1
|
Künstle N, Gorlanova O, Marten A, Müller L, Sharma P, Röösli M, Sinues P, Schär P, Schürmann D, Rüttimann C, Da Silva Sena CR, Nahum U, Usemann J, Steinberg R, Yammine S, Schulzke S, Latzin P, Frey U. Differences in autophagy marker levels at birth in preterm vs. term infants. Pediatr Res 2024; 96:1299-1305. [PMID: 38811718 PMCID: PMC11521993 DOI: 10.1038/s41390-024-03273-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/04/2024] [Accepted: 04/22/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Preterm infants are susceptible to oxidative stress and prone to respiratory diseases. Autophagy is an important defense mechanism against oxidative-stress-induced cell damage and involved in lung development and respiratory morbidity. We hypothesized that autophagy marker levels differ between preterm and term infants. METHODS In the prospective Basel-Bern Infant Lung Development (BILD) birth cohort we compared cord blood levels of macroautophagy (Beclin-1, LC3B), selective autophagy (p62) and regulation of autophagy (SIRT1) in 64 preterm and 453 term infants. RESULTS Beclin-1 and LC3B did not differ between preterm and term infants. However, p62 was higher (0.37, 95% confidence interval (CI) 0.05;0.69 in log2-transformed level, p = 0.025, padj = 0.050) and SIRT1 lower in preterm infants (-0.55, 95% CI -0.78;-0.31 in log2-transformed level, padj < 0.001). Furthermore, p62 decreased (padj-value for smoothing function was 0.018) and SIRT1 increased (0.10, 95% CI 0.07;0.13 in log2-transformed level, padj < 0.001) with increasing gestational age. CONCLUSION Our findings suggest differential levels of key autophagy markers between preterm and term infants. This adds to the knowledge of the sparsely studied field of autophagy mechanisms in preterm infants and might be linked to impaired oxidative stress response, preterm birth, impaired lung development and higher susceptibility to respiratory morbidity in preterm infants. IMPACT To the best of our knowledge, this is the first study to investigate autophagy marker levels between human preterm and term infants in a large population-based sample in cord blood plasma This study demonstrates differential levels of key autophagy markers in preterm compared to term infants and an association with gestational age This may be linked to impaired oxidative stress response or developmental aspects and provide bases for future studies investigating the association with respiratory morbidity.
Collapse
Affiliation(s)
- Noëmi Künstle
- University Children's Hospital Basel UKBB, University of Basel, Basel, Switzerland
- Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Olga Gorlanova
- University Children's Hospital Basel UKBB, University of Basel, Basel, Switzerland
| | - Andrea Marten
- University Children's Hospital Basel UKBB, University of Basel, Basel, Switzerland
| | - Loretta Müller
- Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Pawan Sharma
- Center for Translational Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Martin Röösli
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland and University of Basel, Basel, Switzerland
| | - Pablo Sinues
- University Children's Hospital Basel UKBB, University of Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Primo Schär
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - David Schürmann
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Céline Rüttimann
- University Children's Hospital Basel UKBB, University of Basel, Basel, Switzerland
- Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Carla Rebeca Da Silva Sena
- University Children's Hospital Basel UKBB, University of Basel, Basel, Switzerland
- Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Priority Research Centre GrowUpWell® and Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Uri Nahum
- University Children's Hospital Basel UKBB, University of Basel, Basel, Switzerland
- Institute for Medical Engineering and Medical Informatics, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Jakob Usemann
- University Children's Hospital Basel UKBB, University of Basel, Basel, Switzerland
- Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ruth Steinberg
- University Children's Hospital Basel UKBB, University of Basel, Basel, Switzerland
- Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sophie Yammine
- Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sven Schulzke
- University Children's Hospital Basel UKBB, University of Basel, Basel, Switzerland
| | - Philipp Latzin
- Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Urs Frey
- University Children's Hospital Basel UKBB, University of Basel, Basel, Switzerland.
| |
Collapse
|
2
|
Kilama J, Dahlen CR, Reynolds LP, Amat S. Contribution of the seminal microbiome to paternal programming. Biol Reprod 2024; 111:242-268. [PMID: 38696371 PMCID: PMC11327320 DOI: 10.1093/biolre/ioae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/04/2024] Open
Abstract
The field of Developmental Origins of Health and Disease has primarily focused on maternal programming of offspring health. However, emerging evidence suggests that paternal factors, including the seminal microbiome, could potentially play important roles in shaping the developmental trajectory and long-term offspring health outcomes. Historically, the microbes present in the semen were regarded as inherently pathogenic agents. However, this dogma has recently been challenged by the discovery of a diverse commensal microbial community within the semen of healthy males. In addition, recent studies suggest that the transmission of semen-associated microbes into the female reproductive tract during mating has potentials to not only influence female fertility and embryo development but could also contribute to paternal programming in the offspring. In this review, we summarize the current knowledge on the seminal microbiota in both humans and animals followed by discussing their potential involvement in paternal programming of offspring health. We also propose and discuss potential mechanisms through which paternal influences are transmitted to offspring via the seminal microbiome. Overall, this review provides insights into the seminal microbiome-based paternal programing, which will expand our understanding of the potential paternal programming mechanisms which are currently focused primarily on the epigenetic modifications, oxidative stresses, and cytokines.
Collapse
Affiliation(s)
- Justine Kilama
- Department of Microbiological Sciences, North Dakota State University, NDSU Department 7520, Fargo, ND 58108-6050, USA
| | - Carl R Dahlen
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, NDSU Department 7630, Fargo, ND 58108-6050, USA
| | - Lawrence P Reynolds
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, NDSU Department 7630, Fargo, ND 58108-6050, USA
| | - Samat Amat
- Department of Microbiological Sciences, North Dakota State University, NDSU Department 7520, Fargo, ND 58108-6050, USA
| |
Collapse
|
3
|
Jiang X, Zhang B, Gou Q, Cai R, Sun C, Li J, Yang N, Wen C. Variations in seminal microbiota and their functional implications in chickens adapted to high-altitude environments. Poult Sci 2024; 103:103932. [PMID: 38972291 PMCID: PMC11263954 DOI: 10.1016/j.psj.2024.103932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/29/2024] [Accepted: 05/29/2024] [Indexed: 07/09/2024] Open
Abstract
Seminal fluid, once believed to be sterile, is now recognized as constituting a complex and dynamic environment inhabited by a diverse community of micro-organisms. However, research on the seminal microbiota in chickens is limited, and microbiota variations among different chicken breeds remain largely unexplored. In this study, we collected semen samples from Beijing You Chicken (BYC) and Tibetan Chicken (TC) and explored the characteristics of the microbiota using 16S rRNA gene sequencing. Additionally, we collected cloacal samples from the TC to control for environmental contamination. The results revealed that the microbial communities in the semen were significantly different from those in the cloaca. Firmicutes and Actinobacteriota were the predominant phyla in BYC and TC semen, respectively, with Lactobacillus and Phyllobacterium being the dominant genera in each group. Additionally, the seminal microbiota of BYC exhibited greater richness and evenness than that of TC. Principal coordinate analysis (PCoA) indicated significant intergroup differences between the seminal microbiotas of BYC and TC. Subsequently, by combining linear discriminant analysis effect size and random forest analyses, we identified Lactobacillus as the predominant microorganism in BYC semen, whereas Phyllobacterium dominated in TC semen. Furthermore, co-occurrence network analysis revealed a more intricate network in the BYC group than in the TC group. Additionally, unique microbial functional characteristics were observed in each breed, with TC exhibiting metabolic features potentially associated with their ability to adapt to high-altitude environments. The results of this study emphasized the unique microbiota present in chicken semen, which may be influenced by genetics and evolutionary history. Significant variations were observed between low-altitude and high-altitude breeds, highlighting the breed-specific implications of the seminal microbiota for reproduction and high-altitude adaptation.
Collapse
Affiliation(s)
- Xinwei Jiang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China; Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Boxuan Zhang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China; Sanya Institute of China Agricultural University, Hainan, 572025, China
| | - Qinli Gou
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China; Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ronglang Cai
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China; Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Congjiao Sun
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China; Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China; Sanya Institute of China Agricultural University, Hainan, 572025, China
| | - Junying Li
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China; Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China; Sanya Institute of China Agricultural University, Hainan, 572025, China
| | - Ning Yang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China; Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China; Sanya Institute of China Agricultural University, Hainan, 572025, China
| | - Chaoliang Wen
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China; Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China; Sanya Institute of China Agricultural University, Hainan, 572025, China.
| |
Collapse
|
4
|
Pantazi AC, Balasa AL, Mihai CM, Chisnoiu T, Lupu VV, Kassim MAK, Mihai L, Frecus CE, Chirila SI, Lupu A, Andrusca A, Ionescu C, Cuzic V, Cambrea SC. Development of Gut Microbiota in the First 1000 Days after Birth and Potential Interventions. Nutrients 2023; 15:3647. [PMID: 37630837 PMCID: PMC10457741 DOI: 10.3390/nu15163647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
The first 1000 days after birth represent a critical window for gut microbiome development, which is essential for immune system maturation and overall health. The gut microbiome undergoes major changes during this period due to shifts in diet and environment. Disruptions to the microbiota early in life can have lasting health effects, including increased risks of inflammatory disorders, autoimmune diseases, neurological disorders, and obesity. Maternal and environmental factors during pregnancy and infancy shape the infant gut microbiota. In this article, we will review how maintaining a healthy gut microbiome in pregnancy and infancy is important for long-term infant health. Furthermore, we briefly include fungal colonization and its effects on the host immune function, which are discussed as part of gut microbiome ecosystem. Additionally, we will describe how potential approaches such as hydrogels enriched with prebiotics and probiotics, gut microbiota transplantation (GMT) during pregnancy, age-specific microbial ecosystem therapeutics, and CRISPR therapies targeting the gut microbiota hold potential for advancing research and development. Nevertheless, thorough evaluation of their safety, effectiveness, and lasting impacts is crucial prior to their application in clinical approach. The article emphasizes the need for continued research to optimize gut microbiota and immune system development through targeted early-life interventions.
Collapse
Affiliation(s)
- Alexandru Cosmin Pantazi
- Pediatrics Department, Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania (A.L.B.)
- Pediatrics Department, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Adriana Luminita Balasa
- Pediatrics Department, Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania (A.L.B.)
- Pediatrics Department, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Cristina Maria Mihai
- Pediatrics Department, Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania (A.L.B.)
- Pediatrics Department, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Tatiana Chisnoiu
- Pediatrics Department, Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania (A.L.B.)
- Pediatrics Department, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Vasile Valeriu Lupu
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | | | - Larisia Mihai
- Pediatrics Department, Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania (A.L.B.)
- Pediatrics Department, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Corina Elena Frecus
- Pediatrics Department, Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania (A.L.B.)
- Pediatrics Department, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | | | - Ancuta Lupu
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Antonio Andrusca
- Pediatrics Department, Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania (A.L.B.)
- Pediatrics Department, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Constantin Ionescu
- Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania (S.I.C.)
| | - Viviana Cuzic
- Pediatrics Department, Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania (A.L.B.)
- Pediatrics Department, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Simona Claudia Cambrea
- Infectious Diseases Department, Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania
| |
Collapse
|
5
|
Thomas H, McCloskey E, Rider V. Pregnancy preparation: redistribution of CCR7-positive cells in the rat uterus. Reproduction 2022; 164:183-193. [PMID: 35960551 PMCID: PMC10531295 DOI: 10.1530/rep-22-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 08/12/2022] [Indexed: 11/08/2022]
Abstract
In brief Changes in the endometrium prior to implantation may be critical in predicting pregnancy outcomes. This study shows that the endocrine system directs positional changes in CCR7+ cells before implantation, which may be critical for developing maternal tolerance. Abstract Suppression of the maternal immune system is vital for the implantation of the semi-allogeneic embryo. Although progress in understanding the dialogue between mother and embryo has been made, key interactions between maternal immune cells, hormones, and chemokines remain elusive. Uterine expression of the C-C chemokine receptor type 7 (CCR7) could recruit T regulatory cells and facilitate localized immune suppression. To test this concept, Ccr7 mRNA and protein were assessed in uterine tissue. Ccr7 mRNA expression peaked at day 4 in pregnant rat uteri and then declined at days 5 and 6. CCR7 protein showed similar quantitative changes. To test if female sex steroids affected the spatial distribution of CCR7-expressing cells, uteri from ovariectomized rats, progesterone-pretreated rats (2 mg daily), and progesterone-pretreated rats injected with estradiol (0.2 µg) were analyzed. Progesterone increased CCR7-positive (+) cells in the antimesometrial stroma. Progesterone and estradiol increased CCR7+ cells in the mesometrial stroma. Estradiol increased the density of cluster of differentiation 4 (CD4) positive cells in the mesometrial stromal region over progesterone alone. The density of cells expressing the T regulatory cell marker, forkhead box protein 3 (FOXP3), increased in the antimesometrial stroma in response to progesterone alone. Progesterone and estradiol increased FOXP3+ cells in the antimesometrial region of the stroma. Co-localization of CCR7, CD4, and FOXP3 in the stroma suggests CCR7+ cells are T regulatory cells. Polarization of CCR7+ cells in the endometrial stroma was an intrinsic response regulated by sex steroids and did not require the presence of an embryo.
Collapse
Affiliation(s)
- Hannah Thomas
- 1Department of Biology, Pittsburg State University, Pittsburg, Kansas, USA
| | - Erick McCloskey
- 1Department of Biology, Pittsburg State University, Pittsburg, Kansas, USA
| | - Virginia Rider
- 1Department of Biology, Pittsburg State University, Pittsburg, Kansas, USA
| |
Collapse
|
6
|
Feng T, Liu Y. Microorganisms in the reproductive system and probiotic's regulatory effects on reproductive health. Comput Struct Biotechnol J 2022; 20:1541-1553. [PMID: 35465162 PMCID: PMC9010680 DOI: 10.1016/j.csbj.2022.03.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/18/2022] Open
Abstract
The presence of microbial communities in the reproductive tract has been revealed, and this resident microbiota is involved in the maintenance of health. Intentional modulation via probiotics has been proposed as a possible strategy to enhance reproductive health and reduce the risk of diseases. The male seminal microbiota has been suggested as an important factor that influences a couple’s health, pregnancy outcomes, and offspring health. Probiotics have been reported to play a role in male fertility and to affect the health of mothers and offspring. While the female reproductive microbiota is more complicated and has been identified in both the upper and lower reproductive systems, they together contribute to health maintenance. Probiotics have shown regulatory effects on the female reproductive tract, thereby contributing to homeostasis of the tract and influencing the health of offspring. Further, through transmission of bacteria or through other indirect mechanisms, the parent’s reproductive microbiota and probiotic intervention influence infant gut colonization and immunity development, with potential health consequences. In vitro and in vivo studies have explored the mechanisms underlying the benefits of probiotic administration and intervention, and an array of positive results, such as modulation of microbiota composition, regulation of metabolism, promotion of the epithelial barrier, and improvement of immune function, have been observed. Herein, we review the state of the art in reproductive system microbiota and its role in health and reproduction, as well as the beneficial effects of probiotics on reproductive health and their contributions to the prevention of associated diseases.
Collapse
|
7
|
Endometrial Microbiome and Women’s Reproductive Health – Review of the Problem Endometrial Microbiome and Reproductive Health. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.4.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Currently, unlike in the past, the endometrial cavity is not considered to be sterile. The endometrium is supposed to be dominated by Lactobacilli, but also their deficiency can be found in the reproductive tract of asymptomatic healthy women. Sometimes the endometrial microbiome is dominated by various pathological microorganisms, and this can lead to various conditions as chronic endometritis, chorioamnionitis and preterm birth. Their presence causes uterine inflammation and infection, release of pro-inflammatory molecules, uterine contractions, disruption of cervical barrier, premature rupture of membranes. Uterine dysbiosis is associated with recurrent implantation failure and recurrent miscarriages. As the microbiome is important for maintaining immunological homeostasis at the level of gastrointestinal tract Lactobacilli may play a similar function at the level of uterus. The lactobacillus-dominated uterine microbiome is of great importance for maintaining a hostile uterine microenvironment, embryo implantation, early pregnancy development and normal pregnancy outcome.
Collapse
|
8
|
Shan D, Dong R, Hu Y. Current understanding of autophagy in intrahepatic cholestasis of pregnancy. Placenta 2021; 115:53-59. [PMID: 34560328 DOI: 10.1016/j.placenta.2021.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022]
Abstract
Intrahepatic cholestasis of pregnancy (ICP) is the most common liver disease during pregnancy. Manifested with pruritus and elevation in bile acids, the etiology of ICP is still poorly understood. Although ICP is considered relatively benign for the mother, increased rates of adverse fetal outcomes including sudden fetal demise are possible devastating outcomes associated with ICP. Limited understanding of the underlying mechanisms restricted treatment options and managements of ICP. In recent decades, evolving evidence indicated the significance of autophagy in pregnancy and pregnancy complications. Autophagy is an ancient self-defense mechanism which is essential for cell survival, differentiation and development. Autophagy has pivotal roles in embryogenesis, implantation, and maintenance of pregnancy, and is involved in the orchestration of diverse physiological and pathological cellular responses in patients with pregnancy complications. Recent advances in these research fields provide tantalizing targets on autophagy to improve the care of pregnant women. This review summarizes recent advances in understanding autophagy in ICP and its possible roles in the causation and prevention of ICP.
Collapse
Affiliation(s)
- Dan Shan
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, 610041, China
| | - Ruihong Dong
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, 610041, China
| | - Yayi Hu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, 610041, China.
| |
Collapse
|
9
|
Wu L, Ding Y, Han S, Wang Y. Role of Exosomes in the Exchange of Spermatozoa after Leaving the Seminiferous Tubule: A Review. Curr Drug Metab 2021; 21:330-338. [PMID: 32433001 DOI: 10.2174/1389200221666200520091511] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/05/2020] [Accepted: 01/15/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Exosomes are extracellular vesicles (EVs) released from cells upon fusion of an intermediate endocytic compartment with the plasma membrane. They refer to the intraluminal vesicles released from the fusion of multivesicular bodies with the plasma membrane. The contents and number of exosomes are related to diseases such as metabolic diseases, cancer and inflammatory diseases. Exosomes have been used in neurological research as a drug delivery tool and also as biomarkers for diseases. Recently, exosomes were observed in the seminal plasma of the one who is asthenozoospermia, which can affect sperm motility and capacitation. OBJECTIVE The main objective of this review is to deeply discuss the role of exosomes in spermatozoa after leaving the seminiferous tubule. METHODS We conducted an extensive search of the literature available on relationships between exosomes and exosomes in spermatozoa on the bibliographic database. CONCLUSION This review thoroughly discussed the role that exosomes play in the exchange of spermatozoa after leaving the seminiferous tubule and its potential as a drug delivery tool and biomarkers for diseases as well.
Collapse
Affiliation(s)
- Luming Wu
- Gansu Key Laboratory of Reproductive Medicine and Embryo,The First Hospital of Lanzhou University, Lanzhou, China
| | - Yuan Ding
- Gansu Key Laboratory of Reproductive Medicine and Embryo,The First Hospital of Lanzhou University, Lanzhou, China
| | - Shiqiang Han
- Linxia Hui Autonomous Prefecture Maternity and Childcare Hospital, Linxia, China
| | - Yiqing Wang
- Gansu Key Laboratory of Reproductive Medicine and Embryo,The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
10
|
Lietaer L, Bogado Pascottini O, Hernandez-Sanabria E, Kerckhof FM, Lacoere T, Boon N, Vlaminck L, Opsomer G, Van de Wiele T. Low microbial biomass within the reproductive tract of mid-lactation dairy cows: A study approach. J Dairy Sci 2021; 104:6159-6174. [PMID: 33685679 DOI: 10.3168/jds.2020-19554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022]
Abstract
The microbiome from the reproductive tract is being investigated for its putative effect on fertility, embryo development, and health status of the human or animal host postpartum. Besides the presence of a vaginal microbiome, recent studies have claimed the existence and putative role of the uterine microbiome. Yet, the extremely low bacterial numbers and high eukaryotic/prokaryotic DNA ratio make this a highly challenging environment to study with next-generation sequencing (NGS) techniques. Here, we describe the methodological challenges that are typically encountered when performing an accurate analysis of low microbial biomass samples, illustrated by data of our own observational study. In terms of the research question, we compared the microbial composition throughout different parts of the reproductive tract of clinically healthy, mid-lactation Holstein-Friesian cows. Samples were collected from 5 dairy cows immediately after killing. Swabs were taken from the vagina, and from 4 pre-established locations of the uterine endometrium. In addition to the conventional DNA extraction blank controls, sterile swabs rubbed over disinfected disposable gloves and the disinfected surface of the uterus (tunica serosa) before incision were taken as sampling controls. The DNA extraction, DNA quantification, quantitative PCR of the 16S rRNA genes, and 16S rRNA gene sequencing were performed. In terms of NGS data analysis, we performed prevalence-based filtering of putative contaminant operational taxonomic units (OTU) using the decontam R package. Although the bacterial composition differed between the vagina and uterus, no differences in bacterial community structure (α and β diversity) were found among the different locations in the uterus. At phylum level, uterine samples had a greater relative abundance of Proteobacteria, and a lesser relative abundance of Firmicutes than vaginal samples. The number of shared OTU between vagina and uterus was limited, suggesting the existence of bacterial transmission routes other than the transcervical one to the uterus. The mid-lactation bovine genital tract is a low microbial biomass environment, which makes it difficult to distinguish between its constitutive versus contaminant microbiome. The integration of key controls is therefore strictly necessary to decrease the effect of accidentally introduced contaminant sequences and improve the reliability of results in samples with low microbial biomass.
Collapse
Affiliation(s)
- L Lietaer
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke 9820, Belgium
| | - O Bogado Pascottini
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke 9820, Belgium; Department of Veterinary Sciences, Laboratory of Veterinary Physiology and Biochemistry, University of Antwerp, Wilrijk 2610, Belgium
| | - E Hernandez-Sanabria
- Department of Microbiology and Immunology, Laboratory of Molecular Bacteriology, Rega Institute, KU Leuven, Leuven 3000, Belgium
| | - F-M Kerckhof
- Department of Biotechnology, Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology (CMET), Ghent University, Ghent 9000, Belgium
| | - T Lacoere
- Department of Biotechnology, Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology (CMET), Ghent University, Ghent 9000, Belgium
| | - N Boon
- Department of Biotechnology, Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology (CMET), Ghent University, Ghent 9000, Belgium
| | - L Vlaminck
- Department of Surgery and Anaesthesiology of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke 9820, Belgium
| | - G Opsomer
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke 9820, Belgium.
| | - T Van de Wiele
- Department of Biotechnology, Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology (CMET), Ghent University, Ghent 9000, Belgium
| |
Collapse
|
11
|
Silverstein RB, Mysorekar IU. Group therapy on in utero colonization: seeking common truths and a way forward. MICROBIOME 2021; 9:7. [PMID: 33436100 PMCID: PMC7805186 DOI: 10.1186/s40168-020-00968-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/06/2020] [Indexed: 05/04/2023]
Abstract
The human microbiome refers to the genetic composition of microorganisms in a particular location in the human body. Emerging evidence over the past many years suggests that the microbiome constitute drivers of human fate almost at par with our genome and epigenome. It is now well accepted after decades of disbelief that a broad understanding of human development, health, physiology, and disease requires understanding of the microbiome along with the genome and epigenome. We are learning daily of the interdependent relationships between microbiome/microbiota and immune responses, mood, cancer progression, response to therapies, aging, obesity, antibiotic usage, and overusage and much more. The next frontier in microbiome field is understanding when does this influence begin? Does the human microbiome initiate at the time of birth or are developing human fetuses already primed with microbes and their products in utero. In this commentary, we reflect on evidence gathered thus far on this question and identify the unknown common truths. We present a way forward to continue understanding our microbial colleagues and our interwoven fates.
Collapse
Affiliation(s)
- Rachel B Silverstein
- Department of Obstetrics and Gynecology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Indira U Mysorekar
- Department of Obstetrics and Gynecology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA.
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
12
|
Zinc Supplementation: Immune Balance of Pregnancy During the Chronic Phase of the Chagas Disease. Acta Parasitol 2020; 65:599-609. [PMID: 32141022 DOI: 10.2478/s11686-020-00188-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 02/18/2020] [Indexed: 11/20/2022]
Abstract
BACKGROUND Chagas disease or American trypanosomiasis is caused by the protozoan Trypanosoma cruzi and is endemic of the Americas. The control of the disease is restricted to toxic and potentially teratogenic drugs, which limit the use during pregnancy. The use of food supplementation offers a safe and low-cost form to alleviate Chagas disease symptoms, mostly in areas with alimentary risk. For example, zinc demonstrates positive effects in immune response, including in Chagas disease during pregnancy. PURPOSE This study describes the innate response in pregnant rats chronically infected with T. cruzi and supplemented with zinc. METHODS Pregnant female Wistar rats, infected with T. cruzi, were treated with 20 mg/kg/day zinc sulfate and euthanized on the 18th day. Samples (plasma, splenocytes, and peritoneal exudate) were collected and several immune parameters (nitric oxide, RT1B, CD80/CD86, MCP-1, CD11b/c, NK/NKT, IL-2, IL-10, INF-cc, and apoptosis) evaluated. RESULTS Under Zinc supplementation and/or T. cruzi infection, the gestation developed normally. Several innate immune parameters such as RT1B, CD80/CD86, MCP-1 expressing lymphocytes, IL-2, and IL-17 were positively altered, whereas nitric oxide, CD11b/c, NK/NKT, apoptosis, INF-γ, and corticosterone demonstrated a pro-pregnancy pattern. CONCLUSION Our results indicated that zinc has diverse effects on immune response during pregnancy. An anti-T. cruzi immunity, as well as a pro-gestation response, were observed after zinc supplementation. The complete comprehension of zinc supplementation in pregnancy will base an adequate strategy to alleviate Chagas disease symptoms and propagation, especially for populations from endemic areas.
Collapse
|
13
|
Hyperoside attenuates pregnancy loss through activating autophagy and suppressing inflammation in a rat model. Life Sci 2020; 254:117735. [PMID: 32360572 DOI: 10.1016/j.lfs.2020.117735] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 12/20/2022]
Abstract
AIMS Recurrent pregnancy loss (RPL) is one of the most common obstetrical diseases, which is a manifestation of antiphospholipid syndrome (APS) with no effective therapy methods. Autophagy and inflammatory responses both play an important role in the pathogenesis of RPL and hyperoside has been demonstrated to have multifarious bioactivities including enhancing autophagy and anti-inflammation. This study aims to investigate the effect of hyperoside on anticardiolipin (aCL)-IgG fractions-induced pregnancy loss. MAIN METHODS In the present study, the effect of hyperoside was evaluated in a rat model of pregnancy loss induced by aCL-IgG fractions isolated from serum of APS patients. The fetuses were counted and the placentas were weighted and the protein expressions of inflammation and autophagy were measured by western blot analysis. KEY FINDINGS Treatment with hyperoside (40 mg/kg) improved pregnancy outcome manifest as increasing the weight of fetuses and decreasing the fetal resorption rate. In addition, hyperoside treatment downregulated the expressions of phosphorylated mammalian target of rapamycin (mTOR), phosphorylated p70S6 Kinase (S6K) and inhibited the expressions of Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88) and NF-kB p-p65 in pregnancy loss animal models. SIGNIFICANCE Hyperoside attenuated pregnancy loss through regulating mTOR/S6K and TLR4/MyD88/NF-kB signaling pathways, which may provide a potential drug candidate for recurrent pregnancy loss therapy.
Collapse
|
14
|
Tomaiuolo R, Veneruso I, Cariati F, D’Argenio V. Microbiota and Human Reproduction: The Case of Male Infertility. High Throughput 2020; 9:E10. [PMID: 32294988 PMCID: PMC7349524 DOI: 10.3390/ht9020010] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/03/2020] [Accepted: 04/09/2020] [Indexed: 02/06/2023] Open
Abstract
The increasing interest in metagenomics is enhancing our knowledge regarding the composition and role of the microbiota in human physiology and pathology. Indeed, microbes have been reported to play a role in several diseases, including infertility. In particular, the male seminal microbiota has been suggested as an important factor able to influence couple's health and pregnancy outcomes, as well as offspring health. Nevertheless, few studies have been carried out to date to deeper investigate semen microbiome origins and functions, and its correlations with the partner's reproductive tract microbiome. Here, we report the state of the art regarding the male reproductive system microbiome and its alterations in infertility.
Collapse
Affiliation(s)
- Rossella Tomaiuolo
- KronosDNA srl, spinoff of Università Federico II, 80133 Napoli, Italy; (R.T.); (F.C.)
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy;
- CEINGE-Biotecnologie Avanzate scarl, Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Iolanda Veneruso
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy;
- CEINGE-Biotecnologie Avanzate scarl, Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Federica Cariati
- KronosDNA srl, spinoff of Università Federico II, 80133 Napoli, Italy; (R.T.); (F.C.)
- CEINGE-Biotecnologie Avanzate scarl, Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Valeria D’Argenio
- CEINGE-Biotecnologie Avanzate scarl, Via Gaetano Salvatore 486, 80145 Napoli, Italy
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Open University, 00166 Roma, Italy
| |
Collapse
|
15
|
Torella M, Bellini G, Punzo F, Argenziano M, Schiattarella A, Labriola D, Schettino MT, Ambrosio D, Ammaturo FP, De Franciscis P. TNF-α effect on human delivery onset by CB1/TRPV1 crosstalk: new insights into endocannabinoid molecular signaling in preterm vs. term labor. Analysis of the EC/EV pathway and predictive biomarkers for early diagnosis of preterm delivery. ACTA ACUST UNITED AC 2020; 71:359-364. [PMID: 31698890 DOI: 10.23736/s0026-4784.19.04405-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Endocannabinoids/endovanilloid (EC/EV) system and inflammation are recognized as key regulators of cell-signaling pathways in female reproduction. The knowledge of predictive biomarkers involved in preterm birth (PTB) represents an important goal to make an early diagnosis. The aim of the study was to investigate the role of EC/EV system and inflammation in human delivery, in placental samples from spontaneous deliveries. METHODS We examined the expression of genes encoding for the components of EC/EV system (CB1, CB2, TRPV1, MAGL, FAAH, DAGL, NAPE-PLD) and for inflammatory cytokines (IL-6, TNF-α) with qRT-PCR techniques, in human placental samples from preterm delivery (at 30 and at 34 weeks) compared to term delivery (40 weeks, control group). RESULTS We found a marked increase of CB1, anandamide, and inflammatory cytokines, mainly TNF-α, together with TRPV1 down-regulation in term delivery group, compared to preterm groups (P<0.05). CONCLUSIONS Our findings highlighted the emergent pivotal role of the EC/EV system and inflammation in spontaneous term delivery and provided the framework for future studies that investigate the CB1/TRPV1 crosstalk in preterm birth. Particularly, we found a link between the stimulation of CB1 receptors and the antagonism of TRPV1 channels, that could be used in PTB prevention, through selected molecules.
Collapse
Affiliation(s)
- Marco Torella
- Section of Gynecology and Obstetrics, Department of Woman, Child and General and Specialized Surgery, Luigi Vanvitelli University of Campania, Naples, Italy
| | - Giulia Bellini
- Department of Experimental Medicine, Luigi Vanvitelli University of Campania, Naples, Italy
| | - Francesca Punzo
- Section of Pediatrics, Department of Woman, Child and General and Specialized Surgery, Luigi Vanvitelli University of Campania, Naples, Italy
| | - Maura Argenziano
- Department of Experimental Medicine, Luigi Vanvitelli University of Campania, Naples, Italy
| | - Antonio Schiattarella
- Section of Gynecology and Obstetrics, Department of Woman, Child and General and Specialized Surgery, Luigi Vanvitelli University of Campania, Naples, Italy -
| | - Domenico Labriola
- Section of Gynecology and Obstetrics, Department of Woman, Child and General and Specialized Surgery, Luigi Vanvitelli University of Campania, Naples, Italy
| | - Maria T Schettino
- Section of Gynecology and Obstetrics, Department of Woman, Child and General and Specialized Surgery, Luigi Vanvitelli University of Campania, Naples, Italy
| | - Domenico Ambrosio
- Section of Gynecology and Obstetrics, Department of Woman, Child and General and Specialized Surgery, Luigi Vanvitelli University of Campania, Naples, Italy
| | - Franco P Ammaturo
- Section of Gynecology and Obstetrics, Department of Woman, Child and General and Specialized Surgery, Luigi Vanvitelli University of Campania, Naples, Italy
| | - Pasquale De Franciscis
- Section of Gynecology and Obstetrics, Department of Woman, Child and General and Specialized Surgery, Luigi Vanvitelli University of Campania, Naples, Italy
| |
Collapse
|
16
|
Altmäe S, Franasiak JM, Mändar R. The seminal microbiome in health and disease. Nat Rev Urol 2019; 16:703-721. [PMID: 31732723 DOI: 10.1038/s41585-019-0250-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2019] [Indexed: 12/19/2022]
Abstract
Owing to the fact that there are more microbial than human cells in our body and that humans contain more microbial than human genes, the microbiome has huge potential to influence human physiology, both in health and in disease. The use of next-generation sequencing technologies has helped to elucidate functional, quantitative and mechanistic aspects of the complex microorganism-host interactions that underlie human physiology and pathophysiology. The microbiome of semen is a field of increasing scientific interest, although this microbial niche is currently understudied compared with other areas of microbiome research. However, emerging evidence is beginning to indicate that the seminal microbiome has important implications for the reproductive health of men, the health of the couple and even the health of offspring, owing to transfer of microorganisms to the partner and offspring. As this field expands, further carefully designed and well-powered studies are required to unravel the true nature and role of the seminal microbiome.
Collapse
Affiliation(s)
- Signe Altmäe
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain. .,Competence Centre on Health Technologies, Tartu, Estonia. .,Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain.
| | | | - Reet Mändar
- Competence Centre on Health Technologies, Tartu, Estonia.,Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
17
|
Vaginal Biomarkers That Predict Cervical Length and Dominant Bacteria in the Vaginal Microbiomes of Pregnant Women. mBio 2019; 10:mBio.02242-19. [PMID: 31641087 PMCID: PMC6805993 DOI: 10.1128/mbio.02242-19] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In many impoverished regions of the world, it may not be possible to assess two major risk factors for preterm birth: a short cervical length and the depletion of vaginal lactobacilli. We determined whether measuring specific compounds in vaginal fluid might be a simple, noninvasive, and cost-effective way to predict the bacteria that dominate the vaginal microbiome and indicate the presence of a shortened cervix (<25 mm). Vaginal fluid samples were prospectively collected from mid-trimester pregnant women, and the concentrations of d- and l-lactic acid, tissue inhibitor of matrix metalloproteinases TIMP-1 and TIMP-2, matrix metalloproteinases MMP-2 and MMP-8, the 70-kDa heat shock protein, a2 isoform of vacuolar ATPase, and sequestrome-1 were quantified by an enzyme-linked immunosorbent assay (ELISA). The compositions of vaginal microbiomes were assessed by analysis of the V1-V3 regions of 16S rRNA genes, while cervical length was determined by transvaginal ultrasonography. The vaginal microbiomes could be clustered into five community state types (CSTs), four of which were dominated by a single Lactobacillus species. The dominance of Lactobacillus crispatus or Lactobacillus jensenii in the vaginal microbiome predicted the level of d-lactic acid present. Several of the biomarkers, especially TIMP-1, in combination with the subject's age and race, were significantly associated with cervical length. Using piecewise structural equation modeling, we established a causal network that links CST to cervical length via biomarkers. We concluded that measuring levels of TIMP-1 and d-lactic acid in vaginal secretions might be a straightforward way to assess the risk for preterm birth due to a short cervix and microbiome composition.IMPORTANCE Premature birth and its complications are the largest contributors to infant death in the United States and globally. A short cervical length and the depletion of Lactobacillus species are known risk factors for preterm birth. However, in many resource-poor areas of the world, the technology to test for their occurrence is unavailable, and pregnant women with these risk factors are neither identified nor treated. In this study, we used path analysis to gain an unprecedented understanding of interactions between vaginal microbiome composition, the concentrations of various compounds in vaginal secretions, and cervical length. We identified low-cost point-of-care measures that might be used to identify pregnant women at risk for preterm birth. The use of these measures coupled with appropriate preventative or treatment strategies could reduce the incidence of preterm births in poor areas of the world that lack access to more sophisticated diagnostic methods.
Collapse
|
18
|
Sadigh AR, Mihanfar A, Fattahi A, Latifi Z, Akbarzadeh M, Hajipour H, Bahrami‐asl Z, Ghasemzadeh A, Hamdi K, Nejabati HR, Nouri M. S100 protein family and embryo implantation. J Cell Biochem 2019; 120:19229-19244. [DOI: 10.1002/jcb.29261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Aydin Raei Sadigh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine Tabriz University of Medical Science Tabriz Iran
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Aynaz Mihanfar
- Department of Biochemistry, Faculty of Medicine Urmia University of Medical Sciences Urmia Iran
| | - Amir Fattahi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Zeinab Latifi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine Tabriz University of Medical Science Tabriz Iran
- Stem Cell And Regenerative Medicine Institute Tabriz University of Medical Sciences Tabriz Iran
| | - Maryam Akbarzadeh
- Stem Cell And Regenerative Medicine Institute Tabriz University of Medical Sciences Tabriz Iran
- Department of Biochemistry Erasmus University Medical Center Rotterdam The Netherlands
| | - Hamed Hajipour
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Zahra Bahrami‐asl
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Aliyeh Ghasemzadeh
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Kobra Hamdi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Hamid Reza Nejabati
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine Tabriz University of Medical Science Tabriz Iran
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
- Stem Cell And Regenerative Medicine Institute Tabriz University of Medical Sciences Tabriz Iran
- Student Research Committee Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Nouri
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
- Stem Cell And Regenerative Medicine Institute Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
19
|
Shaping Microbiota During the First 1000 Days of Life. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1125:3-24. [PMID: 30680645 DOI: 10.1007/5584_2018_312] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The data obtained in prior studies suggest that early microbial exposition begins prior to conception and gestation. Given that the host-microbe interaction is shaped by the immune system response, it is important to understand the key immune system-microbiota relationship during the period from conception to the first years of life. The present work summarizes the available evidence concerning early microbiota exposure within the male and the female reproductive tracts at the point of conception and during gestation, focusing on the potential impact on infant development during the first 1000 days of life. Furthermore, we conclude that some dietary strategies including specific probiotics could become potentially valuable tools to modulate the gut microbiota during this early critical window of opportunity for targeted health outcomes throughout the entire lifespan.
Collapse
|
20
|
Simon C, Greening DW, Bolumar D, Balaguer N, Salamonsen LA, Vilella F. Extracellular Vesicles in Human Reproduction in Health and Disease. Endocr Rev 2018; 39:292-332. [PMID: 29390102 DOI: 10.1210/er.2017-00229] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/25/2018] [Indexed: 02/07/2023]
Abstract
Extensive evidence suggests that the release of membrane-enclosed compartments, more commonly known as extracellular vesicles (EVs), is a potent newly identified mechanism of cell-to-cell communication both in normal physiology and in pathological conditions. This review presents evidence about the formation and release of different EVs, their definitive markers and cargo content in reproductive physiological processes, and their capacity to convey information between cells through the transfer of functional protein and genetic information to alter phenotype and function of recipient cells associated with reproductive biology. In the male reproductive tract, epididymosomes and prostasomes participate in regulating sperm motility activation, capacitation, and acrosome reaction. In the female reproductive tract, follicular fluid, oviduct/tube, and uterine cavity EVs are considered as vehicles to carry information during oocyte maturation, fertilization, and embryo-maternal crosstalk. EVs via their cargo might be also involved in the triggering, maintenance, and progression of reproductive- and obstetric-related pathologies such as endometriosis, polycystic ovarian syndrome, preeclampsia, gestational diabetes, and erectile dysfunction. In this review, we provide current knowledge on the present and future use of EVs not only as biomarkers, but also as therapeutic targeting agents, mainly as vectors for drug or compound delivery into target cells and tissues.
Collapse
Affiliation(s)
- Carlos Simon
- Igenomix Foundation, Valencia, Spain.,Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain.,Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, Valencia University, Valencia, Spain.,Department of Obstetrics and Gynecology, Stanford University, Palo Alto, California
| | - David W Greening
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - David Bolumar
- Igenomix Foundation, Valencia, Spain.,Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain
| | - Nuria Balaguer
- Igenomix Foundation, Valencia, Spain.,Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain
| | - Lois A Salamonsen
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Felipe Vilella
- Igenomix Foundation, Valencia, Spain.,Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain.,Department of Obstetrics and Gynecology, Stanford University, Palo Alto, California
| |
Collapse
|
21
|
Transcriptomic changes in the pre-implantation uterus highlight histotrophic nutrition of the developing marsupial embryo. Sci Rep 2018; 8:2412. [PMID: 29402916 PMCID: PMC5799185 DOI: 10.1038/s41598-018-20744-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/23/2018] [Indexed: 12/12/2022] Open
Abstract
Early pregnancy is a critical time for successful reproduction; up to half of human pregnancies fail before the development of the definitive chorioallantoic placenta. Unlike the situation in eutherian mammals, marsupial pregnancy is characterised by a long pre-implantation period prior to the development of the short-lived placenta, making them ideal models for study of the uterine environment promoting embryonic survival pre-implantation. Here we present a transcriptomic study of pre-implantation marsupial pregnancy, and identify differentially expressed genes in the Sminthopsis crassicaudata uterus involved in metabolism and biosynthesis, transport, immunity, tissue remodelling, and uterine receptivity. Interestingly, almost one quarter of the top 50 genes that are differentially upregulated in early pregnancy are putatively involved in histotrophy, highlighting the importance of nutrient transport to the conceptus prior to the development of the placenta. This work furthers our understanding of the mechanisms underlying survival of pre-implantation embryos in the earliest live bearing ancestors of mammals.
Collapse
|
22
|
Choriodecidual leukocytes display a unique gene expression signature in spontaneous labor at term. Genes Immun 2018; 20:56-68. [PMID: 29362510 PMCID: PMC6358585 DOI: 10.1038/s41435-017-0010-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/01/2017] [Accepted: 11/16/2017] [Indexed: 12/11/2022]
Abstract
Prior to and during the process of human labor, maternal circulating leukocytes infiltrate the maternal-fetal interface (choriodecidua) and become activated resembling choriodecidual leukocytes. Since, there is no evidence comparing maternal circulating and choriodecidual leukocytes, herein, we characterized their transcriptome and explored the biological processes enriched in choriodecidual leukocytes. From women undergoing spontaneous term labor we isolated circulating and choriodecidual leukocytes, performed microarray analysis (n = 5) and qRT-PCR validation (n = 9) and interaction network analysis with up-regulated genes. We found 270 genes up-regulated and only 17 genes down-regulated in choriodecidual leukocytes compared to maternal circulating leukocytes. The most up-regulated genes were CCL18, GPNMB, SEPP1, FN1, RNASE1, SPP1, C1QC, and PLTP. The biological processes enriched in choriodecidual leukocytes were cell migration and regulation of immune response, chemotaxis, and humoral immune responses. Our results show striking differences between the transcriptome of choriodecidual and maternal circulating leukocytes. Choriodecidual leukocytes are enriched in immune mediators implicated in the spontaneous process of labor at term.
Collapse
|
23
|
Jayaram A, Kanninen T, Sisti G, Inglis SR, Morgan N, Witkin SS. Pregnancy History Influences the Level of Autophagy in Peripheral Blood Mononuclear Cells From Pregnant Women. Reprod Sci 2017; 25:1376-1381. [PMID: 29237347 DOI: 10.1177/1933719117746763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Maternal immune responses are altered during pregnancy and differ between nulliparous and multiparous women. The influence of a prior gestation on autophagy in peripheral blood mononuclear cells (PBMCs) from pregnant women has not been determined and is the subject of this investigation. METHODS Peripheral blood mononuclear cells were isolated from 212 pregnant women and immediately lysed in the presence of protease inhibitors, and the extent of autophagy was determined by quantitation of the concentration of p62 (sequestosome-1) in the lysates by enzyme-linked immunosorbent assay (ELISA). In PBMCs, the p62 level is inversely related to the extent of autophagy. The level of the stress-inducible 70-kDa heat shock protein (hsp70), an inhibitor of autophagy, was also measured in the lysates by ELISA. Data were analyzed by the Spearman rank correlation, Mann-Whitney U test, or Kruskal-Wallis test, as appropriate. RESULTS The p62 concentration in PBMCs increased (autophagy decreased) with the number of previous live ( P = .0322), preterm ( P = .0143), or term ( P = .0418) deliveries. The p62 level was lower (autophagy higher) in women with a prior spontaneous pregnancy loss but no deliveries as compared to women with their first conception ( P = .0087). The intracellular hsp70 concentration correlated with the p62 level ( P < .0001). CONCLUSION Multiparity is associated with a reduced level of autophagy in PBMCs. Dysregulated autophagy might be one mechanism leading to spontaneous abortion in nulliparous women.
Collapse
Affiliation(s)
- Aswathi Jayaram
- 1 Department of Obstetrics and Gynecology, Jamaica Hospital Medical Center, Jamaica, New York, NY, USA
| | - Tomi Kanninen
- 1 Department of Obstetrics and Gynecology, Jamaica Hospital Medical Center, Jamaica, New York, NY, USA
| | - Giovanni Sisti
- 2 Division of Immunology and Infectious Diseases, Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
| | - Steven R Inglis
- 1 Department of Obstetrics and Gynecology, Jamaica Hospital Medical Center, Jamaica, New York, NY, USA
| | - Nurah Morgan
- 1 Department of Obstetrics and Gynecology, Jamaica Hospital Medical Center, Jamaica, New York, NY, USA
| | - Steven S Witkin
- 2 Division of Immunology and Infectious Diseases, Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
24
|
Nasioudis D, Forney LJ, Schneider GM, Gliniewicz K, France M, Boester A, Sawai M, Scholl J, Witkin SS. Influence of Pregnancy History on the Vaginal Microbiome of Pregnant Women in their First Trimester. Sci Rep 2017; 7:10201. [PMID: 28860491 PMCID: PMC5579028 DOI: 10.1038/s41598-017-09857-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 08/01/2017] [Indexed: 12/15/2022] Open
Abstract
Pregnancy permanently alters maternal anatomy, physiology and immunity. We evaluated if the vaginal microbiome differed between women with a first or subsequent conception. Relative abundance of bacteria in the vaginal microbiome in first trimester pregnant women, 52 with their first known conception, 26 with a prior spontaneous or induced abortion but no deliveries and 77 with at least one prior birth, was determined by classifying DNA sequences from the V1-V3 region of bacterial 16 S rRNA genes. Lactobacillus crispatus was the numerically most abundant bacterium in 76.4% of women with a first conception, 50.0% with only a prior spontaneous or scheduled abortion and 22.2% with a prior birth (p ≤ 0.01). L. iners was the most abundant bacterium in 3.8% of women with a first conception as compared to 19.2% (p = 0.03) and 20.8% (p = 0.03) in those with a prior abortion or birth, respectively. Gardnerella as the most abundant bacterial genus increased from 3.8% in women with a first conception to 15.4% and 14.3% in those with a prior abortion or birth, respectively (p > 0.05). L. iners dominance was also associated with a history of spontaneous abortion (p ≤ 0.02). The composition of the vaginal microbiome and its influence on pregnancy outcome varies with pregnancy history.
Collapse
Affiliation(s)
- Dimitrios Nasioudis
- Division of Immunology and Infectious Disease, Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, New York, USA
| | - Larry J Forney
- Department of Biological Sciences and Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, USA
| | - G Maria Schneider
- Department of Biological Sciences and Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, USA
| | - Karol Gliniewicz
- Department of Biological Sciences and Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, USA
| | - Michael France
- Department of Biological Sciences and Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, USA
| | - Allison Boester
- Division of Immunology and Infectious Disease, Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, New York, USA
| | - Mio Sawai
- Division of Immunology and Infectious Disease, Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, New York, USA
| | - Jessica Scholl
- Division of Immunology and Infectious Disease, Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, New York, USA
| | - Steven S Witkin
- Division of Immunology and Infectious Disease, Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, New York, USA.
| |
Collapse
|
25
|
Younes JA, Lievens E, Hummelen R, van der Westen R, Reid G, Petrova MI. Women and Their Microbes: The Unexpected Friendship. Trends Microbiol 2017; 26:16-32. [PMID: 28844447 DOI: 10.1016/j.tim.2017.07.008] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/17/2017] [Accepted: 07/31/2017] [Indexed: 12/14/2022]
Abstract
Communities of microbiota have been associated with numerous health outcomes, and while much emphasis has been placed on the gastrointestinal niche, there is growing interest in the microbiome specific for female reproductive health and the health of their offspring. The vaginal microbiome plays an essential role not only in health and dysbiosis, but also potentially in successful fertilization and healthy pregnancies. In addition, microbial communities have been isolated from formerly forbidden sterile niches such as the placenta, breast, uterus, and Fallopian tubes, strongly suggesting an additional microbial role in women's health. A combination of maternally linked prenatal, birth, and postnatal factors, together with environmental and medical interventions, influence early and later life through the microbiome. Here, we review the role of microbes in female health focusing on the vaginal tract and discuss how male and female reproductive microbiomes are intertwined with conception and how mother-child microbial transfer is a key determinant in infant health, and thus the next generation.
Collapse
Affiliation(s)
- Jessica A Younes
- Winclove Probiotics, 11 Hulstweg, 1032 LB Amsterdam, The Netherlands.
| | - Elke Lievens
- KU Leuven, Centre of Microbial and Plant Genetics, Kasteelpark Arenberg 20, 3001 Leuven, Belgium; University of Antwerp, Department of Bioscience Engineering, Antwerp, Belgium
| | - Ruben Hummelen
- McMaster University, Department of Family Medicine, 100 Main Street West Hamilton, ON L8P 1H6, Canada
| | - Rebecca van der Westen
- University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Gregor Reid
- Human Microbiology and Probiotics, Lawson Health Research Institute, 268 Grosvenor Street, London, Ontario, N6A 4V2, Canada; Departments of Microbiology & Immunology, and Surgery, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Mariya I Petrova
- KU Leuven, Centre of Microbial and Plant Genetics, Kasteelpark Arenberg 20, 3001 Leuven, Belgium; University of Antwerp, Department of Bioscience Engineering, Antwerp, Belgium.
| |
Collapse
|
26
|
Lin S, Yang R, Chi H, Lian Y, Wang J, Huang S, Lu C, Liu P, Qiao J. Increased incidence of ectopic pregnancy after in vitro fertilization in women with decreased ovarian reserve. Oncotarget 2017; 8:14570-14575. [PMID: 28099907 PMCID: PMC5362426 DOI: 10.18632/oncotarget.14679] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/09/2017] [Indexed: 12/14/2022] Open
Abstract
The incidence of ectopic pregnancy after assisted reproductive technology is increased approximately 2.5-5-fold compared with natural conceptions.Strategies were used to decrease the incidence of ectopic pregnancy, but ectopic pregnancy still occurs. In the present study, women were selected with decreased ovarian reserve (defined as FSH > 10 IU/L) aged 20 to 38 years who underwent IVF-ET between 2009 and 2014. These 2,061 women were age-matched with an equal number of women with normal ovarian reserve (defined as FSH ≤ 10 IU/L). During cycles following fresh embryo transfer, 93 patients were diagnosed with ectopic pregnancy. The incidence of ectopic pregnancy in clinical pregnancies was significantly higher in the decreased ovarian reserve than in the normal ovarian reserve group (5.51% vs. 2.99%). After adjusting for confounding factors, the incidence of ectopic pregnancy was significantly associated with decreased ovarian reserve. Our results showed that decreased ovarian reserve is an independent risk factor for ectopic pregnancy after in vitro fertilization-embryo transfer.
Collapse
Affiliation(s)
- Shengli Lin
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Rui Yang
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Hongbin Chi
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Ying Lian
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Jiejing Wang
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Shuo Huang
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Cuiling Lu
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Ping Liu
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Jie Qiao
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
27
|
Moreno I, Franasiak JM. Endometrial microbiota—new player in town. Fertil Steril 2017; 108:32-39. [DOI: 10.1016/j.fertnstert.2017.05.034] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/22/2017] [Accepted: 05/24/2017] [Indexed: 02/06/2023]
|
28
|
Moore SG, Ericsson AC, Poock SE, Melendez P, Lucy MC. Hot topic: 16S rRNA gene sequencing reveals the microbiome of the virgin and pregnant bovine uterus. J Dairy Sci 2017; 100:4953-4960. [PMID: 28434745 DOI: 10.3168/jds.2017-12592] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/12/2017] [Indexed: 01/07/2023]
Abstract
We tested the hypothesis that the uterus of virgin heifers and pregnant cows possessed a resident microbiome by 16S rRNA gene sequencing of the virgin and pregnant bovine uterus. The endometrium of 10 virgin heifers in estrus and the amniotic fluid, placentome, intercotyledonary placenta, cervical lumen, and external cervix surface (control) of 5 pregnant cows were sampled using aseptic techniques. The DNA was extracted, the V4 hypervariable region of the 16S rRNA gene was amplified, and amplicons were sequenced using Illumina MiSeq technology (Illumina Inc., San Diego, CA). Operational taxonomic units (OTU) were generated from the sequences using Qiime v1.8 software, and taxonomy was assigned using the Greengenes database. The effect of tissue on the microbial composition within the pregnant uterus was tested using univariate (mixed model) and multivariate (permutational multivariate ANOVA) procedures. Amplicons of 16S rRNA gene were generated in all samples, supporting the contention that the uterus of virgin heifers and pregnant cows contained a microbiome. On average, 53, 199, 380, 382, 525, and 13,589 reads annotated as 16, 35, 43, 63, 48, and 176 OTU in the placentome, virgin endometrium, amniotic fluid, cervical lumen, intercotyledonary placenta, and external surface of the cervix, respectively, were generated. The 3 most abundant phyla in the uterus of the virgin heifers and pregnant cows were Firmicutes, Bacteroidetes, and Proteobacteria, and they accounted for approximately 40, 35, and 10% of the sequences, respectively. Phyla abundance was similar between the tissues of the pregnant uterus. Principal component analysis, one-way PERMANOVA analysis of the Bray-Curtis similarity index, and mixed model analysis of the Shannon diversity index and Chao1 index demonstrated that the microbiome of the control tissue (external surface of the cervix) was significantly different from that of the amniotic fluid, intercotyledonary placenta, and placentome tissues. Interestingly, many bacterial species associated with postpartum uterine disease (i.e., Trueperella spp., Acinetobacter spp., Fusobacteria spp., Proteus spp., Prevotella spp., and Peptostreptococcus spp.) were also present in the uterus of virgin heifers and of pregnant cows. The presence of 16S rRNA gene sequence reads in the samples from the current study suggests that the uterine microbiome is established by the time a female reaches reproductive maturity, and that pregnancies are established and maintained in the presence of a uterine microbiome.
Collapse
Affiliation(s)
| | - A C Ericsson
- Department of Veterinary Pathobiology, University of Missouri, Columbia 65211; University of Missouri Metagenomics Center, University of Missouri, Columbia 65201
| | - S E Poock
- College of Veterinary Medicine, University of Missouri, Columbia 65211
| | - P Melendez
- College of Veterinary Medicine, University of Missouri, Columbia 65211
| | | |
Collapse
|
29
|
The Role of Hsp70 in the Regulation of Autophagy in Gametogenesis, Pregnancy, and Parturition. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 222:117-127. [PMID: 28389753 DOI: 10.1007/978-3-319-51409-3_6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Induction of the 70 kDa heat shock protein (hsp70) and autophagy are two major mechanisms that promote cell homeostasis during the rapid cell growth and differentiation characteristic of reproduction. Hsp70 insures proper assembly, conformation, and intracellular transport of nascent proteins. Autophagy removes from the cytoplasm proteins, other macromolecules, and organelles that are no longer functional or needed and recycles their components for synthesis of new products under nutritionally limiting conditions. Hsp70 inhibits autophagy and so a proper balance between these two processes is essential for optimal germ cell production and survival and pregnancy progression. A marked inhibition in autophagy and a concomitant increase in hsp70 at term is a trigger for parturition. Excessive external or endogenous stress that induces a high level of hsp70 production can lead to a non-physiological inhibition of autophagy, resulting in altered spermatogenesis, premature ovarian failure, and complications of pregnancy including preeclampsia, intrauterine growth restriction, and preterm birth.
Collapse
|
30
|
Khatami M. Is cancer a severe delayed hypersensitivity reaction and histamine a blueprint? Clin Transl Med 2016; 5:35. [PMID: 27558401 PMCID: PMC4996813 DOI: 10.1186/s40169-016-0108-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 07/04/2016] [Indexed: 02/08/2023] Open
Abstract
Longevity and accumulation of multiple context-dependent signaling pathways of long-standing inflammation (antigen-load or oxidative stress) are the results of decreased/altered regulation of immunity and loss of control switch mechanisms that we defined as Yin and Yang of acute inflammation or immune surveillance. Chronic inflammation is initiated by immune disruptors-induced progressive changes in physiology and function of susceptible host tissues that lead to increased immune suppression and multistep disease processes including carcinogenesis. The interrelated multiple hypotheses that are presented for the first time in this article are extension of author's earlier series of 'accidental' discoveries on the role of inflammation in developmental stages of immune dysfunction toward tumorigenesis and angiogenesis. Detailed analyses of data on chronic diseases suggest that nearly all age-associated illnesses, generally categorized as 'mild' (e.g., increased allergies), 'moderate' (e.g., hypertension, colitis, gastritis, pancreatitis, emphysema) or 'severe' (e.g., accelerated neurodegenerative and autoimmune diseases or site-specific cancers and metastasis) are variations of hypersensitivity responses of tissues that are manifested as different diseases in immune-responsive or immune-privileged tissues. Continuous release/presence of low level histamine (subclinical) in circulation could contribute to sustained oxidative stress and induction of 'mild' or 'moderate' or 'severe' (immune tsunami) immune disorders in susceptible tissues. Site-specific cancers are proposed to be 'severe' (irreversible) forms of cumulative delayed hypersensitivity responses that would induce immunological chaos in favor of tissue growth in target tissues. Shared or special features of growth from fetus development into adulthood and aging processes and carcinogenesis are briefly compared with regard to energy requirements of highly complex function of Yin and Yang. Features of Yang (growth-promoting) arm of acute inflammation during fetus and cancer growth will be compared for consuming low energy from glycolysis (Warburg effect). Growth of fetus and cancer cells under hypoxic conditions and impaired mitochondrial energy requirements of tissues including metabolism of essential branched amino acids (e.g., val, leu, isoleu) will be compared for proposing a working model for future systematic research on cancer biology, prevention and therapy. Presentation of a working model provides insightful clues into bioenergetics that are required for fetus growth (absence of external threat and lack of high energy-demands of Yin events and parasite-like survival in host), normal growth in adulthood (balance in Yin and Yang processes) or disease processes and carcinogenesis (loss of balance in Yin-Yang). Future studies require focusing on dynamics and promotion of natural/inherent balance between Yin (tumoricidal) and Yang (tumorigenic) of effective immunity that develop after birth. Lawless growth of cancerous cells and loss of cell contact inhibition could partially be due to impaired mitochondria (mitophagy) that influence metabolism of branched chain amino acids for biosynthesis of structural proteins. The author invites interested scientists with diverse expertise to provide comments, confirm, dispute and question and/or expand and collaborate on many components of the proposed working model with the goal to better understand cancer biology for future designs of cost-effective research and clinical trials and prevention of cancer. Initial events during oxidative stress-induced damages to DNA/RNA repair mechanisms and inappropriate expression of inflammatory mediators are potentially correctable, preventable or druggable, if future studies were to focus on systematic understanding of early altered immune response dynamics toward multistep chronic diseases and carcinogenesis.
Collapse
Affiliation(s)
- Mahin Khatami
- National Cancer Institute (NCI), the National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
31
|
de Andrade Ramos BR, Witkin SS. The influence of oxidative stress and autophagy cross regulation on pregnancy outcome. Cell Stress Chaperones 2016; 21:755-62. [PMID: 27383757 PMCID: PMC5003807 DOI: 10.1007/s12192-016-0715-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/15/2016] [Accepted: 06/21/2016] [Indexed: 12/28/2022] Open
Abstract
The generation of reactive oxygen species (ROS), a byproduct of aerobic energy metabolism, is maintained at physiological levels by the activity of antioxidant components. Insufficiently opposed ROS results in oxidative stress characterized by altered mitochondrial function, decreased protein activity, damage to nucleic acids, and induction of apoptosis. Elevated levels of inadequately opposed ROS induce autophagy, a major intracellular pathway that sequesters and removes damaged macromolecules and organelles. In early pregnancy, autophagy induction preserves trophoblast function in the low oxygen and nutrient placental environment. Inadequate regulation of the ROS-autophagy axis leads to abnormal autophagy activity and contributes to the development of preeclampsia and intrauterine growth restriction. ROS-autophagy interactions are altered at the end of gestation and participate in the initiation of parturition at term. The induction of high levels of ROS coupled with a failure to induce a corresponding increase in autophagy results in the triggering of preterm labor and delivery.
Collapse
Affiliation(s)
- Bruna Ribeiro de Andrade Ramos
- Department of Pathology, Botucatu Medical School, São Paulo State University-UNESP, Distrito de Rubião Júnior, 18618-970, Botucatu, São Paulo, Brazil.
- Division of Immunology and Infectious Diseases, Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA.
| | - Steven S Witkin
- Department of Pathology, Botucatu Medical School, São Paulo State University-UNESP, Distrito de Rubião Júnior, 18618-970, Botucatu, São Paulo, Brazil
- Division of Immunology and Infectious Diseases, Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
32
|
Reid G. Cervicovaginal Microbiomes-Threats and Possibilities. Trends Endocrinol Metab 2016; 27:446-454. [PMID: 27129670 DOI: 10.1016/j.tem.2016.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 03/26/2016] [Accepted: 04/08/2016] [Indexed: 12/16/2022]
Abstract
The microbiome of the vagina has universal traits that override race, diet, lifestyle, and socioeconomic status. While five community state types have been proposed, the actual number is likely closer to ten. Nevertheless, while lactobacilli dominate in health for most women, a highly diverse community or single pathogens are associated with morbidity. The fact that four or five Lactobacillus species are dominant in healthy women worldwide, raises questions of why they evolved in this niche, what they are doing, and how their apparent protective properties can be harnessed? This opinion article explores this universality, elements of lactobacilli that may imprint women's health and that of their offspring, and proposes key areas for future study.
Collapse
Affiliation(s)
- Gregor Reid
- Lawson Health Research Institute, 268 Grosvenor Street, London, Ontario, N6A 4V2, Canada; University of Western Ontario, Richmond Street, London, Canada.
| |
Collapse
|