1
|
Song N, Welsh RA, Sadegh-Nasseri S. Proper development of long-lived memory CD4 T cells requires HLA-DO function. Front Immunol 2023; 14:1277609. [PMID: 37908352 PMCID: PMC10613709 DOI: 10.3389/fimmu.2023.1277609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/03/2023] [Indexed: 11/02/2023] Open
Abstract
Introduction HLA-DO (DO) is an accessory protein that binds DM for trafficking to MIIC and has peptide editing functions. DO is mainly expressed in thymic medulla and B cells. Using biochemical experiments, our lab has discovered that DO has differential effects on editing peptides of different sequences: DO increases binding of DM-resistant peptides and reduces the binding of DM-sensitive peptides to the HLA-DR1 molecules. In a separate line of work, we have established that appropriate densities of antigen presentation by B cells during the contraction phase of an infection, induces quiescence in antigen experienced CD4 T cells, as they differentiate into memory T cells. This quiescence phenotype helps memory CD4 T cell survival and promotes effective memory responses to secondary Ag challenge. Methods Based on our mechanistic understanding of DO function, it would be expected that if the immunodominant epitope of antigen is DM-resistant, presentation of decreased densities of pMHCII by B cells would lead to faulty development of memory CD4 T cells in the absence of DO. We explored the effects of DO on development of memory CD4 T cells and B cells utilizing two model antigens, H5N1-Flu Ag bearing DM-resistant, and OVA protein, which has a DM-sensitive immunodominant epitope and four mouse strains including two DO-deficient Tg mice. Using Tetramers and multiple antibodies against markers of memory CD4 T cells and B cells, we tracked memory development. Results We found that immunized DR1+DO-KO mice had fewer CD4 memory T cells and memory B cells as compared to the DR1+DO-WT counterpart and had compromised recall responses. Conversely, OVA specific memory responses elicited in HA immunized DR1+DO-KO mice were normal. Conclusion These results demonstrate that in the absence of DO, the presentation of cognate foreign antigens in the DO-KO mice is altered and can impact the proper development of memory cells. These findings provide new insights on vaccination design leading to better immune memory responses.
Collapse
|
2
|
Welsh RA, Sadegh-Nasseri S. The love and hate relationship of HLA-DM/DO in the selection of immunodominant epitopes. Curr Opin Immunol 2020; 64:117-123. [PMID: 32599219 DOI: 10.1016/j.coi.2020.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022]
Abstract
Successful activation of CD4 T cells is centered around the ability of antigen presenting cells to successfully process, select Class II immunodominant epitopes from exogenous antigens and to present it to cognate T cells. To achieve this, newly synthesized MHC-II molecules are transferred to a specialized compartment which contain both exogenous antigens and the Class II processing machinery. Here in a process known as 'editing,' the Class II accessory molecule DM (HLA-DM human; murine H2-M) facilitates the loading and selection of exogenous peptides to MHC class II molecules thereby assuring proper selection of immunodominant epitopes. A second Class II accessory molecule, DO (HLA-DO human; murine H2-O), mainly present in B cells and thymic epithelium also contributes to the selection of immunodominant epitopes. Yet, despite a wealth of mechanistic insights into how DM functions, understanding the contributions of DO to epitope selection has proven to be highly challenging. In this review, we have attempted to discuss published in vitro and in vivo data during the past three years with insights into the biology of DO.
Collapse
Affiliation(s)
- Robin A Welsh
- Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Scheherazade Sadegh-Nasseri
- Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
3
|
Welsh RA, Song N, Foss CA, Boronina T, Cole RN, Sadegh-Nasseri S. Lack of the MHC class II chaperone H2-O causes susceptibility to autoimmune diseases. PLoS Biol 2020; 18:e3000590. [PMID: 32069316 PMCID: PMC7028248 DOI: 10.1371/journal.pbio.3000590] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/13/2020] [Indexed: 01/14/2023] Open
Abstract
DO (HLA-DO, in human; murine H2-O) is a highly conserved nonclassical major histocompatibility complex class II (MHC II) accessory molecule mainly expressed in the thymic medulla and B cells. Previous reports have suggested possible links between DO and autoimmunity, Hepatitis C (HCV) infection, and cancer, but the mechanism of how DO contributes to these diseases remains unclear. Here, using a combination of various in vivo approaches, including peptide elution, mixed lymphocyte reaction, T-cell receptor (TCR) deep sequencing, tetramer-guided naïve CD4 T-cell precursor enumeration, and whole-body imaging, we report that DO affects the repertoire of presented self-peptides by B cells and thymic epithelium. DO induces differential effects on epitope presentation and thymic selection, thereby altering CD4 T-cell precursor frequencies. Our findings were validated in two autoimmune disease models by demonstrating that lack of DO increases autoreactivity and susceptibility to autoimmune disease development. A combination of cellular, molecular and in vivo approaches reveals that the non-classical MHC class II chaperone DO controls CD4 T cell thymic selection; its absence leads to susceptibility to two murine autoimmune diseases, collagen-induced arthritis and experimental autoimmune encephalomyelitis.
Collapse
Affiliation(s)
- Robin A. Welsh
- Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Nianbin Song
- Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Catherine A. Foss
- Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Tatiana Boronina
- Mass Spectrometry and Proteomics Core, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Robert N. Cole
- Mass Spectrometry and Proteomics Core, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Scheherazade Sadegh-Nasseri
- Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
4
|
Welsh R, Song N, Sadegh-Nasseri S. What to do with HLA-DO/H-2O two decades later? Immunogenetics 2019; 71:189-196. [PMID: 30683973 PMCID: PMC6377320 DOI: 10.1007/s00251-018-01097-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022]
Abstract
The main objective of antigen processing is to orchestrate the selection of immunodominant epitopes for recognition by CD4 T cells. To achieve this, MHC class II molecules have evolved with a flexible peptide-binding groove in need of a bound peptide. Newly synthesized MHC-II molecules bind a class II invariant chain (Ii) upon synthesis and are shuttled to a specialized compartment, where they encounter exogenous antigens. Ii serves multiple functions, one of which is to maintain the shape of the MHC-II groove so that it can readily bind exogenous antigens upon dissociation of the Ii peptide in MHC- II compartment. MIIC contains processing enzymes, one or both accessory molecules, HLA-DM/H2-M (DM) and HLA-DO/H2-O (DO), and optimal denaturing conditions. In a process known as "editing," DM facilitates the dissociation of the invariant chain peptide, CLIP, for exchange with exogenous antigens. Despite the availability of mechanistic insights into DM functions, understanding how DO contributes to epitope selection has proven to be more challenging. The current dogma assumes that DO inhibits DM, whereas an opposing model suggests that DO fine-tunes the epitope selection process. Understanding which of these, or potentially other models of DO function is important, as DO variants have been linked to autoimmunity, cancer, and the generation of broadly neutralizing antibodies to viruses. This review therefore attempts to evaluate experimental evidence in support of these hypotheses, with an emphasis on the less discussed model, and to explore intriguing questions about the importance of DO in biology.
Collapse
Affiliation(s)
- Robin Welsh
- Graduate Program in Immunology and Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Nianbin Song
- Graduate Program in Immunology and Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Scheherazade Sadegh-Nasseri
- Graduate Program in Immunology and Department of Pathology, Johns Hopkins University, Baltimore, MD, USA.
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
5
|
Liu YZ, Maney P, Puri J, Zhou Y, Baddoo M, Strong M, Wang YP, Flemington E, Deng HW. RNA-sequencing study of peripheral blood monocytes in chronic periodontitis. Gene 2016; 581:152-60. [PMID: 26812355 DOI: 10.1016/j.gene.2016.01.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 11/25/2022]
Abstract
BACKGROUND Monocytes are an important cell type in chronic periodontitis (CP) by interacting with oral bacteria and mediating host immune response. The aim of this study was to reveal new functional genes and pathways for CP at monocyte transcriptomic level. METHODS We performed an RNA-sequencing (RNA-seq) study of peripheral blood monocytes (PBMs) in 5 non-smoking moderate to severe CP (case) individuals vs. 5 controls. We took advantage of a microarray study of periodontitis to support our findings. We also performed pathway-based analysis on the identified differentially expressed (DEx) transcripts/isoforms using DAVID (Database for Annotation, Visualization and Integrated Discovery). RESULTS Through differential expression analyses at both whole gene (or whole non-coding RNA) and isoform levels, we identified 380 DEx transcripts and 5955 DEx isoforms with a PPEE (posterior probability of equal expression) of <0.05. Pervasive up-regulation of transcripts at isoform level in CP vs. control individuals was observed, suggesting a more functionally active monocyte transcriptome for CP. By comparing with the microarray dataset, we identified several CP-associated novel genes (e.g., FACR and CUX1) that have functions to interact with invading microorganisms or enhance TNF production on lipopolysaccharide stimulation. DAVID analysis of both the RNA-seq and the microarray datasets leads to converging evidence supporting "endocytosis", "cytokine production" and "apoptosis" as significant biological processes in CP. CONCLUSIONS As the first RNA-seq study of PBMs for CP, this study provided novel findings at both gene (e.g., FCAR and CUX1) and biological process level. The findings will contribute to better understanding of CP disease mechanisms.
Collapse
Affiliation(s)
- Yao-Zhong Liu
- Center of Genomics and Bioinformatics, Dept. of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States.
| | - Pooja Maney
- Dept. of Periodontics, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, LA, United States.
| | - Jyoti Puri
- Dept. of Periodontics, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Yu Zhou
- Center of Genomics and Bioinformatics, Dept. of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States
| | - Melody Baddoo
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - Michael Strong
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - Yu-Ping Wang
- Dept. of Biomedical Engineering, Tulane University School of Science and Engineering, United States
| | - Erik Flemington
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - Hong-Wen Deng
- Center of Genomics and Bioinformatics, Dept. of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States
| |
Collapse
|
6
|
Genetic variants in the major histocompatibility complex class I and class II genes are associated with diisocyanate-induced Asthma. J Occup Environ Med 2014; 56:382-7. [PMID: 24709764 DOI: 10.1097/jom.0000000000000138] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To investigate the association between single nucleotide polymorphisms (SNPs) located across the major histocompatibility complex and susceptibility to diisocyanate-induced asthma (DA). METHODS The study population consisted of 140 diisocyanate-exposed workers. Genotyping was performed using the Illumina GoldenGate major histocompatibility complex panels. RESULTS The HLA-E rs1573294 and HLA-DPB1 rs928976 SNPs were associated with an increased risk of DA under dominant (odds ratio [OR], 6.27; 95% confidence interval [CI], 2.37 to 16.6; OR, 2.79, 95% CI, 0.99 to 7.81, respectively) and recessive genetic models (OR, 6.27, 95% CI, 1.63 to 24.13; OR, 10.10, 95% CI, 3.16 to 32.33, respectively). The HLA-B rs1811197, HLA-DOA rs3128935, and HLA-DQA2 rs7773955 SNPs conferred an increased risk of DA in a dominant model (OR, 7.64, 95% CI, 2.25 to 26.00; OR, 19.69, 95% CI, 2.89 to 135.25; OR, 8.43, 95% CI, 3.03 to 23.48, respectively). CONCLUSION These results suggest that genetic variations within HLA genes play a role in DA risk.
Collapse
|
7
|
Poluektov YO, Kim A, Sadegh-Nasseri S. HLA-DO and Its Role in MHC Class II Antigen Presentation. Front Immunol 2013; 4:260. [PMID: 24009612 PMCID: PMC3756479 DOI: 10.3389/fimmu.2013.00260] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 08/15/2013] [Indexed: 11/25/2022] Open
Abstract
Helper T cells are stimulated to fight infections or diseases upon recognition of peptides from antigens that are processed and presented by the proteins of Major Histocompatibility Complex (MHC) Class II molecules. Degradation of a full protein into small peptide fragments is a lengthy process consisting of many steps and chaperones. Malfunctions during any step of antigen processing could lead to the development of self-reactive T cells or defective immune response to pathogens. Although much has been accomplished regarding how antigens are processed and presented to T cells, many questions still remain unanswered, preventing the design of therapeutics for direct intervention with antigen processing. Here, we review published work on the discovery and function of a MHC class II molecular chaperone, HLA-DO, in human, and its mouse analog H2-O, herein called DO. While DO was originally discovered decades ago, elucidating its function has proven challenging. DO was discovered in association with another chaperone HLA-DM (DM) but unlike DM, its distribution is more tissue specific, and its function more subtle.
Collapse
Affiliation(s)
- Yuri O Poluektov
- Graduate Program in Immunology, Johns Hopkins University , Baltimore, MD , USA
| | | | | |
Collapse
|
8
|
Poluektov YO, Kim A, Hartman IZ, Sadegh-Nasseri S. HLA-DO as the optimizer of epitope selection for MHC class II antigen presentation. PLoS One 2013; 8:e71228. [PMID: 23951115 PMCID: PMC3738515 DOI: 10.1371/journal.pone.0071228] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 06/28/2013] [Indexed: 11/18/2022] Open
Abstract
Processing of antigens for presentation to helper T cells by MHC class II involves HLA-DM (DM) and HLA-DO (DO) accessory molecules. A mechanistic understanding of DO in this process has been missing. The leading model on its function proposes that DO inhibits the effects of DM. To directly study DO functions, we designed a recombinant soluble DO and expressed it in insect cells. The kinetics of binding and dissociation of several peptides to HLA-DR1 (DR1) molecules in the presence of DM and DO were measured. We found that DO reduced binding of DR1 to some peptides, and enhanced the binding of some other peptides to DR1. Interestingly, these enhancing and reducing effects were observed in the presence, or absence, of DM. We found that peptides that were negatively affected by DO were DM-sensitive, whereas peptides that were enhanced by DO were DM-resistant. The positive and negative effects of DO could only be measured on binding kinetics as peptide dissociation kinetics were not affected by DO. Using Surface Plasmon Resonance, we demonstrate direct binding of DO to a peptide-receptive, but not a closed conformation of DR1. We propose that DO imposes another layer of control on epitope selection during antigen processing.
Collapse
Affiliation(s)
- Yuri O. Poluektov
- Graduate Program in Immunology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - AeRyon Kim
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Isamu Z. Hartman
- Graduate Program in Immunology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Scheherazade Sadegh-Nasseri
- Graduate Program in Immunology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
9
|
Butterbach K, Beckmann L, de Sanjosé S, Benavente Y, Becker N, Foretova L, Maynadie M, Cocco P, Staines A, Boffetta P, Brennan P, Nieters A. Association of JAK-STAT pathway related genes with lymphoma risk: results of a European case-control study (EpiLymph). Br J Haematol 2011; 153:318-33. [PMID: 21418178 DOI: 10.1111/j.1365-2141.2011.08632.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Previous studies have suggested an important role for the Janus kinase-signal transducer and activator of transcription (JAK-STAT) signalling pathway in tumour development. Therefore, we explored genetic variants in JAK-STAT pathway associated genes with lymphoma risk. In samples of the EpiLymph case-control study we genotyped 1536 single nucleotide polymorphisms (SNPs) using GoldenGate BeadArray™ Technology (Illumina, San Diego, CA, USA). Here, we report the associations between selected SNPs and haplotypes of the JAK-STAT pathway and risk of Hodgkin lymphoma (HL), B-cell non-Hodgkin lymphoma (B-NHL) and most frequent B-NHL subtypes. Among 210 relevant JAK-STAT pathway-related SNPs, polymorphisms in nine genes (BMF, IFNG, IL12A, SOCS1, STAT1, STAT3, STAT5A, STAT6, TP63) were significantly associated with lymphoma risk. At a study-wise significance level, we obtained a risk reduction of 28% among carriers of the heterozygous genotype of the STAT3 variant (rs1053023) for B-NHL. For six other variants within the STAT3 gene we observed an inverse association with different lymphoma subtypes. A reduced risk for HL was observed for the heterozygous genotype of the STAT6 SNP (rs324011). This is an explorative investigation to examine associations between JAK-STAT signalling related genes and lymphoma risk. The results implicate a relevant role of certain pathway-related genes in lymphomagenesis, but still need to be approved by independent studies.
Collapse
Affiliation(s)
- Katja Butterbach
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|