1
|
Mohammadzadeh V, Wu S, Besharati S, Davis T, Vepa A, Morales E, Edalati K, Rafiee M, Martinyan A, Zhang D, Scalzo F, Caprioli J, Nouri-Mahdavi K. Prediction of Visual Field Progression with Baseline and Longitudinal Structural Measurements Using Deep Learning. Am J Ophthalmol 2024; 262:141-152. [PMID: 38354971 PMCID: PMC11226195 DOI: 10.1016/j.ajo.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
PURPOSE Identifying glaucoma patients at high risk of progression based on widely available structural data is an unmet task in clinical practice. We test the hypothesis that baseline or serial structural measures can predict visual field (VF) progression with deep learning (DL). DESIGN Development of a DL algorithm to predict VF progression. METHODS 3,079 eyes (1,765 patients) with various types of glaucoma and ≥5 VFs, and ≥3 years of follow-up from a tertiary academic center were included. Serial VF mean deviation (MD) rates of change were estimated with linear-regression. VF progression was defined as negative MD slope with p<0.05. A Siamese Neural Network with ResNet-152 backbone pre-trained on ImageNet was designed to predict VF progression using serial optic-disc photographs (ODP), and baseline retinal nerve fiber layer (RNFL) thickness. We tested the model on a separate dataset (427 eyes) with RNFL data from different OCT. The Main Outcome Measure was Area under ROC curve (AUC). RESULTS Baseline average (SD) MD was 3.4 (4.9)dB. VF progression was detected in 900 eyes (29%). AUC (95% CI) for model incorporating baseline ODP and RNFL thickness was 0.813 (0.757-0.869). After adding the second and third ODPs, AUC increased to 0.860 and 0.894, respectively (p<0.027). This model also had highest AUC (0.911) for predicting fast progression (MD rate <1.0 dB/year). Model's performance was similar when applied to second dataset using RNFL data from another OCT device (AUC=0.893; 0.837-0.948). CONCLUSIONS DL model predicted VF progression with clinically relevant accuracy using baseline RNFL thickness and serial ODPs and can be implemented as a clinical tool after further validation.
Collapse
Affiliation(s)
- Vahid Mohammadzadeh
- From the Glaucoma Division, Stein Eye Institute, David Geffen School of Medicine, University of California Los Angeles (V.M., S.B., E.M., K.E., M.R., A.M., D.Z., J.C., K.N.-M.), Los Angeles, California, USA
| | - Sean Wu
- Department of Computer Science, Pepperdine University (S.W., F.S.), Malibu, California, USA
| | - Sajad Besharati
- From the Glaucoma Division, Stein Eye Institute, David Geffen School of Medicine, University of California Los Angeles (V.M., S.B., E.M., K.E., M.R., A.M., D.Z., J.C., K.N.-M.), Los Angeles, California, USA
| | - Tyler Davis
- Department of Computer Science, University of California Los Angeles (T.D., A.V., F.S.), Los Angeles, California, USA
| | - Arvind Vepa
- Department of Computer Science, University of California Los Angeles (T.D., A.V., F.S.), Los Angeles, California, USA
| | - Esteban Morales
- From the Glaucoma Division, Stein Eye Institute, David Geffen School of Medicine, University of California Los Angeles (V.M., S.B., E.M., K.E., M.R., A.M., D.Z., J.C., K.N.-M.), Los Angeles, California, USA
| | - Kiumars Edalati
- From the Glaucoma Division, Stein Eye Institute, David Geffen School of Medicine, University of California Los Angeles (V.M., S.B., E.M., K.E., M.R., A.M., D.Z., J.C., K.N.-M.), Los Angeles, California, USA
| | - Mahshad Rafiee
- From the Glaucoma Division, Stein Eye Institute, David Geffen School of Medicine, University of California Los Angeles (V.M., S.B., E.M., K.E., M.R., A.M., D.Z., J.C., K.N.-M.), Los Angeles, California, USA
| | - Arthur Martinyan
- From the Glaucoma Division, Stein Eye Institute, David Geffen School of Medicine, University of California Los Angeles (V.M., S.B., E.M., K.E., M.R., A.M., D.Z., J.C., K.N.-M.), Los Angeles, California, USA
| | - David Zhang
- From the Glaucoma Division, Stein Eye Institute, David Geffen School of Medicine, University of California Los Angeles (V.M., S.B., E.M., K.E., M.R., A.M., D.Z., J.C., K.N.-M.), Los Angeles, California, USA
| | - Fabien Scalzo
- Department of Computer Science, Pepperdine University (S.W., F.S.), Malibu, California, USA; Department of Computer Science, University of California Los Angeles (T.D., A.V., F.S.), Los Angeles, California, USA
| | - Joseph Caprioli
- From the Glaucoma Division, Stein Eye Institute, David Geffen School of Medicine, University of California Los Angeles (V.M., S.B., E.M., K.E., M.R., A.M., D.Z., J.C., K.N.-M.), Los Angeles, California, USA
| | - Kouros Nouri-Mahdavi
- From the Glaucoma Division, Stein Eye Institute, David Geffen School of Medicine, University of California Los Angeles (V.M., S.B., E.M., K.E., M.R., A.M., D.Z., J.C., K.N.-M.), Los Angeles, California, USA.
| |
Collapse
|