1
|
Bao Y, Lian M, Chen Y, Gu X, Cao K, Du X, Ju J. sNASP Mutation Aggravates to the TLR4-Mediated Inflammation in SLE by TAK1 Pathway. J Immunol Res 2023; 2023:4877700. [PMID: 37771504 PMCID: PMC10533267 DOI: 10.1155/2023/4877700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/16/2023] [Accepted: 09/02/2023] [Indexed: 09/30/2023] Open
Abstract
Genetic factors play an important role in the pathogenesis of systemic lupus erythematosus (SLE), and abnormal Toll-like receptor (TLR) signaling pathways are closely related to the onset of SLE. In previous studies, we found that the mutant somatic nuclear autoantigenic sperm protein (sNASP) gene in the mouse lupus susceptibility locus Sle2 can promote the development of lupus model mice, but the mechanism is still unclear. Here, we stimulated mouse peritoneal macrophages with different concentrations of lipopolysaccharide. The results showed that sNASP gene mutations can promote the response of the TLR4-TAK1 signaling pathway but have no significant effect on the TLR4-TBK1 signaling pathway. sNASP mutations enhanced TLR4-mediated nuclear factor-κ-gene binding and mitogen-activated protein kinase activation and IL-6, tumor necrosis factor secretion in murine peritoneal macrophages. Collectively, our study revealed the impact of sNASP gene mutation on the sensitivity of TLR4 receptors in mouse peritoneal macrophages and shed light on potential mechanisms underlying inflammation in autoimmune diseases.
Collapse
Affiliation(s)
- Yatao Bao
- School of Basic Medical Science, Weifang Medical University, Weifang 261053, China
| | - Meng Lian
- School of Basic Medical Science, Weifang Medical University, Weifang 261053, China
| | - Yong Chen
- School of Basic Medical Science, Weifang Medical University, Weifang 261053, China
| | - Xiaotian Gu
- School of Basic Medical Science, Weifang Medical University, Weifang 261053, China
| | - Kunyu Cao
- School of Basic Medical Science, Weifang Medical University, Weifang 261053, China
| | - Xiaoping Du
- Medical Control Office, The Second Affiliated Hospital of Weifang Medical University, Weifang 261041, China
- Medical Control Office, Weifang, No. 2 Hospital, Weifang 261041, China
| | - Jiyu Ju
- School of Basic Medical Science, Weifang Medical University, Weifang 261053, China
| |
Collapse
|
2
|
Harley ITW, Allison K, Scofield RH. Polygenic autoimmune disease risk alleles impacting B cell tolerance act in concert across shared molecular networks in mouse and in humans. Front Immunol 2022; 13:953439. [PMID: 36090990 PMCID: PMC9450536 DOI: 10.3389/fimmu.2022.953439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
Most B cells produced in the bone marrow have some level of autoreactivity. Despite efforts of central tolerance to eliminate these cells, many escape to periphery, where in healthy individuals, they are rendered functionally non-responsive to restimulation through their antigen receptor via a process termed anergy. Broad repertoire autoreactivity may reflect the chances of generating autoreactivity by stochastic use of germline immunoglobulin gene segments or active mechanisms may select autoreactive cells during egress to the naïve peripheral B cell pool. Likewise, it is unclear why in some individuals autoreactive B cell clones become activated and drive pathophysiologic changes in autoimmune diseases. Both of these remain central questions in the study of the immune system(s). In most individuals, autoimmune diseases arise from complex interplay of genetic risk factors and environmental influences. Advances in genome sequencing and increased statistical power from large autoimmune disease cohorts has led to identification of more than 200 autoimmune disease risk loci. It has been observed that autoantibodies are detectable in the serum years to decades prior to the diagnosis of autoimmune disease. Thus, current models hold that genetic defects in the pathways that control autoreactive B cell tolerance set genetic liability thresholds across multiple autoimmune diseases. Despite the fact these seminal concepts were developed in animal (especially murine) models of autoimmune disease, some perceive a disconnect between human risk alleles and those identified in murine models of autoimmune disease. Here, we synthesize the current state of the art in our understanding of human risk alleles in two prototypical autoimmune diseases - systemic lupus erythematosus (SLE) and type 1 diabetes (T1D) along with spontaneous murine disease models. We compare these risk networks to those reported in murine models of these diseases, focusing on pathways relevant to anergy and central tolerance. We highlight some differences between murine and human environmental and genetic factors that may impact autoimmune disease development and expression and may, in turn, explain some of this discrepancy. Finally, we show that there is substantial overlap between the molecular networks that define these disease states across species. Our synthesis and analysis of the current state of the field are consistent with the idea that the same molecular networks are perturbed in murine and human autoimmune disease. Based on these analyses, we anticipate that murine autoimmune disease models will continue to yield novel insights into how best to diagnose, prognose, prevent and treat human autoimmune diseases.
Collapse
Affiliation(s)
- Isaac T. W. Harley
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative (HI3), Department of Immunology, University of Colorado School of Medicine, Aurora, CO, United States
- Rheumatology Section, Medicine Service, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| | - Kristen Allison
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative (HI3), Department of Immunology, University of Colorado School of Medicine, Aurora, CO, United States
| | - R. Hal Scofield
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Medical/Research Service, US Department of Veterans Affairs Medical Center, Oklahoma City, OK, United States
| |
Collapse
|
3
|
Ju J, Wang H, Lian M, Bao Y, Zhang Y, Xu Z. A murine Skint6 W168X allele contributes to autoimmune disease in a transgenic model. Lupus 2022; 31:297-306. [PMID: 35045734 DOI: 10.1177/09612033221074544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The genetic factor is a great driver of systemic lupus erythematosus. A Skint6 W168X allele was previously identified in the murine lupus susceptibility rec1d1 sublocus. The purpose of this study is to investigate the pathogenic role and mechanism of the Skint6 W168X allele in lupus autoimmune disease. METHODS The gene-editing CRISPR/Cas9 system was used to generate transgenic models with the Skint6 W168X allele. PCR and Sanger's sequencing techniques were applied to mRNA quantification and DNA sequence detection. Flow cytometry was adopted for immunophenotyping. Pathological evaluation of kidneys and lungs was performed using several immunopathological approaches. RESULTS The transgenic models with the Skint6 W168X allele were created, including B6.Skint6X/X and B6.lpr.Skint6X/X strains. The B6.lpr.Skint6X/X mice showed bigger spleen and lymph nodes, more lymphocytes and effector T cell populations, more severe nephritis with more IgG and C3 deposit in glomeruli as well as worse proteinuria, and more severe lung inflammation than control B6.lpr mice. In addition, a skint6 receptor binding Skint6 peptide was identified from T and B lymphocytes. B6.Skint6X/X mice have lower percentages of skint6 receptor+ T and B cells in spleen than B6 mice. CONCLUSION The Skint6 W168X allele in murine lupus rec1d1 sublocus was validated to be a pathogenic mutant gene and contributes to autoimmune disease through producing a truncated Skint6 peptide of binding the skint6 receptors on lymphocytes.
Collapse
Affiliation(s)
- Jiyu Ju
- Department of Immunology, 372527Weifang Medical University, Weifang, China
| | - Hui Wang
- Department of Immunology, 372527Weifang Medical University, Weifang, China
| | - Meng Lian
- Department of Immunology, 372527Weifang Medical University, Weifang, China
| | - Yatao Bao
- Department of Immunology, 372527Weifang Medical University, Weifang, China
| | - Yanyan Zhang
- Department of Immunology, 372527Weifang Medical University, Weifang, China
| | - Zhiwei Xu
- Department of Immunology, 372527Weifang Medical University, Weifang, China
| |
Collapse
|
4
|
A Variant of sNASP Exacerbates Lymphocyte Subset Disorder and Nephritis in a Spontaneous Lupus Model Sle1.Yaa Mouse. Mediators Inflamm 2021; 2021:8175863. [PMID: 34720750 PMCID: PMC8553485 DOI: 10.1155/2021/8175863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/23/2021] [Indexed: 11/18/2022] Open
Abstract
A variant of somatic nuclear autoantigenic sperm protein (sNASP) was identified from the murine lupus susceptibility locus Sle2c1 by whole exome sequencing (WES). Previous studies have shown that mutant sNASP could synergize with the Faslpr mutation in exacerbating autoimmunity and aggravating end-organ inflammation. In the current study, the sNASP mutation was introduced into Sle1.Yaa mice to detect whether it has a synergistic effect with Sle1 or Yaa loci. As expected, compared with Sle1.Yaa mice, Sle1.Yaa.ΔsNASP mice showed enlarged lymph nodes, aggravated renal inflammation, and shortened survival time. The proportions of CD3+ T cells, activated CD19+CD86+ B cells, Th1 cells in the spleen and lymph nodes, and Th17 cells in lymph nodes in Sle1.Yaa.ΔsNASP mice were increased compared to those in Sle1.Yaa mice. The levels of IFN-γ and TNF-α in the serum of Sle1.Yaa.ΔsNASP mice were higher than those of Sle1.Yaa mice. The above results show that mutant sNASP can interact with different lupus susceptibility genes and promote the disease process of systemic lupus erythematosus.
Collapse
|
5
|
Abstract
BACKGROUND Lupus B cells not only produce autoantibodies against nuclear antigens but also provide co-stimulation to T cells. However, there is still a lack of comprehensive understanding of the mechanism underlying lupus B cell hyperactivation. METHODS This study focuses on the detection of B cell activation status, analysis of early BCR signaling response, DNA sequencing, and quantity determination of BCR signaling regulators in murine lupus models. RESULTS Our result showed that there is a B cell hyperactivation with a significant elevation of B cell activation markers, and a BCR signaling hyperactivity with an abnormal increase of phosphorylated BCR signaling molecules and cytoplasmic calcium in the early response to BCR crosslinking in B6.Sle1/2/3 lupus mouse. Whole exome sequencing identified a multiple point mutation in the exon of many BCR signaling regulators in common murine lupus models, MRL/lpr, NZM2410, BXSB, NZB, and NZW strains. cNDA sequencing confirmed FcγR2b, Ly9, Pirb, Siglecg, and CD22 BCR signaling regulator variants in B6.Sle1/2/3 lupus mouse, but surface protein expression of these regulators on B cells showed an abnormal increase. CONCLUSION Our findings support that these BCR signaling regulator variants are potential causative genes of B cell hyperactivation in murine lupus models through their possible functional reduction.
Collapse
Affiliation(s)
- J Y Ju
- Department of Immunology, 372527Weifang Medical University, Weifang, China
| | - Z W Xu
- Department of Immunology, 372527Weifang Medical University, Weifang, China
| |
Collapse
|
6
|
Ciuffoli V, Lena AM, Gambacurta A, Melino G, Candi E. Myoblasts rely on TAp63 to control basal mitochondria respiration. Aging (Albany NY) 2019; 10:3558-3573. [PMID: 30487319 PMCID: PMC6286837 DOI: 10.18632/aging.101668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/15/2018] [Indexed: 12/15/2022]
Abstract
p53, with its family members p63 and p73, have been shown to promote myoblast differentiation by regulation of the function of the retinoblastoma protein and by direct activation of p21Cip/Waf1 and p57Kip2, promoting cell cycle exit. In previous studies, we have demonstrated that the TAp63γ isoform is the only member of the p53 family that accumulates during in vitro myoblasts differentiation, and that its silencing led to delay in myotube fusion. To better dissect the role of TAp63γ in myoblast physiology, we have generated both sh-p63 and Tet-On inducible TAp63γ clones. Gene array analysis of sh-p63 C2C7 clones showed a significant modulation of genes involved in proliferation and cellular metabolism. Indeed, we found that sh-p63 C2C7 myoblasts present a higher proliferation rate and that, conversely, TAp63γ ectopic expression decreases myoblasts proliferation, indicating that TAp63γ specifically contributes to myoblasts proliferation, independently of p53 and p73. In addition, sh-p63 cells have a defect in mitochondria respiration highlighted by a reduction in spare respiratory capacity and a decrease in complex I, IV protein levels. These results demonstrated that, beside contributing to cell cycle exit, TAp63γ participates to myoblasts metabolism control.
Collapse
Affiliation(s)
- Veronica Ciuffoli
- Department of Experimental Medicine and TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Anna Maria Lena
- Department of Experimental Medicine and TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Alessandra Gambacurta
- Department of Experimental Medicine and TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine and TOR, University of Rome "Tor Vergata", Rome, Italy.,MRC-Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Eleonora Candi
- Department of Experimental Medicine and TOR, University of Rome "Tor Vergata", Rome, Italy.,IDI-IRCCS, Biochemistry laboratory, Rome, Italy
| |
Collapse
|
7
|
Ju J, Xu J, Zhu Y, Fu X, Morel L, Xu Z. A Variant of the Histone-Binding Protein sNASP Contributes to Mouse Lupus. Front Immunol 2019; 10:637. [PMID: 31001259 PMCID: PMC6454087 DOI: 10.3389/fimmu.2019.00637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/08/2019] [Indexed: 01/18/2023] Open
Abstract
The Sle2c1rec1c (rec1c) sublocus is derived from the mouse lupus susceptibility 2 (Sle2) locus identified in the NZM2410 model. Our current study dissected the functional characters and the genetic basis of the rec1c locus relative to lupus when co-expressed with the Faslpr mutation, an established inducer of autoimmunity. The rec1c.lpr mice exhibited mild expansion of lymph nodes and had a normal T cell cellularity, but developed significantly kidney and lung inflammation, indicating that the rec1c amplifies lpr-induced autoimmune pathogenesis. A variant of somatic nuclear autoantigenic sperm protein (sNASP) was identified from the rec1c interval as a substitution of two consecutive amino acid residues in the histone-binding domain, resulting in an increased binding affinity to histone H4 and H3.1/H4 tetramer. To determine the role of the sNASP rec1c allele in mouse lupus, a novel strain was generated by introducing the rec1c mutations into the B6 genome. In this transgenic model, the sNASP allele synergized with the lpr mutation leading to moderate autoimmune phenotypes and aggravating inflammatory pathology alterations in kidney and lung that were similar to those observed in the rec1c.lpr mice. These results establish that the sNASP allele is a pathogenic genetic element in the rec1c sublocus, which not only promotes autoimmunity, but also exacerbates the inflammation reaction of end organs in mouse lupus pathogenesis. It also shows the complexity of the Sle2c locus, initially mapped as the major locus associated with B1a cell expansion. In addition to Cdkn2c, which regulates this expansion, we have now identified in the same locus a protective allele of Csf3r, a variant of Skint6 associated with T cell activation, and now a variant of sNASP that amplifies autoimmunity and tissue damage.
Collapse
Affiliation(s)
- Jiyu Ju
- Department of Immunology, Weifang Medical University, Weifang, China
| | - Jia Xu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Yaoqiang Zhu
- Department of Immunology, Weifang Medical University, Weifang, China
| | - Xiaoyan Fu
- Department of Immunology, Weifang Medical University, Weifang, China
| | - Laurence Morel
- Immunology and Laboratory Medicine, Department of Pathology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Zhiwei Xu
- Department of Immunology, Weifang Medical University, Weifang, China.,Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|