1
|
Zolotareva K, Dotsenko PA, Podkolodnyy N, Ivanov R, Makarova AL, Chadaeva I, Bogomolov A, Demenkov PS, Ivanisenko V, Oshchepkov D, Ponomarenko M. Candidate SNP Markers Significantly Altering the Affinity of the TATA-Binding Protein for the Promoters of Human Genes Associated with Primary Open-Angle Glaucoma. Int J Mol Sci 2024; 25:12802. [PMID: 39684516 DOI: 10.3390/ijms252312802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Primary open-angle glaucoma (POAG) is the most common form of glaucoma. This condition leads to optic nerve degeneration and eventually to blindness. Tobacco smoking, alcohol consumption, fast-food diets, obesity, heavy weight lifting, high-intensity physical exercises, and many other bad habits are lifestyle-related risk factors for POAG. By contrast, moderate-intensity aerobic exercise and the Mediterranean diet can alleviate POAG. In this work, we for the first time estimated the phylostratigraphic age indices (PAIs) of all 153 POAG-related human genes in the NCBI Gene Database. This allowed us to separate them into two groups: POAG-related genes that appeared before and after the phylum Chordata, that is, ophthalmologically speaking, before and after the camera-type eye evolved. Next, in the POAG-related genes' promoters, we in silico predicted all 3835 candidate SNP markers that significantly change the TATA-binding protein (TBP) affinity for these promoters and, through this molecular mechanism, the expression levels of these genes. Finally, we verified our results against five independent web services-PANTHER, DAVID, STRING, MetaScape, and GeneMANIA-as well as the ClinVar database. It was concluded that POAG is likely to be a symptom of the human self-domestication syndrome, a downside of being civilized.
Collapse
Affiliation(s)
- Karina Zolotareva
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
| | - Polina A Dotsenko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Nikolay Podkolodnyy
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
- Institute of Computational Mathematics and Mathematical Geophysics, SB RAS, Novosibirsk 630090, Russia
| | - Roman Ivanov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
| | - Aelita-Luiza Makarova
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
| | - Irina Chadaeva
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
| | - Anton Bogomolov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Pavel S Demenkov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
| | - Vladimir Ivanisenko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Dmitry Oshchepkov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Mikhail Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
| |
Collapse
|
2
|
Fritzsch B, Glover JC. Gene networks and the evolution of olfactory organs, eyes, hair cells and motoneurons: a view encompassing lancelets, tunicates and vertebrates. Front Cell Dev Biol 2024; 12:1340157. [PMID: 38533086 PMCID: PMC10963430 DOI: 10.3389/fcell.2024.1340157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
Key developmental pathways and gene networks underlie the formation of sensory cell types and structures involved in chemosensation, vision and mechanosensation, and of the efferents these sensory inputs can activate. We describe similarities and differences in these pathways and gene networks in selected species of the three main chordate groups, lancelets, tunicates, and vertebrates, leading to divergent development of olfactory receptors, eyes, hair cells and motoneurons. The lack of appropriately posited expression of certain transcription factors in lancelets and tunicates prevents them from developing vertebrate-like olfactory receptors and eyes, although they generate alternative structures for chemosensation and vision. Lancelets and tunicates lack mechanosensory cells associated with the sensation of acoustic stimuli, but have gravisensitive organs and ciliated epidermal sensory cells that may (and in some cases clearly do) provide mechanosensation and thus the capacity to respond to movement relative to surrounding water. Although functionally analogous to the vertebrate vestibular apparatus and lateral line, homology is questionable due to differences in the expression of the key transcription factors Neurog and Atoh1/7, on which development of vertebrate hair cells depends. The vertebrate hair cell-bearing inner ear and lateral line thus likely represent major evolutionary advances specific to vertebrates. Motoneurons develop in vertebrates under the control of the ventral signaling molecule hedgehog/sonic hedgehog (Hh,Shh), against an opposing inhibitory effect mediated by dorsal signaling molecules. Many elements of Shh-signaling and downstream genes involved in specifying and differentiating motoneurons are also exhibited by lancelets and tunicates, but the repertoire of MNs in vertebrates is broader, indicating greater diversity in motoneuron differentiation programs.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Biological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Joel C. Glover
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
- Laboratory of Neural Development and Optical Recording (NDEVOR), Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
3
|
Notley SR, Mitchell D, Taylor NAS. A century of exercise physiology: concepts that ignited the study of human thermoregulation. Part 4: evolution, thermal adaptation and unsupported theories of thermoregulation. Eur J Appl Physiol 2024; 124:147-218. [PMID: 37796290 DOI: 10.1007/s00421-023-05262-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/13/2023] [Indexed: 10/06/2023]
Abstract
This review is the final contribution to a four-part, historical series on human exercise physiology in thermally stressful conditions. The series opened with reminders of the principles governing heat exchange and an overview of our contemporary understanding of thermoregulation (Part 1). We then reviewed the development of physiological measurements (Part 2) used to reveal the autonomic processes at work during heat and cold stresses. Next, we re-examined thermal-stress tolerance and intolerance, and critiqued the indices of thermal stress and strain (Part 3). Herein, we describe the evolutionary steps that endowed humans with a unique potential to tolerate endurance activity in the heat, and we examine how those attributes can be enhanced during thermal adaptation. The first of our ancestors to qualify as an athlete was Homo erectus, who were hairless, sweating specialists with eccrine sweat glands covering almost their entire body surface. Homo sapiens were skilful behavioural thermoregulators, which preserved their resource-wasteful, autonomic thermoeffectors (shivering and sweating) for more stressful encounters. Following emigration, they regularly experienced heat and cold stress, to which they acclimatised and developed less powerful (habituated) effector responses when those stresses were re-encountered. We critique hypotheses that linked thermoregulatory differences to ancestry. By exploring short-term heat and cold acclimation, we reveal sweat hypersecretion and powerful shivering to be protective, transitional stages en route to more complete thermal adaptation (habituation). To conclude this historical series, we examine some of the concepts and hypotheses of thermoregulation during exercise that did not withstand the tests of time.
Collapse
Affiliation(s)
- Sean R Notley
- Defence Science and Technology Group, Department of Defence, Melbourne, Australia
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Duncan Mitchell
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
- School of Human Sciences, University of Western Australia, Crawley, Australia
| | - Nigel A S Taylor
- Research Institute of Human Ecology, College of Human Ecology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Rasys AM, Wegerski A, Trainor PA, Hufnagel RB, Menke DB, Lauderdale JD. Dynamic changes in ocular shape during human development and its implications for retina fovea formation. Bioessays 2024; 46:e2300054. [PMID: 38037292 PMCID: PMC11614145 DOI: 10.1002/bies.202300054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/10/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023]
Abstract
The human fovea is known for its distinctive pit-like appearance, which results from the displacement of retinal layers superficial to the photoreceptors cells. The photoreceptors are found at high density within the foveal region but not the surrounding retina. Efforts to elucidate the mechanisms responsible for these unique features have ruled out cell death as an explanation for pit formation and changes in cell proliferation as the cause of increased photoreceptor density. These findings have led to speculation that mechanical forces acting within and on the retina during development underly the formation of foveal architecture. Here we review eye morphogenesis and retinal remodeling in human embryonic development. Our meta-analysis of the literature suggests that fovea formation is a protracted process involving dynamic changes in ocular shape that start early and continue throughout most of human embryonic development. From these observations, we propose a new model for fovea development.
Collapse
Affiliation(s)
- Ashley M. Rasys
- Department of Cellular Biology, The University of Georgia, Athens, Georgia, USA
| | - Andrew Wegerski
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Paul A. Trainor
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
- Department of Anatomy & Cell Biology, The University of Kansas School of Medicine, Kansas City, Kansas, USA
| | - Robert B. Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Douglas B. Menke
- Department of Genetics, The University of Georgia, Athens, Georgia, USA
| | - James D. Lauderdale
- Department of Cellular Biology, The University of Georgia, Athens, Georgia, USA
- Neuroscience Division of the Biomedical and Health Sciences Institute, The University of Georgia, Athens, Georgia, USA
| |
Collapse
|
5
|
Wang X, Ding G, Yang P, Cheng G, Kong W, Xu Z. Teleost Eye Is the Portal of IHNV Entry and Contributes to a Robust Mucosal Immune Response. Int J Mol Sci 2023; 25:160. [PMID: 38203332 PMCID: PMC10778588 DOI: 10.3390/ijms25010160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
The ocular mucosa (OM) is an important and unique part of the vertebrate mucosal immune system. The OM plays an important role in maintaining visual function and defending against foreign antigens or microorganisms, while maintaining a balance between the two through complex regulatory mechanisms. However, the function of ocular mucosal defense against foreign pathogens and mucosal immune response in bony fish are still less studied. To acquire deeper understanding into the mucosal immunity of the OM in teleost fish, we established a study of the immune response of rainbow trout (Oncorhynchus mykiss) infected with the infectious hematopoietic necrosis virus (IHNV). Our findings revealed that IHNV could successfully infiltrate the trout's OM, indicating that the OM could be an important portal for the IHNV. Furthermore, qPCR and RNA-Seq analysis results showed that a large number of immune-related genes were significantly upregulated in the OM of trout with IHNV infection. Critically, the results of our RNA-Seq analysis demonstrated that viral infection triggered a robust immune response, as evidenced by the substantial induction of antiviral, innate, and adaptive immune-related genes in the OM of infected fish, which underscored the essential role of the OM in viral infection. Overall, our findings revealed a previously unknown function of teleost OM in antiviral defense, and provided a theoretical basis for the study of the mucosal immunity of fish.
Collapse
Affiliation(s)
- Xinyou Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China;
| | - Guangyi Ding
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (G.D.); (G.C.); (W.K.)
| | - Peng Yang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (G.D.); (G.C.); (W.K.)
| | - Gaofeng Cheng
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (G.D.); (G.C.); (W.K.)
| | - Weiguang Kong
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (G.D.); (G.C.); (W.K.)
| | - Zhen Xu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (G.D.); (G.C.); (W.K.)
| |
Collapse
|
6
|
Wolf J, Rasmussen DK, Sun YJ, Vu JT, Wang E, Espinosa C, Bigini F, Chang RT, Montague AA, Tang PH, Mruthyunjaya P, Aghaeepour N, Dufour A, Bassuk AG, Mahajan VB. Liquid-biopsy proteomics combined with AI identifies cellular drivers of eye aging and disease in vivo. Cell 2023; 186:4868-4884.e12. [PMID: 37863056 PMCID: PMC10720485 DOI: 10.1016/j.cell.2023.09.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/26/2023] [Accepted: 09/13/2023] [Indexed: 10/22/2023]
Abstract
Single-cell analysis in living humans is essential for understanding disease mechanisms, but it is impractical in non-regenerative organs, such as the eye and brain, because tissue biopsies would cause serious damage. We resolve this problem by integrating proteomics of liquid biopsies with single-cell transcriptomics from all known ocular cell types to trace the cellular origin of 5,953 proteins detected in the aqueous humor. We identified hundreds of cell-specific protein markers, including for individual retinal cell types. Surprisingly, our results reveal that retinal degeneration occurs in Parkinson's disease, and the cells driving diabetic retinopathy switch with disease stage. Finally, we developed artificial intelligence (AI) models to assess individual cellular aging and found that many eye diseases not associated with chronological age undergo accelerated molecular aging of disease-specific cell types. Our approach, which can be applied to other organ systems, has the potential to transform molecular diagnostics and prognostics while uncovering new cellular disease and aging mechanisms.
Collapse
Affiliation(s)
- Julian Wolf
- Molecular Surgery Laboratory, Stanford University, Palo Alto, CA 94304, USA; Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA 94304, USA
| | - Ditte K Rasmussen
- Molecular Surgery Laboratory, Stanford University, Palo Alto, CA 94304, USA; Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA 94304, USA; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Young Joo Sun
- Molecular Surgery Laboratory, Stanford University, Palo Alto, CA 94304, USA; Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA 94304, USA
| | - Jennifer T Vu
- Molecular Surgery Laboratory, Stanford University, Palo Alto, CA 94304, USA; Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA 94304, USA
| | - Elena Wang
- Molecular Surgery Laboratory, Stanford University, Palo Alto, CA 94304, USA; Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA 94304, USA
| | - Camilo Espinosa
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Fabio Bigini
- Molecular Surgery Laboratory, Stanford University, Palo Alto, CA 94304, USA; Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA 94304, USA
| | - Robert T Chang
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA 94304, USA
| | - Artis A Montague
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA 94304, USA
| | - Peter H Tang
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA; Retina Consultants of Minnesota, Edina, MN 55435, USA
| | - Prithvi Mruthyunjaya
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA 94304, USA
| | - Nima Aghaeepour
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Antoine Dufour
- Departments of Physiology and Pharmacology & Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Alexander G Bassuk
- Departments of Pediatrics and Neurology, The Iowa Neuroscience Institute (INI), University of Iowa, Iowa City, IA 52242, USA
| | - Vinit B Mahajan
- Molecular Surgery Laboratory, Stanford University, Palo Alto, CA 94304, USA; Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA 94304, USA; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| |
Collapse
|
7
|
Hayes SC, Hofmann SG. A biphasic relational approach to the evolution of human consciousness: Un enfoque relacional bifásico para la evolución de la conciencia humana. Int J Clin Health Psychol 2023; 23:100380. [PMID: 36937548 PMCID: PMC10017357 DOI: 10.1016/j.ijchp.2023.100380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/10/2023] [Indexed: 03/09/2023] Open
Abstract
Background/objective Human consciousness is arguably unique, and its features are hard to explain. Continuous and discrete accounts of consciousness are commonly viewed as incompatible, but both have limitations. Continuous accounts cannot readily account for what appears to be unique about human consciousness; discrete accounts have a hard time explaining how human consciousness could have evolved. The present position paper shows how both continuous and discontinuously elements can be combined. Method A biphasic model is constructed by unifying complex systems theory, the evolution of symbolic reasoning as a relational extension of human cooperation, and evolutionary science. The application of this approach to modern views of consciousness is then explored. Results Our analysis suggests that human consciousness may be viewed as a discontinuous event, that emerged from continuous foundations. This biphasic account contains processes that can be targeted clinically. For example, developmentally delayed children with problems in consciousness may be helped by targeting the processes the present account suggests are important at different levels of complexity. Conclusions This biphasic relational approach fits with the evolutionary record and with data on human cognitive development. It may be useful in guiding clinical intervention.
Collapse
|
8
|
Misthos LM, Krassanakis V, Merlemis N, Kesidis AL. Modeling the Visual Landscape: A Review on Approaches, Methods and Techniques. SENSORS (BASEL, SWITZERLAND) 2023; 23:8135. [PMID: 37836966 PMCID: PMC10574952 DOI: 10.3390/s23198135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/14/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023]
Abstract
Modeling the perception and evaluation of landscapes from the human perspective is a desirable goal for several scientific domains and applications. Human vision is the dominant sense, and human eyes are the sensors for apperceiving the environmental stimuli of our surroundings. Therefore, exploring the experimental recording and measurement of the visual landscape can reveal crucial aspects about human visual perception responses while viewing the natural or man-made landscapes. Landscape evaluation (or assessment) is another dimension that refers mainly to preferences of the visual landscape, involving human cognition as well, in ways that are often unpredictable. Yet, landscape can be approached by both egocentric (i.e., human view) and exocentric (i.e., bird's eye view) perspectives. The overarching approach of this review article lies in systematically presenting the different ways for modeling and quantifying the two 'modalities' of human perception and evaluation, under the two geometric perspectives, suggesting integrative approaches on these two 'diverging' dualities. To this end, several pertinent traditions/approaches, sensor-based experimental methods and techniques (e.g., eye tracking, fMRI, and EEG), and metrics are adduced and described. Essentially, this review article acts as a 'guide-map' for the delineation of the different activities related to landscape experience and/or management and to the valid or potentially suitable types of stimuli, sensors techniques, and metrics for each activity. Throughout our work, two main research directions are identified: (1) one that attempts to transfer the visual landscape experience/management from the one perspective to the other (and vice versa); (2) another one that aims to anticipate the visual perception of different landscapes and establish connections between perceptual processes and landscape preferences. As it appears, the research in the field is rapidly growing. In our opinion, it can be greatly advanced and enriched using integrative, interdisciplinary approaches in order to better understand the concepts and the mechanisms by which the visual landscape, as a complex set of stimuli, influences visual perception, potentially leading to more elaborate outcomes such as the anticipation of landscape preferences. As an effect, such approaches can support a rigorous, evidence-based, and socially just framework towards landscape management, protection, and decision making, based on a wide spectrum of well-suited and advanced sensor-based technologies.
Collapse
Affiliation(s)
- Loukas-Moysis Misthos
- Department of Surveying and Geoinformatics Engineering, University of West Attica, GR-12243 Athens, Greece; (L.-M.M.); (V.K.); (N.M.)
- Department of Public and One Health, University of Thessaly, GR-43100 Karditsa, Greece
| | - Vassilios Krassanakis
- Department of Surveying and Geoinformatics Engineering, University of West Attica, GR-12243 Athens, Greece; (L.-M.M.); (V.K.); (N.M.)
| | - Nikolaos Merlemis
- Department of Surveying and Geoinformatics Engineering, University of West Attica, GR-12243 Athens, Greece; (L.-M.M.); (V.K.); (N.M.)
| | - Anastasios L. Kesidis
- Department of Surveying and Geoinformatics Engineering, University of West Attica, GR-12243 Athens, Greece; (L.-M.M.); (V.K.); (N.M.)
| |
Collapse
|
9
|
Fleury V. Dynamics of early stages of nose morphogenesis. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2022; 45:93. [PMID: 36401057 PMCID: PMC9674774 DOI: 10.1140/epje/s10189-022-00245-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
The formation of sensory organs is an important developmental and evolutionary question. In the context of regenerative medicine also, it is important to know as accurately as possible how sensory organs form. The formation of ears, eyes or nose stems presumably from tissue thickenings called placodes Graham and Shimeld (J Anat 222(1):32-40, 2013), Horie et al. (Nature 560:228-232, 2018) which become these organs after processes termed inductions. However, the origin of the placodes, the mechanism of induction and the overall face organization are not understood. Recently, it has been suggested that there is a physical principle to face organization. Indeed, it has been shown that there exists a pattern of rings and rays in the early blastula which defines the position of face landmarks, especially the ears and eyes Fleury et al. (Second order division in sectors as a prepattern for sensory organs in vertebrate development, 2021), Fleury and Abourachid (Eu Phys J E 45:31, 2022). Tensions in the sectors defined by the intersections of the said rings and rays create the actual face features. I report here that a similar situation exists for the nose. This explains the robustness of face formation in the chordates phylum. By studying nasal pit formation in the chicken embryo by time-lapse (T-L) video microscopy, I show that the nasal placode originates in a narrow sector deformed by tension forces following the biaxial pattern of rings and rays mentioned above. Cells align in the pattern and exert organized forces. Further contractions of the pattern contribute to inducing the nasal pit. The observation of the early pre-pattern of lines which locks the facial features explains readily a number of facts regarding sensory organs. Especially the existence of a lacrimal canal between the eye and the nose Lefevre and Freitag (Semin Ophthalmo l 27(5-6):175-86, 2012), or of a slit connecting the nose to the mouth, the correlation between nose, mouth and eye morphogenesis Dubourg et al. (J Rare Dis 2(8), 2007), the presence of shallow valleys on the nasal and optic vesicles, the medio-lateral asymmetry of nostrils with often a bent slit Liu et al. (PLoS ONE 12: e0181928, 2017), the uneven number of nostrils in many fish Cox (J R Soc Interf 5(23):575-593, 2008) and possibly the transition between agnatha and gnathostomes Gai and Zhu (Chinese Sci Bull 57(31), 2012): all appear under this light, geometrically straightforward. The nasal pit forms in a sector of tissue which was present on the blastodic (early embryonic stage), and which is projected onto the nasal vesicle during neurulation. The nasal pit forms along a hairpin of tissue. The top part of the hairpin forms the nares, and the bottom part a groove often visible in many animals.
Collapse
Affiliation(s)
- Vincent Fleury
- Laboratoire Matière et Systèmes Complexes, Université de Paris Cité/CNRS UMR 7057, 10 Rue Alice Domont et Léonie Duquet, 75013, Paris, France.
| |
Collapse
|
10
|
Fritzsch B, Martin PR. Vision and retina evolution: how to develop a retina. IBRO Neurosci Rep 2022; 12:240-248. [PMID: 35449767 PMCID: PMC9018162 DOI: 10.1016/j.ibneur.2022.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/30/2022] [Indexed: 12/29/2022] Open
Abstract
Early in vertebrate evolution, a single homeobox (Hox) cluster in basal chordates was quadrupled to generate the Hox gene clusters present in extant vertebrates. Here we ask how this expanded gene pool may have influenced the evolution of the visual system. We suggest that a single neurosensory cell type split into ciliated sensory cells (photoreceptors, which transduce light) and retinal ganglion cells (RGC, which project to the brain). In vertebrates, development of photoreceptors is regulated by the basic helix-loop-helix (bHLH) transcription factor Neurod1 whereas RGC development depends on Atoh7 and related bHLH genes. Lancelet (a basal chordate) does not express Neurod or Atoh7 and possesses a few neurosensory cells with cilia that reach out of the opening of the neural tube. Sea-squirts (Ascidians) do not express Neurod and express a different bHLH gene, Atoh8, that is likely expressed in the anterior vesicle. Recent data indicate the neurosensory cells in lancelets may correspond to three distinct eye fields in ascidians, which in turn may be the basis of the vertebrate retina, pineal and parapineal. In this review we contrast the genetic control of visual structure development in these chordates with that of basal vertebrates such as lampreys and hagfish, and jawed vertebrates. We propose an evolutionary sequence linking whole-genome duplications, initially to a split between photoreceptor and projection neurons (RGC) and subsequently between pineal and lateral eye structures.
Collapse
|
11
|
Fletcher A, Benveniste M. A new method for training creativity: narrative as an alternative to divergent thinking. Ann N Y Acad Sci 2022; 1512:29-45. [PMID: 35267201 PMCID: PMC9313823 DOI: 10.1111/nyas.14763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/11/2022] [Indexed: 11/28/2022]
Abstract
Creativity is a major source of innovation, growth, adaptability, and psychological resilience, making it a top priority of governments, global corporations, educational institutions, and other organizations that collectively invest hundreds of millions of dollars annually into training. The current foundation of creativity training is the technique known as divergent thinking; yet for decades, concerns have been raised about the adequacy of divergent thinking: it is incongruent with the creative processes of children and most adult creatives, and it has failed to yield expected downstream results in creative production. In this article, we present an alternative approach to creativity training, based in neural processes different from those involved in divergent thinking and drawing upon a previously unused resource for creativity research: narrative theory. We outline a narrative theory of creativity training; illustrate with examples of training and assessment from our ongoing work with the U.S. Department of Defense, Fortune 50 companies, and graduate and professional schools; and explain how the theory can help fill prominent lacunae and gaps in existing creativity research, including the creativity of children, the psychological mechanisms of scientific and technological innovation, and the failure of computer artificial intelligence to replicate human creativity.
Collapse
Affiliation(s)
- Angus Fletcher
- Project Narrative, The Ohio State University, Columbus, Ohio
| | - Mike Benveniste
- Project Narrative, The Ohio State University, Columbus, Ohio
| |
Collapse
|
12
|
Shepeleva IP. A Comparative Analysis of the Camera-like Eyes of Jumping Spiders and Humans. Vision (Basel) 2021; 6:vision6010002. [PMID: 35076633 PMCID: PMC8788500 DOI: 10.3390/vision6010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 11/25/2022] Open
Abstract
Among invertebrates, jumping spiders are one of the few groups whose representatives have camera-like eyes, and the only group whose representatives have fovea. The latter is present in the camera-like eyes of representatives of some groups of vertebrates, including humans. Based on the literature data, a comparative analysis of the camera-like eyes of jumping spiders and humans was carried out, in the course of which the similarities and differences in the properties and functions of their basic components were identified. The presented data are necessary for the formation of knowledge about jumping spiders as model animals for studying the functioning of the visual system.
Collapse
Affiliation(s)
- Irina P Shepeleva
- Laboratory of Visual Physiology, Pavlov Institute of Physiology, Russian Academy of Sciences, Makarova emb. 6, 199034 St. Petersburg, Russia
| |
Collapse
|
13
|
Perry WB, Kaufmann J, Solberg MF, Brodie C, Coral Medina AM, Pillay K, Egerton A, Harvey A, Phillips KP, Coughlan J, Egan F, Grealis R, Hutton S, Leseur F, Ryan S, Poole R, Rogan G, Ryder E, Schaal P, Waters C, Wynne R, Taylor M, Prodöhl P, Creer S, Llewellyn M, McGinnity P, Carvalho G, Glover KA. Domestication-induced reduction in eye size revealed in multiple common garden experiments: The case of Atlantic salmon ( Salmo salar L.). Evol Appl 2021; 14:2319-2332. [PMID: 34603501 PMCID: PMC8477603 DOI: 10.1111/eva.13297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 08/24/2021] [Indexed: 11/28/2022] Open
Abstract
Domestication leads to changes in traits that are under directional selection in breeding programmes, though unintentional changes in nonproduction traits can also arise. In offspring of escaping fish and any hybrid progeny, such unintentionally altered traits may reduce fitness in the wild. Atlantic salmon breeding programmes were established in the early 1970s, resulting in genetic changes in multiple traits. However, the impact of domestication on eye size has not been studied. We measured body size corrected eye size in 4000 salmon from six common garden experiments conducted under artificial and natural conditions, in freshwater and saltwater environments, in two countries. Within these common gardens, offspring of domesticated and wild parents were crossed to produce 11 strains, with varying genetic backgrounds (wild, domesticated, F1 hybrids, F2 hybrids and backcrosses). Size-adjusted eye size was influenced by both genetic and environmental factors. Domesticated fish reared under artificial conditions had smaller adjusted eye size when compared to wild fish reared under identical conditions, in both the freshwater and marine environments, and in both Irish and Norwegian experiments. However, in parr that had been introduced into a river environment shortly after hatching and sampled at the end of their first summer, differences in adjusted eye size observed among genetic groups were of a reduced magnitude and were nonsignificant in 2-year-old sea migrating smolts sampled in the river immediately prior to sea entry. Collectively, our findings could suggest that where natural selection is present, individuals with reduced eye size are maladapted and consequently have reduced fitness, building on our understanding of the mechanisms that underlie a well-documented reduction in the fitness of the progeny of domesticated salmon, including hybrid progeny, in the wild.
Collapse
Affiliation(s)
- William Bernard Perry
- Molecular Ecology and Fisheries Genetics LaboratorySchool of Biological ScienceBangor UniversityBangor, GwyneddUK
- Water Research InstituteSchool of BiosciencesCardiff UniversityCardiffUK
- Population Genetics Research GroupInstitute of Marine ResearchBergenNorway
| | - Joshka Kaufmann
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Marine InstituteFurnace, NewportCo. MayoIreland
| | | | - Christopher Brodie
- Ecosystems and Environment Research CentreSchool of Environment and Life SciencesUniversity of SalfordSalfordUK
| | | | - Kirthana Pillay
- Molecular Ecology and Fisheries Genetics LaboratorySchool of Biological ScienceBangor UniversityBangor, GwyneddUK
| | - Anna Egerton
- Molecular Ecology and Fisheries Genetics LaboratorySchool of Biological ScienceBangor UniversityBangor, GwyneddUK
| | - Alison Harvey
- Population Genetics Research GroupInstitute of Marine ResearchBergenNorway
| | - Karl P. Phillips
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Marine InstituteFurnace, NewportCo. MayoIreland
| | - Jamie Coughlan
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
| | - Fintan Egan
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Marine InstituteFurnace, NewportCo. MayoIreland
| | - Ronan Grealis
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Marine InstituteFurnace, NewportCo. MayoIreland
| | - Steve Hutton
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
| | - Floriane Leseur
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Marine InstituteFurnace, NewportCo. MayoIreland
| | - Sarah Ryan
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Marine InstituteFurnace, NewportCo. MayoIreland
| | | | - Ger Rogan
- Marine InstituteFurnace, NewportCo. MayoIreland
| | - Elizabeth Ryder
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Marine InstituteFurnace, NewportCo. MayoIreland
| | - Patrick Schaal
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Marine InstituteFurnace, NewportCo. MayoIreland
- Institute of BiodiversityAnimal Health & Comparative MedicineUniversity of GlasgowGlasgowUK
| | - Catherine Waters
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Marine InstituteFurnace, NewportCo. MayoIreland
| | - Robert Wynne
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
| | - Martin Taylor
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | - Paulo Prodöhl
- Institute for Global Food SecuritySchool of Biological SciencesMedical Biology CentreQueen’s UniversityBelfastUK
| | - Simon Creer
- Molecular Ecology and Fisheries Genetics LaboratorySchool of Biological ScienceBangor UniversityBangor, GwyneddUK
| | - Martin Llewellyn
- Institute of BiodiversityAnimal Health & Comparative MedicineUniversity of GlasgowGlasgowUK
| | - Philip McGinnity
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Marine InstituteFurnace, NewportCo. MayoIreland
| | - Gary Carvalho
- Molecular Ecology and Fisheries Genetics LaboratorySchool of Biological ScienceBangor UniversityBangor, GwyneddUK
| | - Kevin Alan Glover
- Population Genetics Research GroupInstitute of Marine ResearchBergenNorway
- Institute of BiologyUniversity of BergenBergenNorway
| |
Collapse
|