1
|
Multipurpose Lens Care Systems and Silicone Hydrogel Contact Lens Wettability: A Systematic Review. Eye Contact Lens 2022; 48:356-361. [DOI: 10.1097/icl.0000000000000914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2022] [Indexed: 11/26/2022]
|
2
|
Bacteriostatic Effect of Multidose Preservative-free Buffered Saline Used in Scleral Lens Wear. Optom Vis Sci 2021; 97:162-168. [PMID: 32168238 DOI: 10.1097/opx.0000000000001492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
SIGNIFICANCE Scleral lenses have become an increasingly common treatment for ocular surface disease and irregular corneas. Multidose, preservative-free saline solutions are frequently used off-label to fill scleral lenses. Because the fluid resides over the ocular surface during lens wear, contaminated solutions may increase the risk of infectious complications. PURPOSE We sought to assess the viability of skin microorganisms and pathogens associated with keratitis once introduced into a multidose preservative-free saline (MDPFS) solution containing the bacteriostatic agent boric acid (PuriLens Plus; The Lifestyle Co., Inc., Freehold, NJ). METHODS Eleven bacterial and one yeast isolate were each inoculated to three lots of MDPFS as well as to sterile normal saline for comparison. Microorganism concentrations were enumerated at baseline and days 1, 3, 7, 14, 21, and 28. Persistence of microorganism viability was compared between MDPFS lots and between MDPFS and normal saline for each organism. RESULTS Duration of microorganism viability was ≥24 hours in MDPFS with no significant difference in the distribution of survival duration of microorganisms in MDPFS versus normal saline (P = .15). Candida albicans concentrations declined 14 days earlier in MDPFS, whereas concentrations of viable organisms in MDPFS remained within 1 log of baseline for the longest durations for Pseudomonas aeruginosa (7 days), Escherichia coli (14 days), and Achromobacter xylosoxidans (≥28 days). Gram-positive organism concentrations remained within 1 log of baseline for no more than 3 days. Mild lot-to-lot variation in organism concentrations was noted near the end points of viability. Bacteriostasis was demonstrated in that concentrations of all organisms remained at or below baseline levels throughout the 28-day period. CONCLUSIONS After microbial contamination, persistence of organism viability was similar in PuriLens and normal saline. Environmental gram-negative organisms, many of which can contribute to infectious keratitis, can persist for weeks once introduced into saline solutions.
Collapse
|
3
|
Jesmer AH, Wylie RG. Controlling Experimental Parameters to Improve Characterization of Biomaterial Fouling. Front Chem 2020; 8:604236. [PMID: 33363113 PMCID: PMC7759637 DOI: 10.3389/fchem.2020.604236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/30/2020] [Indexed: 12/17/2022] Open
Abstract
Uncontrolled protein adsorption and cell binding to biomaterial surfaces may lead to degradation, implant failure, infection, and deleterious inflammatory and immune responses. The accurate characterization of biofouling is therefore crucial for the optimization of biomaterials and devices that interface with complex biological environments composed of macromolecules, fluids, and cells. Currently, a diverse array of experimental conditions and characterization techniques are utilized, making it difficult to compare reported fouling values between similar or different biomaterials. This review aims to help scientists and engineers appreciate current limitations and conduct fouling experiments to facilitate the comparison of reported values and expedite the development of low-fouling materials. Recent advancements in the understanding of protein-interface interactions and fouling variability due to experiment conditions will be highlighted to discuss protein adsorption and cell adhesion and activation on biomaterial surfaces.
Collapse
Affiliation(s)
| | - Ryan G. Wylie
- Department of Chemistry and Chemical Biology, Hamilton, ON, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
4
|
Enhancement of Contact Lens Disinfection by Combining Disinfectant with Visible Light Irradiation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17176422. [PMID: 32899295 PMCID: PMC7504152 DOI: 10.3390/ijerph17176422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 01/05/2023]
Abstract
Multiple use contact lenses have to be disinfected overnight to reduce the risk of infections. However, several studies demonstrated that not only microorganisms are affected by the disinfectants, but also ocular epithelial cells, which come into contact via residuals at reinsertion of the lens. Visible light has been demonstrated to achieve an inactivation effect on several bacterial and fungal species. Combinations with other disinfection methods often showed better results compared to separately applied methods. We therefore investigated contact lens disinfection solutions combined with 405 nm irradiation, with the intention to reduce the disinfectant concentration of ReNu Multiplus, OptiFree Express or AOSept while maintaining adequate disinfection results due to combination benefits. Pseudomonads, staphylococci and E. coli were studied with disk diffusion assay, colony forming unit (cfu) determination and growth delay. A log reduction of 4.49 was achieved for P. fluorescens in 2 h for 40% ReNu Multiplus combined with an irradiation intensity of 20 mW/cm2 at 405 nm. For AOSept the combination effect was so strong that 5% of AOSept in combination with light exhibited the same result as 100% AOSept alone. Combination of disinfectants with visible violet light is therefore considered a promising approach, as a reduction of potentially toxic ingredients can be achieved.
Collapse
|
5
|
The Role of the P2X7 Receptor in Ocular Stresses: A Potential Therapeutic Target. Vision (Basel) 2017; 1:vision1020014. [PMID: 31740640 PMCID: PMC6835678 DOI: 10.3390/vision1020014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/10/2017] [Accepted: 05/14/2017] [Indexed: 01/30/2023] Open
Abstract
The P2X7 receptor is expressed in both anterior and posterior segments of the eyeball. In the ocular surface, the P2X7 receptor is activated in case of external aggressions: preservatives and surfactants induce the activation of P2X7 receptors, leading to either apoptosis, inflammation, or cell proliferation. In the retina, the key endogenous actors of age-related macular degeneration, diabetic retinopathy, and glaucoma act through P2X7 receptors’ activation and/or upregulation of P2X7 receptors’ expression. Different therapeutic strategies aimed at the P2X7 receptor exist. P2X7 receptor antagonists, such as divalent cations and Brilliant Blue G (BBG) could be used to target either the ocular surface or the retina, as long as polyunsaturated fatty acids may exert their effects through the disruption of plasma membrane lipid rafts or saffron that reduces the response evoked by P2X7 receptor stimulation. Treatments against P2X7 receptor activation are proposed by using either eye drops or food supplements.
Collapse
|
6
|
Rat P, Olivier E, Tanter C, Wakx A, Dutot M. A fast and reproducible cell- and 96-well plate-based method for the evaluation of P2X7 receptor activation using YO-PRO-1 fluorescent dye. J Biol Methods 2017; 4:e64. [PMID: 31453224 PMCID: PMC6708926 DOI: 10.14440/jbm.2017.136] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 12/14/2016] [Accepted: 12/14/2016] [Indexed: 02/06/2023] Open
Abstract
The YO-PRO-1 assay provides a quantitative estimation of P2X7 receptor activation. P2X7 receptor is associated to pathological conditions including infectious, inflammatory, neurological, musculoskeletal disorders, pain and cancer. Most primary cells and cell lines from diverse origin may be used thanks to the ubiquitous distribution of P2X7 receptor. To study the activation of P2X7 receptor by chemicals or biological agents, we established a microplate-based cytometry protocol to accurately and rapidly quantify the activation of P2X7 receptor that leads to the formation of large pores in cell membranes. The YO-PRO-1 assay is based on the ability of cells to incorporate and bind YO-PRO-1 dye to DNA after activation of P2X7 receptor through pore formation. Cells are seeded in 96-well plates and incubated with the compound being tested for the appropriate time. The microplate is then incubated for 10 min with YO-PRO-1 staining solution. After the 10 min staining time, fluorescence signal is read using a microplate reader in 1 min. This procedure is easier and requires less handling steps than flow cytometry. 96-well plate based YO-PRO-1 assay is a reproducible and fast method to study both P2X7 receptor activation by toxic agents at subnecrotic concentrations and P2X7 receptor inhibition by antagonists.
Collapse
Affiliation(s)
- Patrice Rat
- UMR 8638 CNRS COMETE, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Elodie Olivier
- UMR 8638 CNRS COMETE, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, 4 avenue de l'Observatoire, 75006 Paris, France.,Soliance-Givaudan, Route de Bazancourt, 51110 Pomacle, France
| | - Caroline Tanter
- Recherche et Développement, Laboratoire d'Evaluation Physiologique, Yslab, 2 rue Félix Le Dantec, 29000 Quimper, France
| | - Anaïs Wakx
- UMR 8638 CNRS COMETE, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Mélody Dutot
- UMR 8638 CNRS COMETE, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, 4 avenue de l'Observatoire, 75006 Paris, France.,Recherche et Développement, Laboratoire d'Evaluation Physiologique, Yslab, 2 rue Félix Le Dantec, 29000 Quimper, France
| |
Collapse
|
7
|
Wakx A, Dutot M, Massicot F, Mascarelli F, Limb GA, Rat P. Amyloid β Peptide Induces Apoptosis Through P2X7 Cell Death Receptor in Retinal Cells: Modulation by Marine Omega-3 Fatty Acid DHA and EPA. Appl Biochem Biotechnol 2016; 178:368-81. [PMID: 26467741 PMCID: PMC4718936 DOI: 10.1007/s12010-015-1878-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 09/28/2015] [Indexed: 11/25/2022]
Abstract
Retinal Müller glial cells have already been implicated in age-related macular degeneration (AMD). AMD is characterized by accumulation of toxic amyloid-β peptide (Aβ); the question we raise is as follows: is P2X7 receptor, known to play an important role in several degenerative diseases, involved in Aβ toxicity on Müller cells? Retinal Müller glial cells were incubated with Aβ for 48 h. Cell viability was assessed using the alamarBlue assay and cytotoxicity using the lactate dehydrogenase (LDH) release assay. P2X7 receptor expression was highlighted by immunolabeling observed on confocal microscopy and its activation was evaluated by YO-PRO-1 assay. Hoechst 33342 was used to evaluate chromatin condensation, and caspases 8 and 3 activation was assessed using AMC assays. Lipid formulation rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) used in Age-Related Eye Disease Study 2 was incubated on cells for 15 min prior to Aβ incubation. For the first time, we showed that Aβ induced caspase-independent apoptosis through P2X7 receptor activation on our retinal model. DHA and EPA are polyunsaturated fatty acids recommended in food supplement to prevent AMD. We therefore modulated Aβ cytotoxicity using a lipid formulation rich in DHA and EPA to have a better understanding of the results observed in clinical studies. We showed that fish oil rich in EPA and DHA, in combination with a potent P2X7 receptor antagonist, represents an efficient modulator of Aβ toxicity and that P2X7 could be an interesting therapeutic target to prevent AMD.
Collapse
Affiliation(s)
- Anaïs Wakx
- />UMR CNRS 8638—Chimie-Toxicologie Analytique et Cellulaire, Sorbonne Paris Cité, Faculté de Pharmacie, Université Paris Descartes, 4 avenue de l’Observatoire, 75006 Paris, France
- />Inserm U598, Physiopathologie des maladies oculaires, Innovations thérapeutiques, Centre de Recherches Biomédicales des Cordeliers, 75270 Paris Cedex 06, France
| | - Mélody Dutot
- />UMR CNRS 8638—Chimie-Toxicologie Analytique et Cellulaire, Sorbonne Paris Cité, Faculté de Pharmacie, Université Paris Descartes, 4 avenue de l’Observatoire, 75006 Paris, France
- />Laboratoire Yslab, 2 rue Félix Le Dantec, 29000 Quimper, France
- />Inserm U598, Physiopathologie des maladies oculaires, Innovations thérapeutiques, Centre de Recherches Biomédicales des Cordeliers, 75270 Paris Cedex 06, France
| | - France Massicot
- />UMR CNRS 8638—Chimie-Toxicologie Analytique et Cellulaire, Sorbonne Paris Cité, Faculté de Pharmacie, Université Paris Descartes, 4 avenue de l’Observatoire, 75006 Paris, France
- />Inserm U598, Physiopathologie des maladies oculaires, Innovations thérapeutiques, Centre de Recherches Biomédicales des Cordeliers, 75270 Paris Cedex 06, France
| | - Frédéric Mascarelli
- />INSERM U 872—Physiopathologie des maladies oculaires: Innovations thérapeutiques, Centre de Recherches des Cordeliers, 15 Rue de l’Ecole de Médecine, 75006 Paris, France
- />Inserm U598, Physiopathologie des maladies oculaires, Innovations thérapeutiques, Centre de Recherches Biomédicales des Cordeliers, 75270 Paris Cedex 06, France
| | - G. Astrid Limb
- />Division of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology and Moorfields Eye Hospital, 11 Bath Street, London, EC1V 9EL UK
| | - Patrice Rat
- />UMR CNRS 8638—Chimie-Toxicologie Analytique et Cellulaire, Sorbonne Paris Cité, Faculté de Pharmacie, Université Paris Descartes, 4 avenue de l’Observatoire, 75006 Paris, France
- />Inserm U598, Physiopathologie des maladies oculaires, Innovations thérapeutiques, Centre de Recherches Biomédicales des Cordeliers, 75270 Paris Cedex 06, France
| |
Collapse
|
8
|
Schafer J, Steffen R, Rah MJ. Patient satisfaction with a novel one-step hydrogen peroxide solution. Clin Ophthalmol 2014; 8:2035-40. [PMID: 25336902 PMCID: PMC4199818 DOI: 10.2147/opth.s69701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE We aimed to evaluate the product performance of a novel one-step hydrogen peroxide cleaning and disinfecting solution, PeroxiClear ("Test" solution), when used by habitual Clear Care users to bilaterally clean and disinfect their soft contact lenses, for approximately 2 weeks. METHODS This was a 2-week, open-label, bilateral eye study designed to include subjects ranging in age from 18 to 55 years, inclusive. All subjects were habitual users of the Clear Care peroxide regimen for cleaning, disinfecting, and storage of their soft contact lenses, for at least 6 months prior to enrolling in the study. Subjects were examined at two study visits: a screening/dispensing visit and a 2-week follow-up visit. The primary end point, patient preference for the Test solution, was evaluated with an online survey administered after 7 days of using the Test cleaning and disinfecting solution. Respondents could answer questions with neutral or nonneutral responses (better or worse). Statistical analyses were conducted to compare differences for nonneutral responses. RESULTS Of the 299 eligible subjects enrolled, 297 completed the study, conducted at 21 sites by 21 investigators in the United States. A significantly higher proportion of nonneutral respondents reported the Test solution was better overall (85.9%) than their habitual contact lens solution (14.1%) (P<0.001). The proportion of subjects who preferred the Test solution over their habitual solution was significantly higher for each of the preference questions regarding comfort (85.4% vs 14.6%), moistness (90.0% vs 10.0%), cleanness (91.6% vs 8.4%), and clarity of vision (85.8% vs 14.2%). CONCLUSION After 7 days of using the Test cleaning and disinfecting solution, survey results indicated high levels of patient satisfaction and preference over the habitual solution, particularly in the areas of comfort, moisture, and cleanness.
Collapse
|
9
|
Impact of contact lens materials on multipurpose contact lens solution disinfection activity against Fusarium solani. Eye Contact Lens 2013; 38:379-84. [PMID: 23085618 DOI: 10.1097/icl.0b013e31826f1004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To investigate the effects of eight different soft contact lenses on disinfection efficacy of a multipurpose solution (MPS) containing polyhexamethylene biguanide (PHMB) against Fusarium solani. METHODS Six silicone hydrogel lenses (galyfilcon A, senofilcon A, comfilcon A, enfilcon A, balafilcon A, and lotrifilcon B) and two conventional hydrogel lenses (polymacon and etafilcon A) were placed in polypropylene lens cases filled with MPS containing 0.0001% PHMB and soaked for 6, 12, 24, 72, and 168 hours. After each interval, depleted MPS from lens cases were removed and assayed for activity against F. solani according to International Organization for Standardization (ISO) 14729 stand-alone procedure. A portion was aliquoted for chemical analysis. RESULTS Soaking etafilcon A, balafilcon A, and polymacon lenses for 6 hours reduced the concentration of PHMB in MPS by more than half the stated labeled concentration, with concentrations below the limit of detection for etafilcon A-depleted and balafilcon A-depleted solutions after 12 and 72 hours of soaking, respectively. Except for comfilcon A-depleted solutions, all others failed to consistently obtain one log reduction of F. solani. The solutions soaked with etafilcon A, balafilcon A, and polymacon lenses for 24 hours or more lost all or almost all fungicidal activity against F. solani. CONCLUSIONS Over time, the disinfectant uptake by some lenses can significantly reduce the PHMB concentration and the fungicidal activity of the MPS against F. solani. Current ISO methodology does not address the reduction in microbiocidal efficacy when lenses are soaked in MPS. The ISO committee should consider adding "soaking experiments" to quantify the effect that contact lens materials have on the performance of MPSs.
Collapse
|
10
|
Erdinest N, Ovadia H, Solomon A. Cytotoxic and Inflammatory Effects of Contact Lens Multipurpose Solutions on Human Corneal Epithelial Cells. EUR J INFLAMM 2013. [DOI: 10.1177/1721727x1301100114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Multipurpose solutions (MPSs) are the leading method for cleaning and disinfecting soft contact lenses (CLs). During recent years, numerous clinical studies have evaluated the MPS damage to the ocular surface. This study examined the cytotoxic and the inflammatory effects of MPSs and hydrogen peroxide disinfection system (H202) compared to appropriate controls on human corneal epithelial (HCE) cells. Primary cultured HCE cells were exposed to eight different commercially available MPS products (MPS A, ReNu MultiPlus®; MPS B, Opti Free® EverMoist; MPS C, Solo-care Aqua®; MPS-D, Complete®; MPS-E, Unica Sensitive®; MPS-F, Options Multi®; MPS-G, Biotrue®; MPS-H, COMPLETE® RevitaLens). Morphological changes and cytotoxic effects were examined with FITC-Annexin V/PI and MTT assays. The protein contents of the inflammatory cytokines interleukin (IL)-1β, TNF-α, IL-6 and IL-8 were examined by multiplex fluorescent bead immunoassay (FBI), and the mRNA expression was examined by real time PCR. Lipopolysaccharide (LPS) with 500 ng/ml CD14 and 500 ng/ml LBP (LPS complex), polyinosinic: polycytidylic acid (Poly I:C) and un-neutralized H202 served as positive controls, respectively. Phosphate-buffered saline (PBS) was added as a negative control. The study demonstrated that most of the MPSs induced varying degrees of cytotoxicity to HCE cells, and increased production of pro-inflammatory cytokines compared to the negative control. In addition, several MPS increased the mRNA level of inhibitory factor-κBα (1-κBα). Among the various MPSs, MPS-H induced the highest protein contents of the pro-inflammatory cytokines (14.37±2.2-fold for TNF-α, 41.39±2.5-fold for IL-1β and 5.24±0.6-fold for IL-6) compared to the negative control (p<0.05). In contrast, no significant differences were noted between the neutralized H202 and the negative control. We conclude that most of the currently used MPSs induce significant damage and inflammatory response in corneal epithelial cells. MPS-induced inflammation was mediated through NF-κB signal transduction. This study demonstrates for the first time inflammatory responses at the molecular level in primary HCE cells following exposure to a large series of commercially available and commonly used MPSs. These findings strongly suggest that certain MPSs may be partially involved in the pathogenesis of contact lens intolerance. Therefore, we recommend that practitioners advise patients as to the preferable disinfecting contact lens solutions, and to consider using the hydrogen peroxide disinfection systems instead.
Collapse
Affiliation(s)
- N. Erdinest
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - H. Ovadia
- Department of Neurology, the Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - A. Solomon
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
11
|
|
12
|
A Preservative-and-Fluorescein Interaction Model for Benign Multipurpose Solution–Associated Transient Corneal Hyperfluorescence. Cornea 2012; 31:1480-8. [DOI: 10.1097/ico.0b013e31824a2083] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Hildebrandt C, Wagner D, Kohlmann T, Kramer A. In-vitro analysis of the microbicidal activity of 6 contact lens care solutions. BMC Infect Dis 2012; 12:241. [PMID: 23033880 PMCID: PMC3519705 DOI: 10.1186/1471-2334-12-241] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 10/01/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Contact lens-related infections are often associated with inadequate contact lens hygiene, and therefore, contact lens care products should be able to sufficiently minimise the amount of pathogens that are responsible for these infections. In 2001, the EN ISO 14729 was introduced to ensure adequate disinfection efficacy of contact lens care solutions, but this norm has recently been criticised. METHODS In this study, six frequently used contact lens care solutions were retested according to the Stand Alone Test of the EN ISO 14729 (2001). The Stand Alone Test is a quantitative suspension test. In addition, the products were tested in a modified setting adding an organic load. The load was a mixture of human blood serum, lysozyme, and mucine, which resembles tear fluid. RESULTS The criteria of the Stand Alone Test recommended in EN ISO 14729 were only met by Aosept Plus. This 3% hydrogen-peroxide-based contact lens care solution attained a reduction factor of > 5 log units for bacteria and > 4 for fungi in all cases. Two further contact lens care solutions, Blue Vision and Optifree Replenish, met the criteria of a reduction factor of > 3 log units for bacteria and > 1 log unit for fungi, but only in the presence of artificial tear fluid. The three remaining products did not exhibit adequate disinfecting efficacy, at least against one of the tested microorganisms. CONCLUSIONS Through the observation that the artificial tear fluid used in this study influences the disinfecting efficacy of contact lens care solutions, especially that of multi-purpose solutions, in a different way than does albumin, mucine, or even the organic load suggested in EN ISO 14729, it becomes obvious that the test conditions in the EN ISO 14729 should be revised in order to create more realistic conditions, e.g., by using a more realistic artificial tear fluid. Furthermore, we suggest adapting the EN ISO 14729 to the European test hierarchy for chemical disinfectants and antiseptics, which consists of three test phases and also requests meeting stricter criteria in order to pass the test. Unless the test conditions guarantee a sufficient reduction of potential pathogens, the risk of contact lens-related microbial keratitis and other infections will remain for the users.
Collapse
Affiliation(s)
- Claudia Hildebrandt
- Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Greifswald, Germany
| | | | | | | |
Collapse
|
14
|
|
15
|
Impact of Multipurpose Solutions Released from Contact Lenses on Corneal Cells. Optom Vis Sci 2011; 88:483-92. [DOI: 10.1097/opx.0b013e3182045967] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
16
|
Abstract
PURPOSE Contamination of contact lens cases has been associated with the production of adverse responses in the eye during contact lens wear. This study aimed to evaluate the contamination rate and types of microbes contaminating cases during use of contact lens disinfecting solutions and silicone hydrogel lenses. METHODS Two hundred thirty-two participants were allocated to one or more groups. The participants wore one or more of three silicone hydrogel lenses and used one or more of four contact lens disinfecting solutions. Cases were collected after use for 1 month and sent for routine microbial testing. The rate of contamination of cases and the types of microbes contaminating cases were evaluated. RESULTS Between 76 and 92% of all cases were contaminated. Use of different contact lenses did not affect contamination rate or the types of microbes isolated from cases. Use of AQuify (PHMB as disinfectant) was associated with the highest contamination rate (92%; p = 0.015) of cases for any microbe. Level and type of contamination with use of ClearCare (H2O2) was similar to use of PHMB (polyhexamethylene biguanide)- or Polyquat/Aldox-containing solutions. There was no difference in contamination rate of cases by fungi or Gram-positive bacteria, but for Gram-negative bacteria, use of Opti-Free Express (Polyquat and Aldox as disinfectants) resulted in a lower contamination rate (7% vs. 29 to 45%; p < 0.001). The average number of microbes contaminating a case was significantly less for Opti-Free Express (223 +/- 1357 cfu/case) compared with Opti-Free RepleniSH (Polyquat and Aldox as disinfectants; 63,244 +/- 140,630 cfu/case; p < 0.001), driven mostly by differences in numbers of Gram-negative bacteria, particularly contamination by Delftia acidovorans in cases exposed to Opti-Free RepleniSH. CONCLUSIONS Different disinfecting solutions used during storage in cases result in different levels of contamination and contamination by different types of microbes. These differences are not simply because of the types of disinfectants used, suggesting that other excipients in, or formulation of, the solution affect contact lens storage case contamination.
Collapse
|
17
|
Multipurpose Solutions and Contact Lens: Modulation of Cytotoxicity and Apoptosis on the Ocular Surface. Cornea 2010; 29:541-9. [DOI: 10.1097/ico.0b013e3181bd4bc1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Current world literature. Curr Opin Allergy Clin Immunol 2009; 9:482-8. [PMID: 19690478 DOI: 10.1097/aci.0b013e3283312f84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
|
20
|
Effects of contact lens multipurpose solutions on human corneal epithelial survival and barrier function. Eye Contact Lens 2009; 34:281-6. [PMID: 18779668 DOI: 10.1097/icl.0b013e3181842518] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE To examine the effect of 4 commercially available contact lens multipurpose solutions (MPS) on the viability and barrier function of human corneal epithelial cells in vitro. METHODS Immortalized human corneal epithelial cells were exposed to 4 solutions, MPS A, B, C, and D with culture medium and Hanks' Balanced Salt Solution as controls. MTT assay was used to evaluate cell viability. ApopTag Fluorescein Apoptosis assay was used to detect cell death in situ. Corneal epithelial barrier function was evaluated by fluorescein permeability and immunofluorescent staining for tight junction proteins zonula occludens (ZO)-1 and occludin. RESULTS Corneal epithelial survival rates, evaluated by MTT assay showed no statistical difference between MPS A and the culture medium or Hanks' Balanced Salt Solution controls. MPS B, C, and D were associated with significantly less cell survival than the controls after exposure for 6 hrs (all P<0.01). Compared with the controls, the MPS A did not increase cell apoptosis, whereas the other 3 caused higher apoptotic rates. The epithelial permeability after exposure to MPS A was similar to controls and significantly lower than MPS B and MPS D (P<0.01). The tight junction proteins ZO-1 and occludin were well maintained after exposure to MPS A. In contrast, the expression of ZO-1 and occludin were largely disturbed by the other 3 MPS solutions. CONCLUSIONS The current marketed contact lens MPS may have negative effects on human corneal epithelial viability and barrier function. Among 4 MPS studied, MPS A maintains the cell viability and barrier function significantly better than other 3 marketed products.
Collapse
|