1
|
Palmer RD. Three Tiers to biological escape velocity: The quest to outwit aging. Aging Med (Milton) 2022; 5:281-286. [PMID: 36606268 PMCID: PMC9805293 DOI: 10.1002/agm2.12231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/14/2022] [Accepted: 11/20/2022] [Indexed: 12/14/2022] Open
Abstract
As longevity companies emerge with new products and the fields of anti-aging research develop new cutting-edge therapies, three distinct classes of longevity methodologies emerge. This discussion finds that there are three clear classes (Tiers) of longevity systems that are currently under development, and all three will be paramount to achieve biological escape velocity (where tissues can be repaired faster than aging can damage them). These classes are referred to as Tier 1, Tier 2, and Tier 3 treatments and are described in detail below. These three Tiers are required for easy identification for pharmaceutical companies and research companies to determine the type of therapy they may choose to deliver being noninvasive, invasive, time consuming, or simple end user products. Specific targets and goals need to be defined clearly from an early perspective in the development of these technologies for future precision medicines. This allows consumers of future anti-aging technologies to consider which Tier a particular therapy may be, delivering a more informed choice.
Collapse
Affiliation(s)
- Raymond D. Palmer
- Full Spectrum BiologicsSouth PerthWestern AustraliaAustralia
- School of Aging, Science of AgingSouth PerthWestern AustraliaAustralia
| |
Collapse
|
2
|
Pernia C, Tobe BTD, O'Donnell R, Snyder EY. The Evolution of Stem Cells, Disease Modeling, and Drug Discovery for Neurological Disorders. Stem Cells Dev 2020; 29:1131-1141. [PMID: 32024446 DOI: 10.1089/scd.2019.0217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human neurological disorders are among the most challenging areas of translational research. The difficulty of acquiring human neural samples or specific representative animal models has necessitated a multifaceted approach to understanding disease pathology and drug discovery. The dedifferentiation of somatic cells to human induced pluripotent stem cells (hiPSCs) for the generation of neural derivatives has broadened the capability of biomedical research to study human cell types in neurological disorders. The initial zeal for the potential of hiPSCs for immediate biomedical breakthroughs has evolved to more reasonable expectations. Over the past decade, hiPSC technology has demonstrated the capacity to successfully establish "disease in a dish" models of complex neurological disorders and to identify possible novel therapeutics. However, as hiPSCs are used more broadly, an increased understanding of the limitations of hiPSC studies is becoming more evident. In this study, we review the challenges of studying neurological disorders, the current limitations of stem cell-based disease modeling, and the degrees to which hiPSC studies to date have demonstrated the capacity to fill essential gaps in neurological research.
Collapse
Affiliation(s)
- Cameron Pernia
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, California, USA
| | - Brian T D Tobe
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, California, USA.,Department of Psychiatry, Veterans Administration Medical Center, La Jolla, California, USA
| | - Ryan O'Donnell
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, California, USA
| | - Evan Y Snyder
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, California, USA
| |
Collapse
|
3
|
Gordovez FJA, McMahon FJ. The genetics of bipolar disorder. Mol Psychiatry 2020; 25:544-559. [PMID: 31907381 DOI: 10.1038/s41380-019-0634-7] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 11/22/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022]
Abstract
Bipolar disorder (BD) is one of the most heritable mental illnesses, but the elucidation of its genetic basis has proven to be a very challenging endeavor. Genome-Wide Association Studies (GWAS) have transformed our understanding of BD, providing the first reproducible evidence of specific genetic markers and a highly polygenic architecture that overlaps with that of schizophrenia, major depression, and other disorders. Individual GWAS markers appear to confer little risk, but common variants together account for about 25% of the heritability of BD. A few higher-risk associations have also been identified, such as a rare copy number variant on chromosome 16p11.2. Large scale next-generation sequencing studies are actively searching for other alleles that confer substantial risk. As our understanding of the genetics of BD improves, there is growing optimism that some clear biological pathways will emerge, providing a basis for future studies aimed at molecular diagnosis and novel therapeutics.
Collapse
Affiliation(s)
- Francis James A Gordovez
- Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Department of Health and Human Services, National Institutes of Health, Bethesda, MD, USA.,College of Medicine, University of the Philippines Manila, 1000, Ermita, Manila, Philippines
| | - Francis J McMahon
- Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Department of Health and Human Services, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Asada M, Mizutani S, Takagi M, Suzuki H. Antipsychotics promote neural differentiation of human iPS cell-derived neural stem cells. Biochem Biophys Res Commun 2016; 480:615-621. [DOI: 10.1016/j.bbrc.2016.10.102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/25/2016] [Indexed: 12/16/2022]
|
5
|
Nabavizadeh SL, Mehrabani D, Vahedi Z, Manafi F. Cloning: A Review on Bioethics, Legal, Jurisprudence and Regenerative Issues in Iran. World J Plast Surg 2016; 5:213-225. [PMID: 27853684 PMCID: PMC5109382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/01/2016] [Accepted: 07/12/2016] [Indexed: 11/07/2022] Open
Abstract
In recent years, the cloning technology has remarkably developed in Iran, but unfortunately, the required legal framework has not been created to support and protect such developments yet. This legal gap may lead to abuse of scientific researches to obtain illegal benefits and to undermine the intellectual property rights of scientists and researchers. Thus to prevent such consequences, the attempts should be made to create an appropriate legal-ethical system and an approved comprehensive law. In this review we concluded that the right method is guiding and controlling the cloning technology and banning the technique is not always fruitful. Of course, it should be taken into accounts that all are possible if the religion orders human cloning in the view of jurisprudence and is considered as permission. In other words, although the religious order on human cloning can be an absolute permission based on the strong principle of permission, it is not unlikely that in the future, corruption is proved to be real for them, Jurists rule it as secondary sanctity and even as primary one. If it is proved, the phenomenon is considered as example of required affairs based on creation of ethical, social and medical disorders, religious and ethical rulings cannot be as permission for it, and it seems that it is a point that only one case can be a response to it and it needs nothing but time.
Collapse
Affiliation(s)
- Seyedeh Leila Nabavizadeh
- Legal Office, Vice Chancellor of Management Development Resource Planning, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Davood Mehrabani
- Stem Cell and Transgenic Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | |
Collapse
|
6
|
Kim S, Kim MK, Oh D, Lee SH, Kim B. Induced Pluripotent Stem Cells as a Novel Tool in Psychiatric Research. Psychiatry Investig 2016; 13:8-17. [PMID: 26766942 PMCID: PMC4701689 DOI: 10.4306/pi.2016.13.1.8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/11/2015] [Accepted: 06/26/2015] [Indexed: 12/19/2022] Open
Abstract
Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) provides a valuable opportunity to study neurodevelopmental and neurodegenerative psychiatric diseases by offering an unlimited source for patient-specific neuronal and glial cells. The present review focuses on the recent advancements in modeling psychiatric disorders such as Phelan-McDermid syndrome, Timothy syndrome, Rett syndrome, schizophrenia, bipolar disorder, and dementia. The treatment effects identified in studies on iPSCs using known therapeutic compounds are also summarized in this review. Here we discuss validation of cellular models and explore iPSCs as a novel drug screening tool. Although there are several limitations associated with the current methods used to study mental disorders, using iPSCs as a model system provides the advantage of rewinding and reviewing the development and degeneration of human neural cells.
Collapse
Affiliation(s)
- Sewoong Kim
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Min-Kyoung Kim
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Daeyoung Oh
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Sang-Hyuk Lee
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Borah Kim
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| |
Collapse
|
7
|
A Dishful of a Troubled Mind: Induced Pluripotent Stem Cells in Psychiatric Research. Stem Cells Int 2015; 2016:7909176. [PMID: 26839567 PMCID: PMC4709917 DOI: 10.1155/2016/7909176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
Neuronal differentiation of induced pluripotent stem cells and direct reprogramming represent powerful methods for modeling the development of neurons in vitro. Moreover, this approach is also a means for comparing various cellular phenotypes between cell lines originating from healthy and diseased individuals or isogenic cell lines engineered to differ at only one or a few genomic loci. Despite methodological constraints and initial skepticism regarding this approach, the field is expanding at a fast pace. The improvements include the development of new differentiation protocols resulting in selected neuronal populations (e.g., dopaminergic, GABAergic, hippocampal, and cortical), the widespread use of genome editing methods, and single-cell techniques. A major challenge awaiting in vitro disease modeling is the integration of clinical data in the models, by selection of well characterized clinical populations. Ideally, these models will also demonstrate how different diagnostic categories share overlapping molecular disease mechanisms, but also have unique characteristics. In this review we evaluate studies with regard to the described developments, to demonstrate how differentiation of induced pluripotent stem cells and direct reprogramming can contribute to psychiatry.
Collapse
|
8
|
Mitchell A, Roussos P, Peter C, Tsankova N, Akbarian S. The future of neuroepigenetics in the human brain. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 128:199-228. [PMID: 25410546 DOI: 10.1016/b978-0-12-800977-2.00008-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Complex mechanisms shape the genome of brain cells into transcriptional units, clusters of condensed chromatin, and many other features that distinguish between various cell types and developmental stages sharing the same genetic material. Only a few years ago, the field's focus was almost entirely on a single mark, CpG methylation; the emerging complexity of neuronal and glial epigenomes now includes multiple types of DNA cytosine methylation, more than 100 residue-specific posttranslational histone modifications and histone variants, all of which superimposed by a dynamic and highly regulated three-dimensional organization of the chromosomal material inside the cell nucleus. Here, we provide an update on the most innovative approaches in neuroepigenetics and their potential contributions to approach cognitive functions and disorders unique to human. We propose that comprehensive, cell type-specific mappings of DNA and histone modifications, chromatin-associated RNAs, and chromosomal "loopings" and other determinants of three-dimensional genome organization will critically advance insight into the pathophysiology of the disease. For example, superimposing the epigenetic landscapes of neuronal and glial genomes onto genetic maps for complex disorders, ranging from Alzheimer's disease to schizophrenia, could provide important clues about neurological function for some of the risk-associated noncoding sequences in the human genome.
Collapse
Affiliation(s)
- Amanda Mitchell
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Panos Roussos
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Cyril Peter
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Nadejda Tsankova
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Schahram Akbarian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|