by unfavorable conditions with respect to one or more factors, the epidemic in 2014 was made possible by the combination of favorable conditions for all factors considered in our analysis.
Collapse
Affiliation(s)
- Rachel J Oidtman
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, 46556, IN, USA
| | - Shengjie Lai
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
- WorldPop, Department of Geography and Environment, University of Southampton, Southampton, SO17 1BJ, UK
- Flowminder Foundation, Stockholm, SE-11355, Sweden
| | - Zhoujie Huang
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
| | - Juan Yang
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
| | - Amir S Siraj
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, 46556, IN, USA
| | - Robert C Reiner
- Institute for Health and Metrics and Evaluation, University of Washington, Seattle, 98195, WA, USA
| | - Andrew J Tatem
- WorldPop, Department of Geography and Environment, University of Southampton, Southampton, SO17 1BJ, UK
- Flowminder Foundation, Stockholm, SE-11355, Sweden
| | - T Alex Perkins
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, 46556, IN, USA.
| | - Hongjie Yu
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China.
| |
Collapse
|
11
|
Huang YJS, Higgs S, Vanlandingham DL. Emergence and re-emergence of mosquito-borne arboviruses. Curr Opin Virol 2019; 34:104-109. [DOI: 10.1016/j.coviro.2019.01.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/03/2019] [Accepted: 01/08/2019] [Indexed: 12/11/2022]
|
12
|
Abstract
Dengue fever (DF) has been a growing public-health concern in China since its emergence in Guangdong Province in 1978. Of all the regions that have experienced dengue outbreaks in mainland China, the city of Guangzhou is the most affected. This study aims to investigate the potential risk factors for dengue virus (DENV) transmission in Guangzhou, China, from 2006 to 2014. The impact of risk factors on DENV transmission was qualified by the q-values calculated using a novel spatial-temporal method, the GeoDetector model. Both climatic and socioeconomic factors were considered. The impacts on DF incidence of each single factor and the interaction of two factors were analysed. The results show that the number of days with rainfall of the month before last has the highest determinant power, with a q-value of 0.898 (P < 0.01); the q-values of the other factors related to temperature and precipitation were around 0.38–0.50. Integrating a Pearson correlation analysis, nonlinear associations were found between the DF incidence in Guangzhou and the climatic factors considered. The coupled impact of the different variables considered was enhanced compared with their individual effects. In addition, an increased number of tourists in the city were associated with a high incidence of DF. This study demonstrates that the number of rain days in a month has great influence on the DF incidence of the month after next; the temperature and precipitation have nonlinear impacts on the DF incidence in Guangzhou; both the domestic and overseas tourists coming to the city increase the risk of DENV transmission. These findings are useful in the risk assessment of DENV transmission, to predict DF outbreaks and to implement preventive DF reduction strategies.
Collapse
|
13
|
Cheng VCC, Sridhar S, Wong SC, Wong SCY, Chan JFW, Yip CCY, Chau CH, Au TWK, Hwang YY, Yau CSW, Lo JYC, Lee CK, Yuen KY. Japanese Encephalitis Virus Transmitted Via Blood Transfusion, Hong Kong, China. Emerg Infect Dis 2018; 24. [PMID: 29043965 PMCID: PMC5749455 DOI: 10.3201/eid2401.171297] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Japanese encephalitis virus (JEV) is a mosquitoborne virus endemic to China and Southeast Asia that causes severe encephalitis in <1% of infected persons. Transmission of JEV via blood transfusion has not been reported. We report transmission of JEV via blood donation products from an asymptomatic viremic donor to 2 immunocompromised recipients. One recipient on high-dose immunosuppressive drugs received JEV-positive packed red blood cells after a double lung transplant; severe encephalitis and a poor clinical outcome resulted. JEV RNA was detected in serum, cerebrospinal fluid, and bronchoalveolar lavage fluid specimens. The second recipient had leukemia and received platelets after undergoing chemotherapy. This patient was asymptomatic; JEV infection was confirmed in this person by IgM seroconversion. This study illustrates that, consistent with other pathogenic flaviviruses, JEV can be transmitted via blood products. Targeted donor screening and pathogen reduction technologies could be used to prevent transfusion-transmitted JEV infection in highly JEV-endemic areas.
Collapse
|
14
|
Gu H, Leung RKK, Jing Q, Zhang W, Yang Z, Lu J, Hao Y, Zhang D. Meteorological Factors for Dengue Fever Control and Prevention in South China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13090867. [PMID: 27589777 PMCID: PMC5036700 DOI: 10.3390/ijerph13090867] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 11/16/2022]
Abstract
Dengue fever (DF) is endemic in Guangzhou and has been circulating for decades, causing significant economic loss. DF prevention mainly relies on mosquito control and change in lifestyle. However, alert fatigue may partially limit the success of these countermeasures. This study investigated the delayed effect of meteorological factors, as well as the relationships between five climatic variables and the risk for DF by boosted regression trees (BRT) over the period of 2005-2011, to determine the best timing and strategy for adapting such preventive measures. The most important meteorological factor was daily average temperature. We used BRT to investigate the lagged relationship between dengue clinical burden and climatic variables, with the 58 and 62 day lag models attaining the largest area under the curve. The climatic factors presented similar patterns between these two lag models, which can be used as references for DF prevention in the early stage. Our results facilitate the development of the Mosquito Breeding Risk Index for early warning systems. The availability of meteorological data and modeling methods enables the extension of the application to other vector-borne diseases endemic in tropical and subtropical countries.
Collapse
Affiliation(s)
- Haogao Gu
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
- Health Information Research Center, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
- Guangdong Key Laboratory of Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
- Sun Yat-sen Global Health Institute, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
- Division of Public Health Laboratory Sciences, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China.
| | - Ross Ka-Kit Leung
- Division of Public Health Laboratory Sciences, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China.
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China.
| | - Qinlong Jing
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
- Health Information Research Center, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
- Guangdong Key Laboratory of Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
- Sun Yat-sen Global Health Institute, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China.
| | - Wangjian Zhang
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
- Health Information Research Center, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
- Guangdong Key Laboratory of Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
- Sun Yat-sen Global Health Institute, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Zhicong Yang
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China.
| | - Jiahai Lu
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
- Health Information Research Center, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
- Guangdong Key Laboratory of Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
- Sun Yat-sen Global Health Institute, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Yuantao Hao
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
- Health Information Research Center, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
- Guangdong Key Laboratory of Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
- Sun Yat-sen Global Health Institute, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Dingmei Zhang
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
- Health Information Research Center, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
- Guangdong Key Laboratory of Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
- Sun Yat-sen Global Health Institute, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
15
|
Woodall JP. Another pandemic disaster looms: yellow fever spreading from Angola. Pan Afr Med J 2016; 24:107. [PMID: 27642446 PMCID: PMC5012773 DOI: 10.11604/pamj.2016.24.107.9921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 05/29/2016] [Indexed: 11/24/2022] Open
Affiliation(s)
- John Payne Woodall
- ProMED-mail, International Society for Infectious Diseases, Brookline MA, USA
| |
Collapse
|