1
|
Chen W, Guo Z, Li M, Sheng W, Huang G. Next-Generation Sequencing-Based Copy Number Variation Analysis in Chinese Patients with Primary Ciliary Dyskinesia Revealed Novel DNAH5 Copy Number Variations. PHENOMICS (CHAM, SWITZERLAND) 2024; 4:24-33. [PMID: 38605905 PMCID: PMC11003934 DOI: 10.1007/s43657-023-00130-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 04/13/2024]
Abstract
Primary ciliary dyskinesia (PCD) is a rare disorder characterized by extensive genetic heterogeneity. However, in the genetic pathogenesis of PCD, copy number variation (CNV) has not received sufficient attention and has rarely been reported, especially in China. Next-generation sequencing (NGS) followed by targeted CNV analysis was used in patients highly suspected to have PCD with negative results in routine whole-exome sequencing (WES) analysis. Quantitative real-time polymerase chain reaction (qPCR) and Sanger sequencing were used to confirm these CNVs. To further characterize the ciliary phenotypes, high-speed video microscopy analysis (HSVA), transmission electron microscopy (TEM), and immunofluorescence (IF) analysis were used. Patient 1 (F1: II-1), a 0.6-year-old girl, came from a nonconsanguineous family-I. She presented with situs inversus totalis, neonatal respiratory distress, and sinusitis. The nasal nitric oxide level was markedly reduced. The respiratory cilia beat with reduced amplitude. TEM revealed shortened outer dynein arms (ODA) of cilia. chr5:13717907-13722661del spanning exons 71-72 was identified by NGS-based CNV analysis. Patient 2 (F2: IV-4), a 37-year-old man, and his eldest brother Patient 3 (F2: IV-2) came from a consanguineous family-II. Both had sinusitis, bronchiectasis and situs inversus totalis. The respiratory cilia of Patient 2 and Patient 3 were found to be uniformly immotile, with ODA defects. Two novel homozygous deletions chr5:13720087_13733030delinsGTTTTC and chr5:13649539_1 3707643del, spanning exons 69-71 and exons 77-79 were identified by NGS-based CNV analysis. Abnormalities in DNA copy number were confirmed by qPCR amplification. IF showed that the respiratory cilia of Patient 1 and Patient 2 were deficient in dynein axonemal heavy chain 5 (DNAH5) protein expression. This report identified three novel DNAH5 disease-associated variants by WES-based CNV analysis. Our study expands the genetic spectrum of PCD with DNAH5 in the Chinese population. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-023-00130-0.
Collapse
Affiliation(s)
- Weicheng Chen
- Cardiovascular Center, Children’s Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102 China
| | - Zhuoyao Guo
- Respirology Department, Children’s Hospital of Fudan University, Shanghai, 201102 China
| | - Mengru Li
- Cardiovascular Center, Children’s Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102 China
| | - Wei Sheng
- Cardiovascular Center, Children’s Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102 China
| | - Guoying Huang
- Cardiovascular Center, Children’s Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102 China
| |
Collapse
|
2
|
Recessive Dystrophic Epidermolysis bullosa due to Hemizygous 40 kb Deletion of COL7A1 and the Proximate PFKFB4 Gene Focusing on the Mutation c.425A>G Mimicking Homozygous Status. Diagnostics (Basel) 2022; 12:diagnostics12102460. [PMID: 36292148 PMCID: PMC9600310 DOI: 10.3390/diagnostics12102460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/17/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Dystrophic Epidermolysis bullosa (DEB) is a rare inherited mechanobullous disease characterised by the hyperfragility of the skin and mucous membranes. It is (typically) caused by (loss-of-function) mutations in the COL7A1 gene that impair the formation of collagen type VII, which represents the major constituent of anchoring fibrils within the basement membrane zone of epithelialised tissues. In a 4-year-old patient diagnosed with the clinical features of recessive DEB, genotyping via Next-Generation EB Panel Sequencing initially revealed the homozygosity of the maternal c.425A>G mutation, while the paternal heterozygosity in exon 3 was lacking. This genetic profile suggested incongruent gene transmission due to uniparental isodisomy (UPD) or the occurrence of a hemizygous deletion of unknown size. Methods: Thus, the EB panel sequencing of genomic DNA, followed by a paternity test and analysis of microsatellite markers, as well as multiplex ligation-dependent probe amplification (MLPA) copy number analysis using patient and parental DNA, were performed. Results: This approach revealed a paternally derived hemizygous deletion spanning from exon 3 to exon 118. Linear amplification-mediated PCR (LAM-PCR) determined the breaking points within intron 2 of the COL7A1 gene, comprising a 40kb segment within intron 1 of the adjacent PFKFB4 gene. Conclusion: This report highlights the relevance of advanced molecular profiling to determine new/exceptional/unusual genotypes and the accurate mode of genetic transmission in DEB.
Collapse
|
3
|
Lagerstedt-Robinson K, Baranowska Körberg I, Tsiaprazis S, Björck E, Tham E, Poluha A, Hellström Pigg M, Paulsson-Karlsson Y, Nordenskjöld M, Johansson-Soller M, Aravidis C. A retrospective two centre study of Birt-Hogg-Dubé syndrome reveals a pathogenic founder mutation in FLCN in the Swedish population. PLoS One 2022; 17:e0264056. [PMID: 35176117 PMCID: PMC8853502 DOI: 10.1371/journal.pone.0264056] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 02/02/2022] [Indexed: 11/18/2022] Open
Abstract
Birt-Hogg-Dube syndrome (BHDS) (MIM: 135150) is a rare autosomal dominant disorder with variable penetrance, caused by pathogenic variants in the FLCN gene. Only a few hundreds of families have so far been described in the literature. Patients with BHDS present with three distinct symptoms: fibrofolliculomas, pneumothorax due to lung cyst formation, and increased lifetime risk of kidney tumours. The aim of the current study was to estimate the incidence of BHDS in the Swedish population and further describe the clinical manifestations and their frequency. Splice variant c.779+1G>T was the most common pathogenic variant, found in 57% of the families, suggesting this may be a founder mutation in the Swedish population. This was further investigated using haplotype analysis in 50 families that shared a common haplotype. Moreover, according to gnomAD the carrier frequency of the c.779+1G>T variant has been estimated to be 1/3265 in the Swedish population, however our data suggest that the carrier frequency in the Swedish population may be significantly higher. These findings should raise awareness among physicians of different specialties to patients presenting with fibrofolliculomas, pneumothorax and/or kidney tumours. We also stress the importance of consensus recommendations regarding diagnosis and clinical management of this, not that uncommon, syndrome.
Collapse
Affiliation(s)
- Kristina Lagerstedt-Robinson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Izabella Baranowska Körberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Science for Life Laboratory, Uppsala, Sweden
- Department of Clinical Genetics, Uppsala University Hospital, Uppsala, Sweden
| | - Stefanos Tsiaprazis
- Department of Immunology, Genetics and Pathology, Uppsala University, Science for Life Laboratory, Uppsala, Sweden
- Department of Clinical Genetics, Uppsala University Hospital, Uppsala, Sweden
| | - Erik Björck
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Emma Tham
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Anna Poluha
- Department of Immunology, Genetics and Pathology, Uppsala University, Science for Life Laboratory, Uppsala, Sweden
- Department of Clinical Genetics, Uppsala University Hospital, Uppsala, Sweden
| | - Maritta Hellström Pigg
- Department of Immunology, Genetics and Pathology, Uppsala University, Science for Life Laboratory, Uppsala, Sweden
- Department of Clinical Genetics, Uppsala University Hospital, Uppsala, Sweden
| | - Ylva Paulsson-Karlsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Science for Life Laboratory, Uppsala, Sweden
- Department of Clinical Genetics, Uppsala University Hospital, Uppsala, Sweden
| | - Magnus Nordenskjöld
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Maria Johansson-Soller
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Christos Aravidis
- Department of Immunology, Genetics and Pathology, Uppsala University, Science for Life Laboratory, Uppsala, Sweden
- Department of Clinical Genetics, Uppsala University Hospital, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
4
|
Förster TM, Magerl M, Maurer M, Zülbahar S, Zielke S, Inhaber N, Crocetta D, Rolfs A, Skrahina V. HAE patient self-sampling for biomarker establishment. Orphanet J Rare Dis 2021; 16:399. [PMID: 34583739 PMCID: PMC8478266 DOI: 10.1186/s13023-021-02021-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 09/20/2021] [Indexed: 11/30/2022] Open
Abstract
Background Hereditary Angioedema (HAE) is a genetic disorder that leads to frequent angioedema attacks in various parts of the body. In most cases it is caused by pathogenic variants in the SERPING1 gene, coding for C1-Inhibitor (C1-INH). The pathogenic variants in the gene result in reduced C1-INH levels and/or activity, which causes aberrant bradykinin production and enhanced vascular permeability. The standard-of-care diagnostic test is performed biochemically via measuring C1-INH level and activity as well as the C4 level. This, however, does not allow for the diagnosis of HAE types with normal C1-INH. There is an urgent need to identify and characterize HAE biomarkers for facilitating diagnostics and personalizing the treatment. The Hereditary Angioedema Kininogen Assay (HAEKA) study aims to measure the dynamics of cleaved High Molecular Weight Kininogen (HKa) and other metabolite levels during the angioedema and non-angioedema state of the disease. The metabolites will be analyzed and verified by liquid chromatography ion mobility high resolution mass spectrometry (LC/IM-QToF MS) of dried blood spot (DBS) cards upon the study completion. The study design is truly innovative: 100 enrolled participants provide blood samples via DBS: (1) every 3 months within 2 years during regular study site visits and (2) by at-home self-sampling during HAE attacks via finger pricking. We are presenting a project design that permits clinical study activities during pandemic contact restrictions and opens the door for other clinical studies during COVID-19. Results As of October 2020, there are 41 patients from 5 sites in Germany enrolled. 90 blood samples were collected during the regular visits, and 19 of the participants also performed self-sampling during the HAE attacks from which a total of 286 attack blood samples were collected. Participating patients rate the study procedures as easy to implement in their daily lives. The concept of home self-sampling is effective, reproducible, and convenient especially in times of contact restrictions due to the COVID-19 pandemic. Conclusions It is the hope that the HAEKA study will complete in 2023, reveal biomarker(s) for monitoring HAE disease activity, and may help to avoid HAE attacks via applying medication prior to the symptom onset. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-02021-x.
Collapse
Affiliation(s)
- Toni M Förster
- CENTOGENE GmbH, Rostock, Germany. .,Arcensus GmbH, Goethestrasse 20, 18055, Rostock, Germany.
| | - Markus Magerl
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marcus Maurer
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | | | - Neil Inhaber
- Takeda Pharmaceutical Company Limited, Lexington, MA, USA
| | | | - Arndt Rolfs
- CENTOGENE GmbH, Rostock, Germany.,Universität Rostock, Medizinische Fakultät, Rostock, Germany.,Arcensus GmbH, Goethestrasse 20, 18055, Rostock, Germany
| | - Volha Skrahina
- CENTOGENE GmbH, Rostock, Germany.,Arcensus GmbH, Goethestrasse 20, 18055, Rostock, Germany
| |
Collapse
|
5
|
Cope H, Barseghyan H, Bhattacharya S, Fu Y, Hoppman N, Marcou C, Walley N, Rehder C, Deak K, Alkelai A, Vilain E, Shashi V. Detection of a mosaic CDKL5 deletion and inversion by optical genome mapping ends an exhaustive diagnostic odyssey. Mol Genet Genomic Med 2021; 9:e1665. [PMID: 33955715 PMCID: PMC8372083 DOI: 10.1002/mgg3.1665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Currently available structural variant (SV) detection methods do not span the complete spectrum of disease-causing SVs. Optical genome mapping (OGM), an emerging technology with the potential to resolve diagnostic dilemmas, was performed to investigate clinically-relevant SVs in a 4-year-old male with an epileptic encephalopathy of undiagnosed molecular origin. METHODS OGM was utilized to image long, megabase-size DNA molecules, fluorescently labeled at specific sequence motifs throughout the genome with high sensitivity for detection of SVs greater than 500 bp in size. OGM results were confirmed in a CLIA-certified laboratory via mate-pair sequencing. RESULTS OGM identified a mosaic, de novo 90 kb deletion and inversion on the X chromosome disrupting the CDKL5 gene. Detection of the mosaic deletion, which had been previously undetected by chromosomal microarray, an infantile epilepsy panel including exon-level microarray for CDKL5, exome sequencing as well as genome sequencing, resulted in a diagnosis of X-linked dominant early infantile epileptic encephalopathy-2. CONCLUSION OGM affords an effective technology for the detection of SVs, especially those that are mosaic, since these remain difficult to detect with current NGS technologies and with conventional chromosomal microarrays. Further research in undiagnosed populations with OGM is warranted.
Collapse
Affiliation(s)
- Heidi Cope
- Division of Medical GeneticsDepartment of PediatricsDuke University Medical CenterDurhamNCUSA
| | - Hayk Barseghyan
- Center for Genetic Medicine ResearchChildren’s National HospitalWashingtonDCUSA
- Department of genomics and Precision MedicineSchool of Medicine and Health SciencesGeorge Washington UniversityWashingtonDCUSA
- Bionano Genomics IncSan DiegoCAUSA
| | | | - Yulong Fu
- Center for Genetic Medicine ResearchChildren’s National HospitalWashingtonDCUSA
| | - Nicole Hoppman
- Division of Laboratory Genetics and GenomicsDepartment of Laboratory Medicine and PathologyMayo ClinicRochesterMNUSA
| | - Cherisse Marcou
- Division of Laboratory Genetics and GenomicsDepartment of Laboratory Medicine and PathologyMayo ClinicRochesterMNUSA
| | - Nicole Walley
- Division of Medical GeneticsDepartment of PediatricsDuke University Medical CenterDurhamNCUSA
| | - Catherine Rehder
- Department of PathologyDuke University Medical CenterDurhamNCUSA
| | - Kristen Deak
- Department of PathologyDuke University Medical CenterDurhamNCUSA
| | - Anna Alkelai
- Institute for Genomic MedicineColumbia University Medical CenterNew YorkNYUSA
| | - Eric Vilain
- Center for Genetic Medicine ResearchChildren’s National HospitalWashingtonDCUSA
- Department of genomics and Precision MedicineSchool of Medicine and Health SciencesGeorge Washington UniversityWashingtonDCUSA
| | - Vandana Shashi
- Division of Medical GeneticsDepartment of PediatricsDuke University Medical CenterDurhamNCUSA
| |
Collapse
|
6
|
Jezkova J, Heath J, Williams A, Barrell D, Norton J, Collinson MN, Beal SJ, Corrin S, Morgan S. Exon-focused targeted oligonucleotide microarray design increases detection of clinically relevant variants across multiple NHS genomic centres. NPJ Genom Med 2020; 5:28. [PMID: 32714564 PMCID: PMC7374691 DOI: 10.1038/s41525-020-0136-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 05/06/2020] [Indexed: 11/09/2022] Open
Abstract
In recent years, chromosomal microarrays have been widely adopted by clinical diagnostic laboratories for postnatal constitutional genome analysis and have been recommended as the first-line test for patients with intellectual disability, developmental delay, autism and/or congenital abnormalities. Traditionally, array platforms have been designed with probes evenly spaced throughout the genome and increased probe density in regions associated with specific disorders with a resolution at the level of whole genes or multiple exons. However, this level of resolution often cannot detect pathogenic intragenic deletions or duplications, which represent a significant disease-causing mechanism. Therefore, new high-resolution oligonucleotide comparative genomic hybridisation arrays (oligo-array CGH) have been developed with probes targeting single exons of disease relevant genes. Here we present a retrospective study on 27,756 patient samples from a consortium of state-funded diagnostic UK genomic centres assayed by either oligo-array CGH of a traditional design (Cytosure ISCA v2) or by an oligo-array CGH with enhanced exon-level coverage of genes associated with developmental disorders (CytoSure Constitutional v3). The new targeted design used in Cytosure v3 array has been designed to capture intragenic aberrations that would have been missed on the v2 array. To assess the relative performance of the two array designs, data on a subset of samples (n = 19,675), generated only by laboratories using both array designs, were compared. Our results demonstrate that the new high-density exon-focused targeted array design that uses updated information from large scale genomic studies is a powerful tool for detection of intragenic deletions and duplications that leads to a significant improvement in diagnostic yield.
Collapse
Affiliation(s)
- Jana Jezkova
- All Wales Medical Genomics Service, Cardiff and Vale University Health Board, NHS Wales, Cardiff, UK
| | - Jade Heath
- All Wales Medical Genomics Service, Cardiff and Vale University Health Board, NHS Wales, Cardiff, UK
| | - Angharad Williams
- All Wales Medical Genomics Service, Cardiff and Vale University Health Board, NHS Wales, Cardiff, UK
| | - Deborah Barrell
- All Wales Medical Genomics Service, Cardiff and Vale University Health Board, NHS Wales, Cardiff, UK
| | - Jessica Norton
- Wessex Regional Genetics Laboratory, Salisbury NHS Foundation Trust, Salisbury District Hospital, Salisbury, UK.,Bristol Genetics Laboratory, North Bristol NHS Trust, Bristol, UK
| | - Morag N Collinson
- Wessex Regional Genetics Laboratory, Salisbury NHS Foundation Trust, Salisbury District Hospital, Salisbury, UK
| | - Sarah J Beal
- Wessex Regional Genetics Laboratory, Salisbury NHS Foundation Trust, Salisbury District Hospital, Salisbury, UK
| | - Sian Corrin
- All Wales Medical Genomics Service, Cardiff and Vale University Health Board, NHS Wales, Cardiff, UK
| | - Sian Morgan
- All Wales Medical Genomics Service, Cardiff and Vale University Health Board, NHS Wales, Cardiff, UK
| |
Collapse
|
7
|
Childs AJ, Mabin DC, Turnpenny PD. Ectrodactyly-ectodermal dysplasia-clefting syndrome presenting with bilateral choanal atresia and rectal stenosis. Am J Med Genet A 2020; 182:1939-1943. [PMID: 32476291 DOI: 10.1002/ajmg.a.61628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 11/06/2022]
Abstract
We present the case of a male who shortly after birth developed acute respiratory distress due to bilateral choanal atresia, following which he was found to have rectal stenosis. Genetic testing for CHARGE syndrome was negative, but whole genome sequencing identified heterozygosity for a pathogenic missense variant in TP63 (c.727C > T, p.(Arg243Trp). He also has partial cutaneous syndactyly of the third and fourth fingers of the right hand, and bilateral lacrimal duct stenosis/aplasia. A later maxillofacial review identified a palpable submucousal cleft and his scalp hair is blond and slightly sparse. Choanal atresia and rectal stenosis are recognized features of ectrodactyly-ectodermal dysplasia-clefting syndrome, but we believe this is the first report of a case presenting with these features in the absence of the cardinal features.
Collapse
Affiliation(s)
- Alexandra J Childs
- Department of Paediatrics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK.,University of Exeter, Exeter, UK
| | - David C Mabin
- Department of Paediatrics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Peter D Turnpenny
- Clinical Genetics, Royal Devon & Exeter NHS Foundation Trust, Exeter, UK
| |
Collapse
|
8
|
Tosca L, Giltay JC, Bouvattier C, Klijn AJ, Bouligand J, Lambert AS, Lecerf L, Josso N, Tachdjian G, Picard JY. Persistent Müllerian duct syndrome due to anti-Müllerian hormone receptor 2 microdeletions: a diagnostic challenge. Hum Reprod 2020; 35:999-1003. [PMID: 32187366 DOI: 10.1093/humrep/deaa014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/09/2020] [Indexed: 11/12/2022] Open
Abstract
The persistent Müllerian duct syndrome (PMDS) is defined by the persistence of Müllerian derivatives in an otherwise normally virilized 46,XY male. It is usually caused by mutations in either the anti-Müllerian hormone (AMH) or AMH receptor type 2 (AMHR2) genes. We report the first cases of PMDS resulting from a microdeletion of the chromosomal region 12q13.13, the locus of the gene for AMHR2. One case involved a homozygous microdeletion of five exons of the AMHR2 gene. In the second case, the whole AMHR2 gene was deleted from the maternally inherited chromosome. The patient's paternal allele carried a stop mutation, which was initially thought to be homozygous by Sanger sequencing. Diagnostic methods are discussed, with an emphasis on comparative genomic hybridization and targeted massive parallel sequencing.
Collapse
Affiliation(s)
- L Tosca
- Service d'Histologie, Embryologie et Cytogénétique, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, Hôpital Antoine Béclère, 92140 Clamart, France.,Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - J C Giltay
- Division Laboratories, Pharmacy and Biomedical Genetics, University Medical Center Utrecht, P.O. Box 85090, 3508 AB Utrecht, The Netherlands
| | - C Bouvattier
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France.,Service Endocrinologie et Diabète de l'Enfant, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - A J Klijn
- Department Pediatric Urology Wilhelmina Kinderziekenhuis. University Medical Center Utrecht, P.O. Box 85090, 3508 AB Utrecht, The Netherlands
| | - J Bouligand
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France.,Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - A S Lambert
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France.,Service Endocrinologie et Diabète de l'Enfant, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - L Lecerf
- Faculté de Médecine, Institut National de la Santé et de la Recherche Médicale, Université Paris-Est, Unité 955, 94000 Créteil, France
| | - N Josso
- UMR_S938 Centre de Recherche Saint Antoine, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, 75012 Paris, France
| | - G Tachdjian
- Service d'Histologie, Embryologie et Cytogénétique, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, Hôpital Antoine Béclère, 92140 Clamart, France.,Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - J Y Picard
- UMR_S938 Centre de Recherche Saint Antoine, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, 75012 Paris, France
| |
Collapse
|
9
|
Spectrum of Genetic Variants Associated with Anterior Segment Dysgenesis in South Florida. Genes (Basel) 2020; 11:genes11040350. [PMID: 32224865 PMCID: PMC7230952 DOI: 10.3390/genes11040350] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/18/2020] [Accepted: 03/25/2020] [Indexed: 12/02/2022] Open
Abstract
Anterior segment dysgenesis (ASD) comprises a wide spectrum of developmental conditions affecting the cornea, iris, and lens, which may be associated with abnormalities of other organs. To identify disease-causing variants, we performed exome sequencing in 24 South Florida families with ASD. We identified 12 likely causative variants in 10 families (42%), including single nucleotide or small insertion–deletion variants in B3GLCT, BMP4, CYP1B1, FOXC1, FOXE3, GJA1, PXDN, and TP63, and a large copy number variant involving PAX6. Four variants were novel. Each variant was detected only in one family. Likely causative variants were detected in 1 out of 7 black and 9 out of 17 white families. In conclusion, exome sequencing for ASD allows us to identify a wide spectrum of rare DNA variants in South Florida. Further studies will explore missing variants, especially in the black communities.
Collapse
|
10
|
Pérez-Grijalba V, García-Oguiza A, López M, Armstrong J, García-Miñaur S, Mesa-Latorre JM, O'Callaghan M, Pineda Marfa M, Ramos-Arroyo MA, Santos-Simarro F, Seidel V, Domínguez-Garrido E. New insights into genetic variant spectrum and genotype-phenotype correlations of Rubinstein-Taybi syndrome in 39 CREBBP-positive patients. Mol Genet Genomic Med 2019; 7:e972. [PMID: 31566936 PMCID: PMC6825870 DOI: 10.1002/mgg3.972] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/26/2019] [Indexed: 01/19/2023] Open
Abstract
Background Rubinstein‐Taybi syndrome (RSTS) is a rare congenital disorder characterized by broad thumbs and halluces, intellectual disability, distinctive facial features, and growth retardation. Clinical manifestations of RSTS are varied and overlap with other syndromes’ phenotype, which makes clinical diagnosis challenging. CREBBP is the major causative gene (55%–60% of the cases), whereas pathogenic variants found in EP300 represent the molecular cause in 8% of RSTS patients. A wide range of CREBBP pathogenic variants have been reported so far, including point mutations (30%–50%) and large deletions (10%). Methods The aim of this study was to characterize the CREBBP genetic variant spectrum in 39 RSTS patients using Multiplex Ligation‐dependent Probe Amplification and DNA sequencing techniques (Sanger and Trio‐based whole‐exome sequencing). Results We identified 15 intragenic deletions/duplications, ranging from one exon to the entire gene. As a whole, 25 de novo point variants were detected: 4 missense, 12 nonsense, 5 frameshift, and 4 splicing pathogenic variants. Three of them were classified as of uncertain significance and one of the patients carried two different variants. Conclusion Seventeen of the 40 genetic variants detected were reported for the first time in this work contributing, thus, to expand the molecular knowledge of this complex disorder.
Collapse
Affiliation(s)
| | | | - María López
- Center for Biomedical Research (CIBIR), Fundación Rioja Salud, Logroño, Spain
| | - Judith Armstrong
- Hospital Sant Joan de Déu (HSJD), CIBERER. Esplugues de Llobregat, Barcelona, Spain
| | - Sixto García-Miñaur
- Institute of Medical and Molecular Genetics (INGEMM)-IdiPAZ, Hospital Universitario La Paz-UAM Madrid, Madrid, Spain
| | | | - Mar O'Callaghan
- Hospital Sant Joan de Déu (HSJD), CIBERER. Esplugues de Llobregat, Barcelona, Spain
| | - Mercé Pineda Marfa
- Hospital Sant Joan de Déu (HSJD), CIBERER. Esplugues de Llobregat, Barcelona, Spain
| | | | - Fernando Santos-Simarro
- Institute of Medical and Molecular Genetics (INGEMM)-IdiPAZ, Hospital Universitario La Paz-UAM Madrid, Madrid, Spain
| | - Verónica Seidel
- Clinical Genetics, Department of Pediatrics, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | |
Collapse
|
11
|
Deletion of exon 4 in LAMA2 is the most frequent mutation in Chinese patients with laminin α2-related muscular dystrophy. Sci Rep 2018; 8:14989. [PMID: 30301903 PMCID: PMC6177444 DOI: 10.1038/s41598-018-33098-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/12/2018] [Indexed: 11/08/2022] Open
Abstract
Although recessive mutations in LAMA2 are already known to cause laminin α2-related muscular dystrophy, a rare neuromuscular disorder, large deletions or duplications within this gene are not well-characterized. In this study, we applied next-generation sequencing-based copy number variation profiling in 114 individuals clinically diagnosed with laminin α2-related muscular dystrophy, including 96 who harboured LAMA2 mutations and 34 who harboured intragenic rearrangements. In total, we detected 18 distinct LAMA2 copy number variations that have been reported only among Chinese, 10 of which are novel. The frequency of CNVs in the cohort was 19.3%. Deletion of exon 4 was detected in 10 alleles of eight patients, accounting for 27% of all copy number variations. These patients are Han Chinese and were found to have the same haplotype and sequence at the breakpoint junction, suggesting that exon 4 deletion is a founder mutation in Chinese Han and a mutation hotspot. Moreover, the data highlight our approach, a modified next-generation sequencing assay, as a robust and sensitive tool to detect LAMA2 variants; the assay identifies 85.7% of breakpoint junctions directly alongside sequence information. The method can be applied to clinical samples to determine causal variants underlying various Mendelian disorders.
Collapse
|
12
|
La Cognata V, Morello G, Gentile G, Cavalcanti F, Cittadella R, Conforti FL, De Marco EV, Magariello A, Muglia M, Patitucci A, Spadafora P, D’Agata V, Ruggieri M, Cavallaro S. NeuroArray: A Customized aCGH for the Analysis of Copy Number Variations in Neurological Disorders. Curr Genomics 2018; 19:431-443. [PMID: 30258275 PMCID: PMC6128384 DOI: 10.2174/1389202919666180404105451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 02/02/2018] [Accepted: 03/13/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Neurological disorders are a highly heterogeneous group of pathological conditions that affect both the peripheral and the central nervous system. These pathologies are characterized by a complex and multifactorial etiology involving numerous environmental agents and genetic susceptibility factors. For this reason, the investigation of their pathogenetic basis by means of traditional methodological approaches is rather arduous. High-throughput genotyping technologies, including the microarray-based comparative genomic hybridization (aCGH), are currently replacing classical detection methods, providing powerful molecular tools to identify genomic unbalanced structural rearrangements and explore their role in the pathogenesis of many complex human diseases. METHODS In this report, we comprehensively describe the design method, the procedures, validation, and implementation of an exon-centric customized aCGH (NeuroArray 1.0), tailored to detect both single and multi-exon deletions or duplications in a large set of multi- and monogenic neurological diseases. This focused platform enables a targeted measurement of structural imbalances across the human genome, targeting the clinically relevant genes at exon-level resolution. CONCLUSION An increasing use of the NeuroArray platform may offer new insights in investigating potential overlapping gene signatures among neurological conditions and defining genotype-phenotype relationships.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Sebastiano Cavallaro
- Address correspondence to this author at the Institute of Neurological Sciences, National Research Council, Via Paolo Gaifami 18, 95125, Catania, Italy; Tel: +39-095-7338111; E-mail:
| |
Collapse
|
13
|
Truty R, Paul J, Kennemer M, Lincoln SE, Olivares E, Nussbaum RL, Aradhya S. Prevalence and properties of intragenic copy-number variation in Mendelian disease genes. Genet Med 2018; 21:114-123. [PMID: 29895855 PMCID: PMC6752305 DOI: 10.1038/s41436-018-0033-5] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/22/2018] [Indexed: 12/20/2022] Open
Abstract
Purpose We investigated the frequencies and characteristics of intragenic copy-number variants (CNVs) in a deep sampling of disease genes associated with monogenic disorders. Methods Subsets of 1507 genes were tested using next-generation sequencing to simultaneously detect sequence variants and CNVs in >143,000 individuals referred for genetic testing. We analyzed CNVs in gene panels for hereditary cancer syndromes and cardiovascular, neurological, or pediatric disorders. Results Our analysis identified 2844 intragenic CNVs in 384 clinically tested genes. CNVs were observed in 1.9% of the entire cohort but in a disproportionately high fraction (9.8%) of individuals with a clinically significant result. CNVs accounted for 4.7–35% of pathogenic variants, depending on clinical specialty. Distinct patterns existed among CNVs in terms of copy number, location, exons affected, clinical classification, and genes affected. Separately, analysis of de-identified data for 599 genes unrelated to the clinical phenotype yielded 4054 CNVs. Most of these CNVs were novel rare events, present as duplications, and enriched in genes associated with recessive disorders or lacking loss-of-function mutational mechanisms. Conclusion Universal intragenic CNV analysis adds substantial clinical sensitivity to genetic testing. Clinically relevant CNVs have distinct properties that distinguish them from CNVs contributing to normal variation in human disease genes.
Collapse
Affiliation(s)
| | | | | | | | | | - Robert L Nussbaum
- Invitae, San Francisco, CA, USA.,Volunteer Clinical Faculty, University of California, San Francisco, CA, USA
| | | |
Collapse
|
14
|
Hogan GJ, Vysotskaia VS, Beauchamp KA, Seisenberger S, Grauman PV, Haas KR, Hong SH, Jeon D, Kash S, Lai HH, Melroy LM, Theilmann MR, Chu CS, Iori K, Maguire JR, Evans EA, Haque IS, Mar-Heyming R, Kang HP, Muzzey D. Validation of an Expanded Carrier Screen that Optimizes Sensitivity via Full-Exon Sequencing and Panel-wide Copy Number Variant Identification. Clin Chem 2018; 64:1063-1073. [PMID: 29760218 DOI: 10.1373/clinchem.2018.286823] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/26/2018] [Indexed: 11/06/2022]
Abstract
BACKGROUND By identifying pathogenic variants across hundreds of genes, expanded carrier screening (ECS) enables prospective parents to assess the risk of transmitting an autosomal recessive or X-linked condition. Detection of at-risk couples depends on the number of conditions tested, the prevalence of the respective diseases, and the screen's analytical sensitivity for identifying disease-causing variants. Disease-level analytical sensitivity is often <100% in ECS tests because copy number variants (CNVs) are typically not interrogated because of their technical complexity. METHODS We present an analytical validation and preliminary clinical characterization of a 235-gene sequencing-based ECS with full coverage across coding regions, targeted assessment of pathogenic noncoding variants, panel-wide CNV calling, and specialized assays for technically challenging genes. Next-generation sequencing, customized bioinformatics, and expert manual call review were used to identify single-nucleotide variants, short insertions and deletions, and CNVs for all genes except FMR1 and those whose low disease incidence or high technical complexity precluded novel variant identification or interpretation. RESULTS Screening of 36859 patients' blood or saliva samples revealed the substantial impact on fetal disease-risk detection attributable to novel CNVs (9.19% of risk) and technically challenging conditions (20.2% of risk), such as congenital adrenal hyperplasia. Of the 7498 couples screened, 335 were identified as at risk for an affected pregnancy, underscoring the clinical importance of the test. Validation of our ECS demonstrated >99% analytical sensitivity and >99% analytical specificity. CONCLUSIONS Validated high-fidelity identification of different variant types-especially for diseases with complicated molecular genetics-maximizes at-risk couple detection.
Collapse
|
15
|
[Molecular and clinical characterization of Colombian patients suffering from type III glycogen storage disease]. BIOMEDICA 2018; 38:30-42. [PMID: 29809327 DOI: 10.7705/biomedica.v38i0.3454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 04/10/2017] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Type III glycogen storage disease (GSD III) is an autosomal recessive disorder in which a mutation in the AGL gene causes deficiency of the glycogen debranching enzyme. The disease is characterized by fasting hypoglycemia, hepatomegaly and progressive myopathy. Molecular analyses of AGL have indicated heterogeneity depending on ethnic groups. The full spectrum of AGL mutations in Colombia remains unclear. OBJECTIVE To describe the clinical and molecular characteristics of ten Colombian patients diagnosed with GSD III. MATERIALS AND METHODS We recruited ten Colombian children with a clinical and biochemical diagnosis of GSD III to undergo genetic testing. The full coding exons and the relevant exon-intron boundaries of the AGL underwent Sanger sequencing to identify mutation. RESULTS All patients had the classic phenotype of the GSD III. Genetic analysis revealed a mutation p.Arg910X in two patients. One patient had the mutation p.Glu1072AspfsX36, and one case showed a compound heterozygosity with p.Arg910X and p.Glu1072AspfsX36 mutations. We also detected the deletion of AGL gene 3, 4, 5, and 6 exons in three patients. The in silico studies predicted that these defects are pathogenic. No mutations were detected in the amplified regions in three patients. CONCLUSION We found mutations and deletions that explain the clinical phenotype of GSD III patients. This is the first report with a description of the clinical phenotype and the spectrum of AGL mutations in Colombian patients. This is important to provide appropriate prognosis and genetic counseling to the patient and their relatives.
Collapse
|
16
|
Li DX, Li XY, Dong H, Liu YP, Ding Y, Song JQ, Jin Y, Zhang Y, Wang Q, Yang YL. Eight novel mutations of CBS gene in nine Chinese patients with classical homocystinuria. World J Pediatr 2018; 14:197-203. [PMID: 29508359 DOI: 10.1007/s12519-018-0135-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/05/2017] [Indexed: 11/27/2022]
Abstract
BACKGROUND Classical homocystinuria (homocysteinemia type 1, MIM# 236200) is a rare inherited disorder in Mainland China. This study aimed to identify mutations in the cystathionine β-synthase (CBS) gene which are associated with classical homocystinuria in nine Chinese patients. METHODS Nine Chinese patients were diagnosed at the age of 5 years 4 months to 18 years by plasma total homocysteine and blood methionine determination. CBS gene analysis was performed for the patients and their families. RESULTS All nine patients had significantly increased plasma total homocysteine (142-500 μmol/L vs. the normal range of 0-15 μmol/L) and blood methionine (144.3-500 μmol/L vs. the normal range of 0-50 μmol/L). None of the patients was pyridoxine responsive. Eleven mutations in CBS gene were identified in the nine patients. Eight mutations (IVS3+1G>A, p.Thr493fsX46, p.Thr236Asn, p.Leu230Gln, p.Lys72Ile, p.Ser201ProfsX36, p.Met337IlefsX115, and IVS14-1G>C) were novel. Three mutations (p.Arg125Gln, p.Thr257Met and p.Gly116Arg) had been previously reported. CONCLUSIONS In this study, eight novel mutations in CBS were identified in nine Chinese patients with classical homocystinuria. None of the hotspot mutations reported in other regions previously was found. These data indicated that Chinese maybe had different CBS mutation spectrum from other population. The identification of mutations not only confirms the diagnosis but also enables accurate genetic counselling and prenatal diagnosis for the fetuses of the families.
Collapse
Affiliation(s)
- Dong-Xiao Li
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'anmen Street, West District, Beijing, 100034, China
| | - Xi-Yuan Li
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'anmen Street, West District, Beijing, 100034, China
| | - Hui Dong
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'anmen Street, West District, Beijing, 100034, China
| | - Yu-Peng Liu
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'anmen Street, West District, Beijing, 100034, China
| | - Yuan Ding
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'anmen Street, West District, Beijing, 100034, China
| | - Jin-Qing Song
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'anmen Street, West District, Beijing, 100034, China
| | - Ying Jin
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'anmen Street, West District, Beijing, 100034, China
| | - Yao Zhang
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'anmen Street, West District, Beijing, 100034, China
| | - Qiao Wang
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'anmen Street, West District, Beijing, 100034, China
| | - Yan-Ling Yang
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'anmen Street, West District, Beijing, 100034, China.
| |
Collapse
|
17
|
Basha M, Demeer B, Revencu N, Helaers R, Theys S, Bou Saba S, Boute O, Devauchelle B, Francois G, Bayet B, Vikkula M. Whole exome sequencing identifies mutations in 10% of patients with familial non-syndromic cleft lip and/or palate in genes mutated in well-known syndromes. J Med Genet 2018; 55:449-458. [DOI: 10.1136/jmedgenet-2017-105110] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/02/2018] [Accepted: 02/12/2018] [Indexed: 01/08/2023]
Abstract
BackgroundOral clefts, that is, clefts of the lip and/or cleft palate (CL/P), are the most common craniofacial birth defects with an approximate incidence of ~1/700. To date, physicians stratify patients with oral clefts into either syndromic CL/P (syCL/P) or non-syndromic CL/P (nsCL/P) depending on whether the CL/P is associated with another anomaly or not. In general, patients with syCL/P follow Mendelian inheritance, while those with nsCL/P have a complex aetiology and, as such, do not adhere to Mendelian inheritance. Genome-wide association studies have identified approximately 30 risk loci for nsCL/P, which could explain a small fraction of heritability.MethodsTo identify variants causing nsCL/P, we conducted whole exome sequencing on 84 individuals with nsCL/P, drawn from multiplex families (n=46).ResultsWe identified rare damaging variants in four genes known to be mutated in syCL/P: TP63 (one family), TBX1 (one family), LRP6 (one family) and GRHL3 (two families), and clinical reassessment confirmed the isolated nature of their CL/P.ConclusionThese data demonstrate that patients with CL/P without cardinal signs of a syndrome may still carry a mutation in a gene linked to syCL/P. Rare coding and non-coding variants in syCL/P genes could in part explain the controversial question of ‘missing heritability’ for nsCL/P. Therefore, gene panels designed for diagnostic testing of syCL/P should be used for patients with nsCL/P, especially when there is at least third-degree family history. This would allow a more precise management, follow-up and genetic counselling. Moreover, stratified cohorts would allow hunting for genetic modifiers.
Collapse
|
18
|
Wenger T, Li D, Harr MH, Tan WH, Pellegrino R, Stark Z, Hakonarson H, Bhoj EJ. Expanding the phenotypic spectrum of TP63
-related disorders including the first set of monozygotic twins. Am J Med Genet A 2017; 176:75-81. [DOI: 10.1002/ajmg.a.38516] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/13/2017] [Accepted: 09/26/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Tara Wenger
- Division of Craniofacial Medicine; Seattle Children's Hospital; Seattle Washington
| | - Dong Li
- Center for Applied Genomics; Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| | - Margaret H. Harr
- Center for Applied Genomics; Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| | - Wen-Hann Tan
- Division of Genetics and Genomics Boston Children's Hospital; Harvard Medical School; Boston Massachusetts
| | - Renata Pellegrino
- Center for Applied Genomics; Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| | - Zornitza Stark
- Victorian Clinical Genetics Service; Parkville Victoria Australia
| | - Hakon Hakonarson
- Center for Applied Genomics; Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| | - Elizabeth J. Bhoj
- Center for Applied Genomics; Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| |
Collapse
|
19
|
Gambin T, Yuan B, Bi W, Liu P, Rosenfeld JA, Coban-Akdemir Z, Pursley AN, Nagamani SCS, Marom R, Golla S, Dengle L, Petrie HG, Matalon R, Emrick L, Proud MB, Treadwell-Deering D, Chao HT, Koillinen H, Brown C, Urraca N, Mostafavi R, Bernes S, Roeder ER, Nugent KM, Bader PI, Bellus G, Cummings M, Northrup H, Ashfaq M, Westman R, Wildin R, Beck AE, Immken L, Elton L, Varghese S, Buchanan E, Faivre L, Lefebvre M, Schaaf CP, Walkiewicz M, Yang Y, Kang SHL, Lalani SR, Bacino CA, Beaudet AL, Breman AM, Smith JL, Cheung SW, Lupski JR, Patel A, Shaw CA, Stankiewicz P. Identification of novel candidate disease genes from de novo exonic copy number variants. Genome Med 2017; 9:83. [PMID: 28934986 PMCID: PMC5607840 DOI: 10.1186/s13073-017-0472-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 09/01/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Exon-targeted microarrays can detect small (<1000 bp) intragenic copy number variants (CNVs), including those that affect only a single exon. This genome-wide high-sensitivity approach increases the molecular diagnosis for conditions with known disease-associated genes, enables better genotype-phenotype correlations, and facilitates variant allele detection allowing novel disease gene discovery. METHODS We retrospectively analyzed data from 63,127 patients referred for clinical chromosomal microarray analysis (CMA) at Baylor Genetics laboratories, including 46,755 individuals tested using exon-targeted arrays, from 2007 to 2017. Small CNVs harboring a single gene or two to five non-disease-associated genes were identified; the genes involved were evaluated for a potential disease association. RESULTS In this clinical population, among rare CNVs involving any single gene reported in 7200 patients (11%), we identified 145 de novo autosomal CNVs (117 losses and 28 intragenic gains), 257 X-linked deletion CNVs in males, and 1049 inherited autosomal CNVs (878 losses and 171 intragenic gains); 111 known disease genes were potentially disrupted by de novo autosomal or X-linked (in males) single-gene CNVs. Ninety-one genes, either recently proposed as candidate disease genes or not yet associated with diseases, were disrupted by 147 single-gene CNVs, including 37 de novo deletions and ten de novo intragenic duplications on autosomes and 100 X-linked CNVs in males. Clinical features in individuals with de novo or X-linked CNVs encompassing at most five genes (224 bp to 1.6 Mb in size) were compared to those in individuals with larger-sized deletions (up to 5 Mb in size) in the internal CMA database or loss-of-function single nucleotide variants (SNVs) detected by clinical or research whole-exome sequencing (WES). This enabled the identification of recently published genes (BPTF, NONO, PSMD12, TANGO2, and TRIP12), novel candidate disease genes (ARGLU1 and STK3), and further confirmation of disease association for two recently proposed disease genes (MEIS2 and PTCHD1). Notably, exon-targeted CMA detected several pathogenic single-exon CNVs missed by clinical WES analyses. CONCLUSIONS Together, these data document the efficacy of exon-targeted CMA for detection of genic and exonic CNVs, complementing and extending WES in clinical diagnostics, and the potential for discovery of novel disease genes by genome-wide assay.
Collapse
Affiliation(s)
- Tomasz Gambin
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Institute of Computer Science, Warsaw University of Technology, Warsaw, 00-665, Poland.,Department of Medical Genetics, Institute of Mother and Child, Warsaw, 01-211, Poland
| | - Bo Yuan
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics, Houston, TX, 77021, USA
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics, Houston, TX, 77021, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics, Houston, TX, 77021, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA
| | - Amber N Pursley
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA
| | - Sandesh C S Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA
| | - Ronit Marom
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA
| | - Sailaja Golla
- Division of Pediatric Neurology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lauren Dengle
- Division of Pediatric Neurology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | | | - Reuben Matalon
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, 77555, USA.,Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Lisa Emrick
- Department of Pediatric, Section of Child Neurology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Monica B Proud
- Department of Pediatric, Section of Child Neurology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Diane Treadwell-Deering
- Department of Psychiatry and Behavioral Sciences, Child and Adolescent Psychiatry Division, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hsiao-Tuan Chao
- Department of Pediatric, Section of Child Neurology, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Hannele Koillinen
- Department of Clinical Genetics, Helsinki University Hospital, Helsinki, 00029, Finland
| | - Chester Brown
- Genetics Division, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, 38105, USA.,Le Bonheur Children's Hospital, Memphis, TN, 38103, USA
| | - Nora Urraca
- Le Bonheur Children's Hospital, Memphis, TN, 38103, USA
| | | | | | - Elizabeth R Roeder
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Department of Pediatrics, Baylor College of Medicine, San Antonio, TX, 78207, USA
| | - Kimberly M Nugent
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Department of Pediatrics, Baylor College of Medicine, San Antonio, TX, 78207, USA
| | - Patricia I Bader
- Northeast Indiana Genetic Counseling Center, Wayne, IN, 46804, USA
| | - Gary Bellus
- Section of Clinical Genetics & Metabolism, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Michael Cummings
- Department of Psychiatry Erie County Medical Center, Buffalo, NY, 14215, USA
| | - Hope Northrup
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Myla Ashfaq
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | | | - Robert Wildin
- St. Luke's Children's Hospital, Boise, ID, 83702, USA.,The National Human Genome Research Institute, Bethesda, MD, 20892, USA
| | - Anita E Beck
- Seattle Children's Hospital, Seattle, WA, 98105, USA.,Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA, 98195, USA
| | | | - Lindsay Elton
- Child Neurology Consultants of Austin, Austin, TX, 78731, USA
| | - Shaun Varghese
- THINK Neurology for Kids/Children's Memorial Hermann Hospital, The Woodlands, TX, 77380, USA
| | - Edward Buchanan
- Division of Plastic Surgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Laurence Faivre
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Est, FHU-TRANSLAD, CHU Dijon, Dijon, France
| | - Mathilde Lefebvre
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Est, FHU-TRANSLAD, CHU Dijon, Dijon, France
| | - Christian P Schaaf
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Magdalena Walkiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics, Houston, TX, 77021, USA
| | - Yaping Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics, Houston, TX, 77021, USA
| | - Sung-Hae L Kang
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics, Houston, TX, 77021, USA
| | - Seema R Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics, Houston, TX, 77021, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Carlos A Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics, Houston, TX, 77021, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Arthur L Beaudet
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics, Houston, TX, 77021, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Amy M Breman
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics, Houston, TX, 77021, USA
| | - Janice L Smith
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics, Houston, TX, 77021, USA
| | - Sau Wai Cheung
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics, Houston, TX, 77021, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.,Texas Children's Hospital, Houston, TX, 77030, USA
| | - Ankita Patel
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics, Houston, TX, 77021, USA
| | - Chad A Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics, Houston, TX, 77021, USA
| | - Paweł Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA. .,Baylor Genetics, Houston, TX, 77021, USA.
| |
Collapse
|
20
|
Reinders MGHC, Boersma HJ, Leter EM, Vreeburg M, Paulussen ADC, Arits AHMM, Roemen GMJM, Speel EJM, Steijlen PM, van Geel M, Mosterd K. Postzygotic mosaicism in basal cell naevus syndrome. Br J Dermatol 2017; 177:249-252. [PMID: 27658957 DOI: 10.1111/bjd.15082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2016] [Indexed: 11/29/2022]
Abstract
Basal cell naevus syndrome (BCNS) is an autosomal dominant disorder most commonly caused by a germline mutation in the Drosophila homologue of patched-1 gene (PTCH1). Here we describe a patient with clinical signs of BCNS, caused by postzygotic mosaicism of a PTCH1 mutation. We performed restriction fragment length polymorphism analysis and Droplet Digital polymerase chain reaction to determine the degree of mosaicism in different tissues of this patient. Our case shows that a relatively low-grade mosaicism can lead to clinical signs reminiscent of those caused by a germline mutation. This finding has important implications for genetic counselling and therefore is pivotal to recognize for dermatologists, as well as for clinical geneticists and clinical laboratory geneticists.
Collapse
Affiliation(s)
- M G H C Reinders
- Department of Dermatology, Maastricht University Medical Centre, Maastricht, the Netherlands.,GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - H J Boersma
- Department of Dermatology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - E M Leter
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - M Vreeburg
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - A D C Paulussen
- GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands.,Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - A H M M Arits
- Department of Dermatology, Maastricht University Medical Centre, Maastricht, the Netherlands.,GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - G M J M Roemen
- Department of Pathology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - E J M Speel
- GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands.,Department of Pathology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - P M Steijlen
- Department of Dermatology, Maastricht University Medical Centre, Maastricht, the Netherlands.,GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - M van Geel
- Department of Dermatology, Maastricht University Medical Centre, Maastricht, the Netherlands.,GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands.,Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - K Mosterd
- Department of Dermatology, Maastricht University Medical Centre, Maastricht, the Netherlands.,GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| |
Collapse
|
21
|
Abstract
With the rapid evolution of next-generation DNA sequencing technologies, the cost of sequencing a human genome has plummeted, and genomics has started to pervade health care across all stages of life - from preconception to adult medicine. Challenges to fully embracing genomics in a clinical setting remain, but some approaches are starting to overcome these barriers, such as community-driven data sharing to improve the accuracy and efficiency of applying genomics to patient care.
Collapse
Affiliation(s)
- Heidi L Rehm
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA; at the Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts 02139, USA; and at The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
22
|
Blanco-Kelly F, Palomares M, Vallespín E, Villaverde C, Martín-Arenas R, Vélez-Monsalve C, Lorda-Sánchez I, Nevado J, Trujillo-Tiebas MJ, Lapunzina P, Ayuso C, Corton M. Improving molecular diagnosis of aniridia and WAGR syndrome using customized targeted array-based CGH. PLoS One 2017; 12:e0172363. [PMID: 28231309 PMCID: PMC5322952 DOI: 10.1371/journal.pone.0172363] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/04/2017] [Indexed: 11/18/2022] Open
Abstract
Chromosomal deletions at 11p13 are a frequent cause of congenital Aniridia, a rare pan-ocular genetic disease, and of WAGR syndrome, accounting up to 30% of cases. First-tier genetic testing for newborn with aniridia, to detect 11p13 rearrangements, includes Multiplex Ligation-dependent Probe Amplification (MLPA) and karyotyping. However, neither of these approaches allow obtaining a complete picture of the high complexity of chromosomal deletions and breakpoints in aniridia. Here, we report the development and validation of a customized targeted array-based comparative genomic hybridization, so called WAGR-array, for comprehensive high-resolution analysis of CNV in the WAGR locus. Our approach increased the detection rate in a Spanish cohort of 38 patients with aniridia, WAGR syndrome and other related ocular malformations, allowing to characterize four undiagnosed aniridia cases, and to confirm MLPA findings in four additional patients. For all patients, breakpoints were accurately established and a contiguous deletion syndrome, involving a large number of genes, was identified in three patients. Moreover, we identified novel microdeletions affecting 3' PAX6 regulatory regions in three families with isolated aniridia. This tool represents a good strategy for the genetic diagnosis of aniridia and associated syndromes, allowing for a more accurate CNVs detection, as well as a better delineation of breakpoints. Our results underline the clinical importance of performing exhaustive and accurate analysis of chromosomal rearrangements for patients with aniridia, especially newborns and those without defects in PAX6 after diagnostic screening.
Collapse
Affiliation(s)
- Fiona Blanco-Kelly
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital- Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - María Palomares
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
- Institute of Medical & Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
| | - Elena Vallespín
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
- Institute of Medical & Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
| | - Cristina Villaverde
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital- Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Rubén Martín-Arenas
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
- Institute of Medical & Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
| | - Camilo Vélez-Monsalve
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital- Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Isabel Lorda-Sánchez
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital- Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Julián Nevado
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
- Institute of Medical & Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
| | - María José Trujillo-Tiebas
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital- Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Pablo Lapunzina
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
- Institute of Medical & Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
| | - Carmen Ayuso
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital- Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
- * E-mail: (CA); (MC)
| | - Marta Corton
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital- Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
- * E-mail: (CA); (MC)
| |
Collapse
|
23
|
Fang Q, George AS, Brinkmeier ML, Mortensen AH, Gergics P, Cheung LYM, Daly AZ, Ajmal A, Pérez Millán MI, Ozel AB, Kitzman JO, Mills RE, Li JZ, Camper SA. Genetics of Combined Pituitary Hormone Deficiency: Roadmap into the Genome Era. Endocr Rev 2016; 37:636-675. [PMID: 27828722 PMCID: PMC5155665 DOI: 10.1210/er.2016-1101] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/31/2016] [Indexed: 02/08/2023]
Abstract
The genetic basis for combined pituitary hormone deficiency (CPHD) is complex, involving 30 genes in a variety of syndromic and nonsyndromic presentations. Molecular diagnosis of this disorder is valuable for predicting disease progression, avoiding unnecessary surgery, and family planning. We expect that the application of high throughput sequencing will uncover additional contributing genes and eventually become a valuable tool for molecular diagnosis. For example, in the last 3 years, six new genes have been implicated in CPHD using whole-exome sequencing. In this review, we present a historical perspective on gene discovery for CPHD and predict approaches that may facilitate future gene identification projects conducted by clinicians and basic scientists. Guidelines for systematic reporting of genetic variants and assigning causality are emerging. We apply these guidelines retrospectively to reports of the genetic basis of CPHD and summarize modes of inheritance and penetrance for each of the known genes. In recent years, there have been great improvements in databases of genetic information for diverse populations. Some issues remain that make molecular diagnosis challenging in some cases. These include the inherent genetic complexity of this disorder, technical challenges like uneven coverage, differing results from variant calling and interpretation pipelines, the number of tolerated genetic alterations, and imperfect methods for predicting pathogenicity. We discuss approaches for future research in the genetics of CPHD.
Collapse
Affiliation(s)
- Qing Fang
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Akima S George
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Michelle L Brinkmeier
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Amanda H Mortensen
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Peter Gergics
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Leonard Y M Cheung
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Alexandre Z Daly
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Adnan Ajmal
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - María Ines Pérez Millán
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - A Bilge Ozel
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Jacob O Kitzman
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Ryan E Mills
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Jun Z Li
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Sally A Camper
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
24
|
A customized high-resolution array-comparative genomic hybridization to explore copy number variations in Parkinson's disease. Neurogenetics 2016; 17:233-244. [PMID: 27637465 PMCID: PMC5566182 DOI: 10.1007/s10048-016-0494-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/07/2016] [Indexed: 12/13/2022]
Abstract
Parkinson’s disease (PD), the second most common progressive neurodegenerative disorder, was long believed to be a non-genetic sporadic syndrome. Today, only a small percentage of PD cases with genetic inheritance patterns are known, often complicated by reduced penetrance and variable expressivity. The few well-characterized Mendelian genes, together with a number of risk factors, contribute to the major sporadic forms of the disease, thus delineating an intricate genetic profile at the basis of this debilitating and incurable condition. Along with single nucleotide changes, gene-dosage abnormalities and copy number variations (CNVs) have emerged as significant disease-causing mutations in PD. However, due to their size variability and to the quantitative nature of the assay, CNV genotyping is particularly challenging. For this reason, innovative high-throughput platforms and bioinformatics algorithms are increasingly replacing classical CNV detection methods. Here, we report the design strategy, development, validation and implementation of NeuroArray, a customized exon-centric high-resolution array-based comparative genomic hybridization (aCGH) tailored to detect single/multi-exon deletions and duplications in a large panel of PD-related genes. This targeted design allows for a focused evaluation of structural imbalances in clinically relevant PD genes, combining exon-level resolution with genome-wide coverage. The NeuroArray platform may offer new insights in elucidating inherited potential or de novo structural alterations in PD patients and investigating new candidate genes.
Collapse
|
25
|
Hollenbeck D, Williams CL, Drazba K, Descartes M, Korf BR, Rutledge SL, Lose EJ, Robin NH, Carroll AJ, Mikhail FM. Clinical relevance of small copy-number variants in chromosomal microarray clinical testing. Genet Med 2016; 19:377-385. [PMID: 27632688 DOI: 10.1038/gim.2016.132] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 07/21/2016] [Indexed: 11/09/2022] Open
Abstract
PURPOSE The 2010 consensus statement on diagnostic chromosomal microarray (CMA) testing recommended an array resolution ≥400 kb throughout the genome as a balance of analytical and clinical sensitivity. In spite of the clear evidence for pathogenicity of large copy-number variants (CNVs) in neurodevelopmental disorders and/or congenital anomalies, the significance of small, nonrecurrent CNVs (<500 kb) has not been well established in a clinical setting. METHODS We investigated the clinical significance of all nonpolymorphic small, nonrecurrent CNVs (<500 kb) in patients referred for CMA clinical testing over a period of 6 years, from 2009 to 2014 (a total of 4,417 patients). We excluded from our study patients with benign or likely benign CNVs and patients with only recurrent microdeletions/microduplications <500 kb. RESULTS In total, 383 patients (8.67%) were found to carry at least one small, nonrecurrent CNV, of whom 176 patients (3.98%) had one small CNV classified as a variant of uncertain significance (VUS), 45 (1.02%) had two or more small VUS CNVs, 20 (0.45%) had one small VUS CNV and a recurrent CNV, 113 (2.56%) had one small pathogenic or likely pathogenic CNV, 17 (0.38%) had two or more small pathogenic or likely pathogenic CNVs, and 12 (0.27%) had one small pathogenic or likely pathogenic CNV and a recurrent CNV. Within the pathogenic group, 80 of 142 patients (56% of all small pathogenic CNV cases) were found to have a single whole-gene or exonic deletion. The themes that emerged from our study are presented in the Discussion section. CONCLUSIONS Our study demonstrates the diagnostic clinical relevance of small, nonrecurrent CNVs <500 kb during CMA clinical testing and underscores the need for careful clinical interpretation of these CNVs.Genet Med 19 4, 377-385.
Collapse
Affiliation(s)
- Dana Hollenbeck
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Crescenda L Williams
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Current address: Children's Health Hospital, Dallas, Texas, USA
| | - Kathryn Drazba
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Maria Descartes
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Bruce R Korf
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - S Lane Rutledge
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Edward J Lose
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nathaniel H Robin
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Andrew J Carroll
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Fady M Mikhail
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
26
|
Mason-Suares H, Landry L, S. Lebo M. Detecting Copy Number Variation via Next Generation Technology. CURRENT GENETIC MEDICINE REPORTS 2016. [DOI: 10.1007/s40142-016-0091-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Lincoln SE, Kobayashi Y, Anderson MJ, Yang S, Desmond AJ, Mills MA, Nilsen GB, Jacobs KB, Monzon FA, Kurian AW, Ford JM, Ellisen LW. A Systematic Comparison of Traditional and Multigene Panel Testing for Hereditary Breast and Ovarian Cancer Genes in More Than 1000 Patients. J Mol Diagn 2015. [PMID: 26207792 DOI: 10.1016/j.jmoldx.2015.04.009] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Gene panels for hereditary breast and ovarian cancer risk assessment are gaining acceptance, even though the clinical utility of these panels is not yet fully defined. Technical questions remain, however, about the performance and clinical interpretation of gene panels in comparison with traditional tests. We tested 1105 individuals using a 29-gene next-generation sequencing panel and observed 100% analytical concordance with traditional and reference data on >750 comparable variants. These 750 variants included technically challenging classes of sequence and copy number variation that together represent a significant fraction (13.4%) of the pathogenic variants observed. For BRCA1 and BRCA2, we also compared variant interpretations in traditional reports to those produced using only non-proprietary resources and following criteria based on recent (2015) guidelines. We observed 99.8% net report concordance, albeit with a slightly higher variant of uncertain significance rate. In 4.5% of BRCA-negative cases, we uncovered pathogenic variants in other genes, which appear clinically relevant. Previously unseen variants requiring interpretation accumulated rapidly, even after 1000 individuals had been tested. We conclude that next-generation sequencing panel testing can provide results highly comparable to traditional testing and can uncover potentially actionable findings that may be otherwise missed. Challenges remain for the broad adoption of panel tests, some of which will be addressed by the accumulation of large public databases of annotated clinical variants.
Collapse
Affiliation(s)
| | | | | | | | - Andrea J Desmond
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | | | | | | | | | | | - James M Ford
- Stanford University School of Medicine, Stanford, California
| | - Leif W Ellisen
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
28
|
Whole-Exome Sequencing and Targeted Copy Number Analysis in Primary Ciliary Dyskinesia. G3-GENES GENOMES GENETICS 2015; 5:1775-81. [PMID: 26139845 PMCID: PMC4528333 DOI: 10.1534/g3.115.019851] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Primary ciliary dyskinesia (PCD) is an autosomal-recessive disorder resulting from loss of normal ciliary function. Symptoms include neonatal respiratory distress, chronic sinusitis, bronchiectasis, situs inversus, and infertility. Clinical features may be subtle and highly variable, making the diagnosis of PCD challenging. The diagnosis can be confirmed with ciliary ultrastructure analysis and/or molecular genetic testing of 32 PCD-associated genes. However, because of this genetic heterogeneity, comprehensive molecular genetic testing is not considered the standard of care, and the most efficient molecular approach has yet to be elucidated. Here, we propose a cost-effective and time-efficient molecular genetic algorithm to solve cases of PCD. We conducted targeted copy number variation (CNV) analysis and/or whole-exome sequencing on 20 families (22 patients) from a subset of 45 families (52 patients) with a clinical diagnosis of PCD who did not have a molecular genetic diagnosis after Sanger sequencing of 12 PCD-associated genes. This combined molecular genetic approach led to the identification of 4 of 20 (20%) families with clinically significant CNVs and 7 of 20 (35%) families with biallelic pathogenic mutations in recently identified PCD genes, resulting in an increased molecular genetic diagnostic rate of 55% (11/20). In patients with a clinical diagnosis of PCD, whole-exome sequencing followed by targeted CNV analysis results in an overall molecular genetic yield of 76% (34/45).
Collapse
|
29
|
Zapała B, Płatek T, Wybrańska I. A novel TAZ gene mutation and mosaicism in a Polish family with Barth syndrome. Ann Hum Genet 2015; 79:218-24. [PMID: 25776009 PMCID: PMC4654251 DOI: 10.1111/ahg.12108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/22/2015] [Indexed: 11/29/2022]
Abstract
Barth syndrome (BTHS) is an X-linked recessive disease primarily affecting males. Clinically, the disease is characterized by hypertrophic or dilated cardiomyopathy, skeletal myopathy, chronic/cyclic neutropenia, 3-methylglutaconic aciduria, growth retardation and respiratory chain dysfunction. It is caused by mutations in the TAZ gene coding for the tafazzin protein which is responsible for cardiolipin remodeling. In this work, we present a novel pathogenic TAZ mutation c.83T>A, p.Val28Glu, found in mosaic form in almost all female members of a Polish family. Sanger sequencing of DNA from peripheral blood and from epithelial cells showed female mosaicism in three generations. This appears to be a new mechanism of inheritance and further research is required in order to understand the mechanism of this mosaicism. We conclude that BTHS genetic testing should include two or more tissues for women that appear to be noncarriers when blood DNA is initially tested. The results of our study should not only be applicable to BTHS families, but also to families with other X-linked diseases.
Collapse
Affiliation(s)
- Barbara Zapała
- Department of Clinical Biochemistry, Jagiellonian University, Kraków, Poland
| | | | | |
Collapse
|
30
|
Bianconi SE, Cross JL, Wassif CA, Porter FD. Pathogenesis, Epidemiology, Diagnosis and Clinical Aspects of Smith-Lemli-Opitz Syndrome. Expert Opin Orphan Drugs 2015; 3:267-280. [PMID: 25734025 PMCID: PMC4343216 DOI: 10.1517/21678707.2015.1014472] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Smith-Lemli-Opitz Syndrome (SLOS) is a malformation syndrome inherited in an autosomal recessive fashion. It is due to a metabolic defect in the conversion of 7-dehydrocholesterol to cholesterol, which leads to an accumulation of 7-dehydrocholesterol and frequently a deficiency of cholesterol. The syndrome is characterized by typical dysmorphic facial features, multiple malformations, and intellectual disability. AREAS COVERED In this paper we provide an overview of the clinical phenotype and discuss how the manifestations of the syndrome vary depending on the age of the patients. We then explore the underlying biochemical defect and pathophysiological alterations that may contribute to the many disease manifestations. Subsequently we explore the epidemiology and succinctly discuss population genetics as they relate to SLOS. The next section presents the diagnostic possibilities. Thereafter, the treatment and management as is standard of care are presented. EXPERT OPINION Even though the knowledge of the underlying molecular mutations and the biochemical alterations is being rapidly accumulated, there is currently no efficacious therapy addressing neurological dysfunction. We discuss the difficulty of treating this disorder, which manifests as a combination of a malformation syndrome and an inborn error of metabolism. A very important factor in developing new therapies is the need to rigorously establish efficacy in controlled trials.
Collapse
Affiliation(s)
- Simona E Bianconi
- National Institute of Child Health and Human Development, Program in Developmental Endocrinology and Genetics, Section on Molecular Dysmorphology, 10 Center Drive, Bld 10 Rm 9D42, Bethesda, MD 20892,
| | - Joanna L Cross
- National Institute of Child Health and Human Development, Program in Developmental Endocrinology and Genetics, Section on Molecular Dysmorphology, 10 Center Drive, Bld 10 CRC, Rm 1-3288, Bethesda, MD 20892
| | - Christopher A Wassif
- National Institute of Child Health and Human Development, Program in Developmental Endocrinology and Genetics, Section on Molecular Dysmorphology, 10 Center Drive, Bld 10 CRC, Rm 1-3288, Bethesda, MD 20892
| | - Forbes D Porter
- National Institute of Child Health and Human Development, Program in Developmental Endocrinology and Genetics, Section on Molecular Dysmorphology, 10 Center Drive, Bld 10, CRC, Rm 2571, Bethesda, MD 20892,
| |
Collapse
|
31
|
First contiguous gene deletion causing biotinidase deficiency: The enzyme deficiency in three Sri Lankan children. Mol Genet Metab Rep 2015. [PMID: 28649532 PMCID: PMC5471155 DOI: 10.1016/j.ymgmr.2015.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We report three symptomatic children with profound biotinidase deficiency from Sri Lanka. All three children presented with typical clinical features of the disorder. The first is homozygous for a missense mutation in the BTD gene (c.98_104 del7insTCC; p.Cys33PhefsX36) that is commonly seen in the western countries, the second is homozygous for a novel missense mutation (p.Ala439Asp), and the third is the first reported instance of a contiguous gene deletion causing the enzyme deficiency. In addition, this latter finding exemplifies the importance of considering a deletion within the BTD gene for reconciling enzymatic activity with genotype, which can occur in asymptomatic children who are identified by newborn screening.
Collapse
|
32
|
Retterer K, Scuffins J, Schmidt D, Lewis R, Pineda-Alvarez D, Stafford A, Schmidt L, Warren S, Gibellini F, Kondakova A, Blair A, Bale S, Matyakhina L, Meck J, Aradhya S, Haverfield E. Assessing copy number from exome sequencing and exome array CGH based on CNV spectrum in a large clinical cohort. Genet Med 2014; 17:623-9. [PMID: 25356966 DOI: 10.1038/gim.2014.160] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 10/01/2014] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Detection of copy-number variation (CNV) is important for investigating many genetic disorders. Testing a large clinical cohort by array comparative genomic hybridization provides a deep perspective on the spectrum of pathogenic CNV. In this context, we describe a bioinformatics approach to extract CNV information from whole-exome sequencing and demonstrate its utility in clinical testing. METHODS Exon-focused arrays and whole-genome chromosomal microarray analysis were used to test 14,228 and 14,000 individuals, respectively. Based on these results, we developed an algorithm to detect deletions/duplications in whole-exome sequencing data and a novel whole-exome array. RESULTS In the exon array cohort, we observed a positive detection rate of 2.4% (25 duplications, 318 deletions), of which 39% involved one or two exons. Chromosomal microarray analysis identified 3,345 CNVs affecting single genes (18%). We demonstrate that our whole-exome sequencing algorithm resolves CNVs of three or more exons. CONCLUSION These results demonstrate the clinical utility of single-exon resolution in CNV assays. Our whole-exome sequencing algorithm approaches this resolution but is complemented by a whole-exome array to unambiguously identify intragenic CNVs and single-exon changes. These data illustrate the next advancements in CNV analysis through whole-exome sequencing and whole-exome array.Genet Med 17 8, 623-629.
Collapse
|
33
|
Asadollahi R, Oneda B, Joset P, Azzarello-Burri S, Bartholdi D, Steindl K, Vincent M, Cobilanschi J, Sticht H, Baldinger R, Reissmann R, Sudholt I, Thiel CT, Ekici AB, Reis A, Bijlsma EK, Andrieux J, Dieux A, FitzPatrick D, Ritter S, Baumer A, Latal B, Plecko B, Jenni OG, Rauch A. The clinical significance of small copy number variants in neurodevelopmental disorders. J Med Genet 2014; 51:677-88. [PMID: 25106414 PMCID: PMC4173859 DOI: 10.1136/jmedgenet-2014-102588] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Despite abundant evidence for pathogenicity of large copy number variants (CNVs) in neurodevelopmental disorders (NDDs), the individual significance of genome-wide rare CNVs <500 kb has not been well elucidated in a clinical context. METHODS By high-resolution chromosomal microarray analysis, we investigated the clinical significance of all rare non-polymorphic exonic CNVs sizing 1-500 kb in a cohort of 714 patients with undiagnosed NDDs. RESULTS We detected 96 rare CNVs <500 kb affecting coding regions, of which 58 (60.4%) were confirmed. 6 of 14 confirmed de novo, one of two homozygous and four heterozygous inherited CNVs affected the known microdeletion regions 17q21.31, 16p11.2 and 2p21 or OMIM morbid genes (CASK, CREBBP, PAFAH1B1, SATB2; AUTS2, NRXN3, GRM8). Two further de novo CNVs affecting single genes (MED13L, CTNND2) were instrumental in delineating novel recurrent conditions. For the first time, we here report exonic deletions of CTNND2 causing low normal IQ with learning difficulties with or without autism spectrum disorder. Additionally, we discovered a homozygous out-of-frame deletion of ACOT7 associated with features comparable to the published mouse model. In total, 24.1% of the confirmed small CNVs were categorised as pathogenic or likely pathogenic (median size 130 kb), 17.2% as likely benign, 3.4% represented incidental findings and 55.2% remained unclear. CONCLUSIONS These results verify the diagnostic relevance of genome-wide rare CNVs <500 kb, which were found pathogenic in ∼2% (14/714) of cases (1.1% de novo, 0.3% homozygous, 0.6% inherited) and highlight their inherent potential for discovery of new conditions.
Collapse
Affiliation(s)
- Reza Asadollahi
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - Beatrice Oneda
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - Pascal Joset
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | | | - Deborah Bartholdi
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - Marie Vincent
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - Joana Cobilanschi
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - Heinrich Sticht
- Institute of Biochemistry, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Rosa Baldinger
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - Regina Reissmann
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - Irene Sudholt
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - Christian T Thiel
- Institute of Human Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Arif B Ekici
- Institute of Human Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - André Reis
- Institute of Human Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Emilia K Bijlsma
- Department of Clinical Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Joris Andrieux
- Institut de Génétique Médicale, Hôpital Jeanne de Flandre, CHRU de Lille, Lille, France
| | - Anne Dieux
- Clinique de Génétique Guy Fontaine, Hôpital Jeanne de Flandre, CHRU de Lille, Lille, France
| | - David FitzPatrick
- MRC Human Genetics Unit, MRC Institute for Genetic and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Susanne Ritter
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Alessandra Baumer
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - Beatrice Latal
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Barbara Plecko
- Division of Child Neurology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Oskar G Jenni
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| |
Collapse
|
34
|
Bacino CA, Hecht JT. Etiopathogenesis of equinovarus foot malformations. Eur J Med Genet 2014; 57:473-9. [PMID: 24932901 DOI: 10.1016/j.ejmg.2014.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 06/03/2014] [Indexed: 01/28/2023]
Abstract
Congenital talipes equinovarus (CTEV) is the most common musculoskeletal birth defect affecting approximately 1/700-1/1000 of liveborns. Even though extensive epidemiological and genetic studies have been carried out to address its causes, the precise mechanisms leading to this common birth defect remain elusive. CTEV is a multifactorial disorder, hence the combination of genetic and environmental factors are known contributors to this developmental abnormality. So far a handful of genes involved in limb patterning like PITX1, HOXA, HOXD, TBX4, and RBM10, as well as genes involved in muscle contraction, have been identified as possible players. Among many environmental factors investigated, maternal smoking seems to hold the strongest consistent association with this disorder. This article will review and discuss some of the most common genetic and environmental factors associated with the etiopathogenesis of CTEV.
Collapse
Affiliation(s)
- Carlos A Bacino
- Baylor College of Medicine, Department of Molecular and Human Genetics, Houston, TX, USA.
| | | |
Collapse
|
35
|
Lonardo F. Genomic microarrays in prenatal diagnosis. World J Med Genet 2013; 3:14-21. [DOI: 10.5496/wjmg.v3.i4.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/13/2013] [Accepted: 08/09/2013] [Indexed: 02/06/2023] Open
Abstract
The application of microarray-based techniques for the diagnosis of genomic rearrangements has been steadily growing in popularity since its introduction in 2004. Given the many advantages of these techniques over conventional cytogenetics, there is increasing pressure towards their application in prenatal diagnosis. However, there remain several important issues that must be addressed. For example, microarray-based techniques (comparative genomic hybridization-based arrays and single nucleotide polymorphism-based arrays) allow detection of even very small genomic imbalances that can determine pathological clinical conditions. In addition, there are other copy number variations which represent normal variation, with no detectable effects on phenotype. Given the still incomplete knowledge of the changes in our genome and the associated phenotypes, microarray-based diagnosis is likely to find variants of uncertain and unknown clinical significance. The interpretation of these variants is now a major challenge for the medical geneticist, who often find it difficult to establish precise correlations between genotype and phenotype. There is sufficient available evidence to justify the use of microarray-based diagnostics for a select number of specific conditions, but there is also an inevitable trend towards ever wider application. It is very important that this drift does not progress in an unchecked and uncontrolled manner under the thrust of commercial interests. Therefore, we recommend that scientific societies be vigilant and take an advisory role in the adopting of these technologies as new scientific knowledge becomes available.
Collapse
|
36
|
Cheng YW, Tan CA, Minor A, Arndt K, Wysinger L, Grange DK, Kozel BA, Robin NH, Waggoner D, Fitzpatrick C, Das S, Del Gaudio D. Copy number analysis of NIPBL in a cohort of 510 patients reveals rare copy number variants and a mosaic deletion. Mol Genet Genomic Med 2013; 2:115-23. [PMID: 24689074 PMCID: PMC3960053 DOI: 10.1002/mgg3.48] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/11/2013] [Indexed: 12/24/2022] Open
Abstract
Cornelia de Lange syndrome (CdLS) is a genetically heterogeneous disorder characterized by growth retardation, intellectual disability, upper limb abnormalities, hirsutism, and characteristic facial features. In this study we explored the occurrence of intragenic NIPBL copy number variations (CNVs) in a cohort of 510 NIPBL sequence-negative patients with suspected CdLS. Copy number analysis was performed by custom exon-targeted oligonucleotide array-comparative genomic hybridization and/or MLPA. Whole-genome SNP array was used to further characterize rearrangements extending beyond the NIPBL gene. We identified NIPBL CNVs in 13 patients (2.5%) including one intragenic duplication and a deletion in mosaic state. Breakpoint sequences in two patients provided further evidence of a microhomology-mediated replicative mechanism as a potential predominant contributor to CNVs in NIPBL. Patients for whom clinical information was available share classical CdLS features including craniofacial and limb defects. Our experience in studying the frequency of NIBPL CNVs in the largest series of patients to date widens the mutational spectrum of NIPBL and emphasizes the clinical utility of performing NIPBL deletion/duplication analysis in patients with CdLS.
Collapse
Affiliation(s)
- Yu-Wei Cheng
- Department of Human Genetics, University of Chicago Chicago, Illinois
| | - Christopher A Tan
- Department of Human Genetics, University of Chicago Chicago, Illinois
| | - Agata Minor
- Department of Pathology, University of Chicago Chicago, Illinois
| | - Kelly Arndt
- Department of Human Genetics, University of Chicago Chicago, Illinois
| | - Latrice Wysinger
- Department of Human Genetics, University of Chicago Chicago, Illinois
| | - Dorothy K Grange
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine St. Louis, Missouri
| | - Beth A Kozel
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine St. Louis, Missouri
| | - Nathaniel H Robin
- Department of Genetics, University of Alabama at Birmingham Birmingham, Alabama
| | - Darrel Waggoner
- Department of Human Genetics, University of Chicago Chicago, Illinois
| | | | - Soma Das
- Department of Human Genetics, University of Chicago Chicago, Illinois
| | | |
Collapse
|
37
|
Fichou Y, Le Maréchal C, Bryckaert L, Dupont I, Jamet D, Chen JM, Férec C. A convenient qualitative and quantitative method to investigate RHD-RHCE hybrid genes. Transfusion 2013; 53:2974-82. [PMID: 23550903 DOI: 10.1111/trf.12179] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/24/2013] [Accepted: 02/10/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND Molecular biology techniques, such as single specific-primer polymerase chain reaction (PCR), denaturing-high performance liquid chromatography, direct sequencing, next-generation sequencing, and microarray platforms, contribute to the efficient genotyping of the human blood group RHD gene. However, some alleles remain undetermined in rare cases in DNA samples carrying two copies of the RHD gene, which challenge the identification of D-CE hybrid genes. STUDY DESIGN AND METHODS We set up, in a single-tube format, a qualitative and quantitative assay based on multiplex PCR of short fluorescent fragments (QMPSF) to simultaneously amplify all 10 RHD exons on the one hand and all 10 RHCE exons on the other hand. RESULTS The test proved to be useful to rapidly identify hybrid genes in hemizygous RHD samples carrying a hybrid D-CE gene and to resolve unknown genotypes by quantifying individual exons in compound heterozygous samples, but also unexpectedly helped to redefine the RHDΨ haplotype. While validating the test, two novel single-point variants, c.648G>C (p.L216F) and c.1048G>C (p.D350H), were found. CONCLUSION For the first time, a QMPSF-based method is reliable to individually quantify the exons of both RH genes, including hybrid D-CE genes in compound heterozygous samples and may help to investigate samples with unknown RHD and/or RHCE status.
Collapse
Affiliation(s)
- Yann Fichou
- Etablissement Français du Sang (EFS)-Bretagne, Brest, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France; Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale, Brest, France; Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Centre Hospitalier Régional Universitaire (CHRU), Hôpital Morvan, Brest, France
| | | | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Ferri L, Donati MA, Funghini S, Malvagia S, Catarzi S, Lugli L, Ragni L, Bertini E, Vaz FM, Cooper DN, Guerrini R, Morrone A. New clinical and molecular insights on Barth syndrome. Orphanet J Rare Dis 2013; 8:27. [PMID: 23409742 PMCID: PMC3599367 DOI: 10.1186/1750-1172-8-27] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 01/30/2013] [Indexed: 11/26/2022] Open
Abstract
Background Barth syndrome (BS) is an X-linked infantile-onset cardioskeletal disease characterized by cardiomyopathy, hypotonia, growth delay, neutropenia and 3-methylglutaconic aciduria. It is caused by mutations in the TAZ gene encoding tafazzin, a protein involved in the metabolism of cardiolipin, a mitochondrial-specific phospholipid involved in mitochondrial energy production. Methods Clinical, biochemical and molecular characterization of a group of six male patients suspected of having BS. Three patients presented early with severe metabolic decompensation including respiratory distress, oxygen desaturation and cardiomyopathy and died within the first year of life. The remaining three patients had cardiomyopathy, hypotonia and growth delay and are still alive. Cardiomyopathy was detected during pregnancy through a routine check-up in one patient. All patients exhibited 3-methylglutaconic aciduria and neutropenia, when tested and five of them also had lactic acidosis. Results We confirmed the diagnosis of BS with sequence analysis of the TAZ gene, and found five new mutations, c.641A>G p.His214Arg, c.284dupG (p.Thr96Aspfs*37), c.678_691del14 (p.Tyr227Trpfs*79), g.8009_16445del8437 and g.[9777_9814del38; 9911-?_14402del] and the known nonsense mutation c.367C>T (p.Arg123Term). The two gross rearrangements ablated TAZ exons 6 to 11 and probably originated by non-allelic homologous recombination and by Serial Replication Slippage (SRS), respectively. The identification of the breakpoints boundaries of the gross deletions allowed the direct detection of heterozygosity in carrier females. Conclusions Lactic acidosis associated with 3-methylglutaconic aciduria is highly suggestive of BS, whilst the severity of the metabolic decompensation at disease onset should be considered for prognostic purposes. Mutation analysis of the TAZ gene is necessary for confirming the clinical and biochemical diagnosis in probands in order to identify heterozygous carriers and supporting prenatal diagnosis and genetic counseling.
Collapse
Affiliation(s)
- Lorenzo Ferri
- Department of Neurosciences, Psychology, Pharmacology and Child Health, University of Florence and Paediatric Neurology Unit and Laboratories, Meyer Children's Hospital, Viale Pieraccini n, 24, 50139 Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ganesamoorthy D, Bruno DL, McGillivray G, Norris F, White SM, Adroub S, Amor DJ, Yeung A, Oertel R, Pertile MD, Ngo C, Arvaj AR, Walker S, Charan P, Palma-Dias R, Woodrow N, Slater HR. Meeting the challenge of interpreting high-resolution single nucleotide polymorphism array data in prenatal diagnosis: does increased diagnostic power outweigh the dilemma of rare variants? BJOG 2013; 120:594-606. [PMID: 23332022 DOI: 10.1111/1471-0528.12150] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2012] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Several studies have already shown the superiority of chromosomal microarray analysis (CMA) compared with conventional karyotyping for prenatal investigation of fetal ultrasound abnormality. This study used very high-resolution single nucleotide polymorphism (SNP) arrays to determine the impact on detection rates of all clinical categories of copy number variations (CNVs), and address the issue of interpreting and communicating findings of uncertain or unknown clinical significance, which are to be expected at higher frequency when using very high-resolution CMA. DESIGN Prospective validation study. SETTING Tertiary clinical genetics centre. POPULATION Women referred for further investigation of fetal ultrasound anomaly. METHODS We prospectively tested 104 prenatal samples using both conventional karyotyping and high-resolution arrays. MAIN OUTCOME MEASURES The detection rates for each clinical category of CNV. RESULTS Unequivocal pathogenic CNVs were found in six cases, including one with uniparental disomy (paternal UPD 14). A further four cases had a 'likely pathogenic' finding. Overall, CMA improved the detection of 'pathogenic' and 'likely pathogenic' abnormalities from 2.9% (3/104) to 9.6% (10/104). CNVs of 'unknown' clinical significance that presented interpretational difficulties beyond results from parental investigations were detected in 6.7% (7/104) of samples. CONCLUSIONS Increased detection sensitivity appears to be the main benefit of high-resolution CMA. Despite this, in this cohort there was no significant benefit in terms of improving detection of small pathogenic CNVs. A potential disadvantage is the high detection rate of CNVs of 'unknown' clinical significance. These findings emphasise the importance of establishing an evidence-based policy for the interpretation and reporting of CNVs, and the need to provide appropriate pre- and post-test counselling.
Collapse
Affiliation(s)
- D Ganesamoorthy
- VCGS Cytogenetics Laboratory, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Baumgartner A. Comparative genomic hybridization (CGH) in genotoxicology. Methods Mol Biol 2013; 1044:245-268. [PMID: 23896881 DOI: 10.1007/978-1-62703-529-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In the past two decades comparative genomic hybridization (CGH) and array CGH have become crucial and indispensable tools in clinical diagnostics. Initially developed for the genome-wide screening of chromosomal imbalances in tumor cells, CGH as well as array CGH have also been employed in genotoxicology and most recently in toxicogenomics. The latter methodology allows a multi-endpoint analysis of how genes and proteins react to toxic agents revealing molecular mechanisms of toxicology. This chapter provides a background on the use of CGH and array CGH in the context of genotoxicology as well as a protocol for conventional CGH to understand the basic principles of CGH. Array CGH is still cost intensive and requires suitable analytical algorithms but might become the dominating assay in the future when more companies provide a large variety of different commercial DNA arrays/chips leading to lower costs for array CGH equipment as well as consumables such as DNA chips. As the amount of data generated with microarrays exponentially grows, the demand for powerful adaptive algorithms for analysis, competent databases, as well as a sound regulatory framework will also increase. Nevertheless, chromosomal and array CGH are being demonstrated to be effective tools for investigating copy number changes/variations in the whole genome, DNA expression patterns, as well as loss of heterozygosity after a genotoxic impact. This will lead to new insights into affected genes and the underlying structures of regulatory and signaling pathways in genotoxicology and could conclusively identify yet unknown harmful toxicants.
Collapse
|
42
|
Wei Y, Xu F, Li P. Technology-Driven and Evidence-Based Genomic Analysis for Integrated Pediatric and Prenatal Genetics Evaluation. J Genet Genomics 2013; 40:1-14. [DOI: 10.1016/j.jgg.2012.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 12/14/2012] [Indexed: 10/27/2022]
|
43
|
Tanner AK, Chin ELH, Duffner PK, Hegde M. Array CGH improves detection of mutations in the GALC gene associated with Krabbe disease. Orphanet J Rare Dis 2012; 7:38. [PMID: 22704718 PMCID: PMC3404939 DOI: 10.1186/1750-1172-7-38] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 06/15/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Krabbe disease is an autosomal recessive lysosomal storage disorder caused by mutations in the GALC gene. The most common mutation in the Caucasian population is a 30-kb deletion of exons 11 through 17. There are few other reports of intragenic GALC deletions or duplications, due in part to difficulties detecting them. METHODS AND RESULTS We used gene-targeted array comparative genomic hybridization (CGH) to analyze the GALC gene in individuals with Krabbe disease in whom sequence analysis with 30-kb deletion analysis identified only one mutation. In our sample of 33 cases, traditional approaches failed to identify two pathogenic mutations in five (15.2%) individuals with confirmed Krabbe disease. The addition of array CGH deletion/duplication analysis to the genetic testing strategy led to the identification of a second pathogenic mutation in three (9.1%) of these five individuals. In all three cases, the deletion or duplication identified through array CGH was a novel GALC mutation, including the only reported duplication in the GALC gene, which would have been missed by traditional testing methodologies. We report these three cases in detail. The second mutation remains unknown in the remaining two individuals (6.1%), despite our full battery of testing. CONCLUSIONS Analysis of the GALC gene using array CGH deletion/duplication testing increased the two-mutation detection rate from 84.8% to 93.9% in affected individuals. Better mutation detection rates are important for improving molecular diagnosis of Krabbe disease, as well as for providing prenatal and carrier testing in family members.
Collapse
Affiliation(s)
- Alice K Tanner
- Emory Genetics Laboratory, Department of Human Genetics, Emory University, Atlanta, GA, USA
| | | | | | | |
Collapse
|