1
|
Zhang J, Liu K, Zhu Z, Shang S, Wei D, Zheng Y, Zhang L, Liang Y, Ju D, Yuan J. Innovative strategies in genitourinary cancer: the role of oncolytic viruses. Front Oncol 2024; 14:1461324. [PMID: 39464707 PMCID: PMC11502293 DOI: 10.3389/fonc.2024.1461324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/09/2024] [Indexed: 10/29/2024] Open
Abstract
Urinary tumors pose a significant health threat because of their high prevalence and recurrence rates. Despite the availability of various treatment options, many patients poorly respond to traditional therapies, highlighting the urgent need for alternative approaches. Oncolytic viruses are promising therapeutic agents. These viruses exploit the unique characteristics of cancer cells to specifically target and destroy them, thereby triggering potent antitumor immune responses. This review delves into recent advancements and future prospects of oncolytic viruses, focusing on their application in renal, bladder, and prostate cancers. By discussing practical implications and the potential of different viruses, including the cowpox virus, adenovirus, measles virus, coxsackievirus, and reovirus, we pave the way for further exploration and refinement of this exciting field.
Collapse
Affiliation(s)
- Jie Zhang
- College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Kepu Liu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Zheng Zhu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Shihao Shang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Di Wei
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yu Zheng
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Lei Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Ying Liang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Dongen Ju
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jianlin Yuan
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
2
|
Cervera-Carrascon V, Quixabeira DCA, Santos JM, Havunen R, Milenova I, Verhoeff J, Heiniö C, Zafar S, Garcia-Vallejo JJ, van Beusechem VW, de Gruijl TD, Kalervo A, Sorsa S, Kanerva A, Hemminki A. Adenovirus Armed With TNFa and IL2 Added to aPD-1 Regimen Mediates Antitumor Efficacy in Tumors Refractory to aPD-1. Front Immunol 2021; 12:706517. [PMID: 34367166 PMCID: PMC8343222 DOI: 10.3389/fimmu.2021.706517] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/05/2021] [Indexed: 01/05/2023] Open
Abstract
Immune checkpoint inhibitors such as anti-PD-1 have revolutionized the field of oncology over the past decade. Nevertheless, the majority of patients do not benefit from them. Virotherapy is a flexible tool that can be used to stimulate and/or recruit different immune populations. T-cell enabling virotherapy could enhance the efficacy of immune checkpoint inhibitors, even in tumors resistant to these inhibitors. The T-cell potentiating virotherapy used here consisted of adenoviruses engineered to express tumor necrosis factor alpha and interleukin-2 in the tumor microenvironment. To study virus efficacy in checkpoint-inhibitor resistant tumors, we developed an anti-PD-1 resistant melanoma model in vivo. In resistant tumors, adding virotherapy to an anti-PD-1 regimen resulted in increased survival (p=0.0009), when compared to anti-PD-1 monotherapy. Some of the animals receiving virotherapy displayed complete responses, which did not occur in the immune checkpoint-inhibitor monotherapy group. When adenoviruses were delivered into resistant tumors, there were signs of increased CD8 T-cell infiltration and activation, which - together with a reduced presence of M2 macrophages and myeloid-derived suppressor cells - could explain those results. T-cell enabling virotherapy appeared as a valuable tool to counter resistance to immune checkpoint inhibitors. The clinical translation of this approach could increase the number of cancer patients benefiting from immunotherapies.
Collapse
Affiliation(s)
- Victor Cervera-Carrascon
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Dafne C A Quixabeira
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Joao M Santos
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Riikka Havunen
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Ioanna Milenova
- Department of Medical Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, Netherlands.,Orca Therapeutics, Amsterdam, Netherlands
| | - Jan Verhoeff
- Department of Molecular Cell Biology & Immunology, Amsterdam Infection & Immunity Institute and Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Camilla Heiniö
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sadia Zafar
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Juan J Garcia-Vallejo
- Department of Molecular Cell Biology & Immunology, Amsterdam Infection & Immunity Institute and Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Victor W van Beusechem
- Department of Medical Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, Netherlands
| | | | - Suvi Sorsa
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Anna Kanerva
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,TILT Biotherapeutics Ltd, Helsinki, Finland.,Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| |
Collapse
|
3
|
Wan PKT, Ryan AJ, Seymour LW. Beyond cancer cells: Targeting the tumor microenvironment with gene therapy and armed oncolytic virus. Mol Ther 2021; 29:1668-1682. [PMID: 33845199 PMCID: PMC8116634 DOI: 10.1016/j.ymthe.2021.04.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/08/2021] [Accepted: 04/06/2021] [Indexed: 01/17/2023] Open
Abstract
Cancer gene therapies are usually designed either to express wild-type copies of tumor suppressor genes or to exploit tumor-associated phenotypic changes to endow selective cytotoxicity. However, these approaches become less relevant to cancers that contain many independent mutations, and the situation is made more complex by our increased understanding of clonal evolution of tumors, meaning that different metastases and even regions of the same tumor mass have distinct mutational and phenotypic profiles. In contrast, the relatively genetically stable tumor microenvironment (TME) therefore provides an appealing therapeutic target, particularly since it plays an essential role in promoting cancer growth, immune tolerance, and acquired resistance to many therapies. Recently, a variety of different TME-targeted gene therapy and armed oncolytic strategies have been explored, with particular success observed in strategies targeting the cancer stroma, reducing tumor vasculature, and repolarizing the immunosuppressive microenvironment. Herein, we review the progress of these TME-targeting approaches and try to highlight those showing the greatest promise.
Collapse
Affiliation(s)
| | - Anderson J Ryan
- Department Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | | |
Collapse
|
4
|
Cervera-Carrascon V, Havunen R, Hemminki A. Oncolytic adenoviruses: a game changer approach in the battle between cancer and the immune system. Expert Opin Biol Ther 2019; 19:443-455. [PMID: 30905206 DOI: 10.1080/14712598.2019.1595582] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Oncolytic adenoviruses are among the most studied oncolytic viruses because of their tumor selectivity, safety, and transgene-delivery capability. With a growing number of different immunotherapies against cancer, the extraordinary immunogenicity of the adenovirus has emerged as a differentiating strength. Enabling T-cell related therapies with oncolytic adenoviruses appears a promising approach due to its inherent ability to elicit responses from the adaptive immune compartment. AREAS COVERED These viruses have successfully enhanced both adoptive T-cell therapies and immune-checkpoint therapies. Oncolytic viruses induce several effects at the tumor and on the systemic level that help to circumvent current limitations of T-cells and related therapies, such as T-cell trafficking, tumor immune suppressivity and antigen spreading EXPERT OPINION Taking into account the multitude of possibilities of treating cancer with immunotherapies, learning to optimize the combinations and administration strategies of these drugs, could lead to durable responses in patients with currently incurable cancers.
Collapse
Affiliation(s)
- Victor Cervera-Carrascon
- a Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine , University of Helsinki , Helsinki , Finland.,b TILT Biotherapeutics Ltd , Helsinki , Finland
| | - Riikka Havunen
- a Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine , University of Helsinki , Helsinki , Finland.,b TILT Biotherapeutics Ltd , Helsinki , Finland
| | - Akseli Hemminki
- a Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine , University of Helsinki , Helsinki , Finland.,b TILT Biotherapeutics Ltd , Helsinki , Finland.,c Hospital Comprehensive Cancer Center , Helsinki University , Helsinki , Finland
| |
Collapse
|
5
|
Toro Bejarano M, Merchan JR. Targeting tumor vasculature through oncolytic virotherapy: recent advances. Oncolytic Virother 2015; 4:169-81. [PMID: 27512680 PMCID: PMC4918394 DOI: 10.2147/ov.s66045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The oncolytic virotherapy field has made significant advances in the last decade, with a rapidly increasing number of early- and late-stage clinical trials, some of them showing safety and promising therapeutic efficacy. Targeting tumor vasculature by oncolytic viruses (OVs) is an attractive strategy that offers several advantages over nontargeted viruses, including improved tumor viral entry, direct antivascular effects, and enhanced antitumor efficacy. Current understanding of the biological mechanisms of tumor neovascularization, novel vascular targets, and mechanisms of resistance has allowed the development of oncolytic viral vectors designed to target tumor neovessels. While some OVs (such as vaccinia and vesicular stomatitis virus) can intrinsically target tumor vasculature and induce vascular disruption, the majority of reported vascular-targeted viruses are the result of genetic manipulation of their viral genomes. Such strategies include transcriptional or transductional endothelial targeting, "armed" viruses able to downregulate angiogenic factors, or to express antiangiogenic molecules. The above strategies have shown preclinical safety and improved antitumor efficacy, either alone, or in combination with standard or targeted agents. This review focuses on the recent efforts toward the development of vascular-targeted OVs for cancer treatment and provides a translational/clinical perspective into the future development of new generation biological agents for human cancers.
Collapse
Affiliation(s)
- Marcela Toro Bejarano
- Division of Hematology-Oncology, Department of Medicine, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Jaime R Merchan
- Division of Hematology-Oncology, Department of Medicine, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| |
Collapse
|
6
|
Combinatorial treatment with oncolytic adenovirus and helper-dependent adenovirus augments adenoviral cancer gene therapy. MOLECULAR THERAPY-ONCOLYTICS 2014; 1:14008. [PMID: 27119096 PMCID: PMC4782941 DOI: 10.1038/mto.2014.8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 09/16/2014] [Indexed: 02/07/2023]
Abstract
Oncolytic adenoviruses (Onc.Ads) produce significant antitumor effects but as single agents they rarely eliminate tumors. Investigators have therefore incorporated sequences into these vectors that encode immunomodulatory molecules to enhance antitumor immunity. Successful implementation of this strategy requires multiple tumor immune inhibitory mechanisms to be overcome, and insertion of the corresponding multiple functional genes reduces the titer and replication of Onc.Ads, compromising their direct ant-tumor effects. By contrast, helper-dependent (HD) Ads are devoid of viral coding sequences, allowing inclusion of multiple transgenes. HDAds, however, lack replicative capacity. Since HDAds encode the adenoviral packaging signal, we hypothesized that the coadministration of Onc.Ad with HDAd would allow to be amplified and packaged during replication of Onc.Ad in transduced cancer cells. This combination could provide immunostimulation without losing oncolytic activity. We now show that coinfection of Onc.Ad with HDAd subsequently replicates HDAd vector DNA in trans in human cancer cell lines in vitro and in vivo, amplifying the transgenes the HDAd encode. This combinatorial treatment significantly suppresses the tumor growth compared to treatment with a single agent in an immunocompetent mouse model. Hence, combinatorial treatment of Onc.Ad with HDAd should overcome the inherent limitations of each agent and provide a highly immunogenic oncolytic therapy.
Collapse
|
7
|
Siurala M, Bramante S, Vassilev L, Hirvinen M, Parviainen S, Tähtinen S, Guse K, Cerullo V, Kanerva A, Kipar A, Vähä-Koskela M, Hemminki A. Oncolytic adenovirus and doxorubicin-based chemotherapy results in synergistic antitumor activity against soft-tissue sarcoma. Int J Cancer 2014; 136:945-54. [DOI: 10.1002/ijc.29048] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 05/15/2014] [Accepted: 05/27/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Mikko Siurala
- Cancer Gene Therapy Group, Department of Pathology and Transplantation Laboratory; Haartman Institute, University of Helsinki; Helsinki Finland
| | - Simona Bramante
- Cancer Gene Therapy Group, Department of Pathology and Transplantation Laboratory; Haartman Institute, University of Helsinki; Helsinki Finland
| | | | - Mari Hirvinen
- Laboratory of Immunovirotherapy; Division of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, University of Helsinki; Helsinki Finland
| | - Suvi Parviainen
- Cancer Gene Therapy Group, Department of Pathology and Transplantation Laboratory; Haartman Institute, University of Helsinki; Helsinki Finland
| | - Siri Tähtinen
- Cancer Gene Therapy Group, Department of Pathology and Transplantation Laboratory; Haartman Institute, University of Helsinki; Helsinki Finland
| | - Kilian Guse
- Cancer Gene Therapy Group, Department of Pathology and Transplantation Laboratory; Haartman Institute, University of Helsinki; Helsinki Finland
| | - Vincenzo Cerullo
- Laboratory of Immunovirotherapy; Division of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, University of Helsinki; Helsinki Finland
| | - Anna Kanerva
- Cancer Gene Therapy Group, Department of Pathology and Transplantation Laboratory; Haartman Institute, University of Helsinki; Helsinki Finland
- Department of Obstetrics and Gynecology; Helsinki University Central Hospital; Helsinki Finland
| | - Anja Kipar
- Finnish Centre for Laboratory Animal Pathology; Faculty of Veterinary Medicine, University of Helsinki; Helsinki Finland
- Department of Infection Biology; Institute of Global Health, School of Veterinary Science, University of Liverpool; Liverpool United Kingdom
| | - Markus Vähä-Koskela
- Cancer Gene Therapy Group, Department of Pathology and Transplantation Laboratory; Haartman Institute, University of Helsinki; Helsinki Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Department of Pathology and Transplantation Laboratory; Haartman Institute, University of Helsinki; Helsinki Finland
| |
Collapse
|
8
|
Tysome JR, Lemoine NR, Wang Y. Update on oncolytic viral therapy - targeting angiogenesis. Onco Targets Ther 2013; 6:1031-40. [PMID: 23940420 PMCID: PMC3737009 DOI: 10.2147/ott.s46974] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Oncolytic viruses (OVs) have the ability to selectively replicate in and lyse cancer cells. Angiogenesis is an essential requirement for tumor growth. Like OVs, the therapeutic effect of many angiogenesis inhibitors has been limited, leading to the development of more effective approaches to combine antiangiogenic therapy with OVs. Angiogenesis can be targeted either directly by OV infection of vascular endothelial cells, or by arming OVs with antiangiogenic transgenes, which are subsequently expressed locally in the tumor microenvironment. In this review, we describe the development and targeting of OVs, the role of angiogenesis in cancer, and the progress made in arming viruses with antiangiogenic transgenes. Future developments required to optimize this approach are addressed.
Collapse
Affiliation(s)
- James R Tysome
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom ; Department of Otolaryngology, Cambridge University Hospitals, Cambridge, United Kingdom ; Sino-British Research Center for Molecular Oncology, Zhengzhou University, Zhengzhou, People's Republic of China
| | | | | |
Collapse
|
9
|
Cerullo V, Koski A, Vähä-Koskela M, Hemminki A. Chapter eight--Oncolytic adenoviruses for cancer immunotherapy: data from mice, hamsters, and humans. Adv Cancer Res 2013; 115:265-318. [PMID: 23021247 DOI: 10.1016/b978-0-12-398342-8.00008-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adenovirus is one of the most commonly used vectors for gene therapy and two products have already been approved for treatment of cancer in China (Gendicine(R) and Oncorine(R)). An intriguing aspect of oncolytic adenoviruses is that by their very nature they potently stimulate multiple arms of the immune system. Thus, combined tumor killing via oncolysis and inherent immunostimulatory properties in fact make these viruses in situ tumor vaccines. When further engineered to express cytokines, chemokines, tumor-associated antigens, or other immunomodulatory elements, they have been shown in various preclinical models to induce antigen-specific effector and memory responses, resulting both in full therapeutic cures and even induction of life-long tumor immunity. Here, we review the state of the art of oncolytic adenovirus, in the context of their capability to stimulate innate and adaptive arms of the immune system and finally how we can modify these viruses to direct the immune response toward cancer.
Collapse
Affiliation(s)
- Vincenzo Cerullo
- Laboratory of Immunovirotherapy, Division of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| | | | | | | |
Collapse
|
10
|
Lawson KA, Morris DG. Oncolytic virotherapy for renal cell carcinoma: a novel treatment paradigm? Expert Opin Biol Ther 2012; 12:891-903. [DOI: 10.1517/14712598.2012.685713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Abstract
The cytolytic properties of viruses can be used to treat cancer. Replication of certain viruses is favoured in cancer cells, whereas others can be modified to obtain tumour specificity. This approach has evolved to become a new discipline called virotherapy. In addition, these replication-competent (oncolytic) viruses can be adapted as vectors for cancer gene therapy. The "armed" viruses show a double mechanism of action: direct destruction of cancer cells as a consequence of the lytic viral cycle, in combination with the effect of the therapeutic gene incorporated in the viral genome. Current trends in the field include strategies to increase the oncolytic potency of existing viruses; the evaluation of new candidates; the search for synergistic effects between different viruses and conventional therapies; and a rational approach to take advantage of the interplay between the viruses and the host immune system. This review summarises the most relevant achievements in recent years.
Collapse
|
12
|
Raki M, Sarkioja M, Escutenaire S, Kangasniemi L, Haavisto E, Kanerva A, Cerullo V, Joensuu T, Oksanen M, Pesonen S, Hemminki A. Switching the fiber knob of oncolytic adenoviruses to avoid neutralizing antibodies in human cancer patients. J Gene Med 2011; 13:253-61. [DOI: 10.1002/jgm.1565] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
13
|
Pesonen S, Kangasniemi L, Hemminki A. Oncolytic Adenoviruses for the Treatment of Human Cancer: Focus on Translational and Clinical Data. Mol Pharm 2010; 8:12-28. [PMID: 21126047 DOI: 10.1021/mp100219n] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sari Pesonen
- Cancer Gene Therapy Group, Molecular Cancer Biology Program & Transplantation Laboratory & Haartman Institute & Finnish Institute for Molecular Medicine, P.O. Box 63, 00014 University of Helsinki, Helsinki, Finland, HUSLAB, Helsinki University Central Hospital, Finland, and Oncos Therapeutics Ltd., Tukholmankatu 8, 00290 Helsinki, Finland
| | - Lotta Kangasniemi
- Cancer Gene Therapy Group, Molecular Cancer Biology Program & Transplantation Laboratory & Haartman Institute & Finnish Institute for Molecular Medicine, P.O. Box 63, 00014 University of Helsinki, Helsinki, Finland, HUSLAB, Helsinki University Central Hospital, Finland, and Oncos Therapeutics Ltd., Tukholmankatu 8, 00290 Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Molecular Cancer Biology Program & Transplantation Laboratory & Haartman Institute & Finnish Institute for Molecular Medicine, P.O. Box 63, 00014 University of Helsinki, Helsinki, Finland, HUSLAB, Helsinki University Central Hospital, Finland, and Oncos Therapeutics Ltd., Tukholmankatu 8, 00290 Helsinki, Finland
| |
Collapse
|
14
|
Abstract
Cancer treatments have improved steadily, but still only few metastatic solid tumors can be cured. Apoptosis-resistant clones frequently develop following standard treatments. Resistance factors are shared between different treatment regimens and, therefore, loss of response can occur rapidly, despite changing the drug, and there is a tendency for crossresistance between modalities. Therefore, new agents with novel mechanisms of action are desperately needed. Oncolytic adenoviruses, featuring cancer-selective cell lysis and spread, constitute an interesting drug platform aimed towards the goals of tumor specificity, and have been engineered in a variety of ways to improve their selectivity and efficacy. They allow rational drug development by the genetic incorporation of targeting mechanisms that can exert their function at different stages of the viral replication cycle. Owing to their immunogenicity, adenoviruses are particularly attractive for immunostimulatory purposes.
Collapse
Affiliation(s)
| | - Akseli Hemminki
- HUSLAB, Helsinki University Central Hospital, Finland; Cancer Gene Therapy Group, Molecular Cancer Biology Program & Haartman Institute & Transplantation Laboratory & Finnish Institute for Molecular Medicine, University of Helsinki, PO Box 63, Biomedicum B506b, 00014 University of Helsinki, Finland
| |
Collapse
|
15
|
Wojton J, Kaur B. Impact of tumor microenvironment on oncolytic viral therapy. Cytokine Growth Factor Rev 2010; 21:127-34. [PMID: 20399700 DOI: 10.1016/j.cytogfr.2010.02.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Interactions between tumor cells and their microenvironment have been shown to play a very significant role in the initiation, progression, and invasiveness of cancer. These tumor-stromal interactions are capable of altering the delivery and effectiveness of therapeutics into the tumor and are also known to influence future resistance and re-growth after treatment. Here we review recent advances in the understanding of the tumor microenvironment and its response to oncolytic viral therapy. The multifaceted environmental response to viral therapy can influence viral infection, replication, and propagation within the tumor. Recent studies have unveiled the complicated temporal changes in the tumor vasculature post-oncolytic virus (OV) treatment, and their impact on tumor biology. Similarly, the secreted extracellular matrix in solid tumors can affect both infection and spread of the therapeutic virus. Together, these complex changes in the tumor microenvironment also modulate the activation of the innate antiviral host immune response, leading to quick and efficient viral clearance. In order to combat these detrimental responses, viruses have been combined with pharmacological adjuvants and "armed" with therapeutic genes in order to suppress the pernicious environmental conditions following therapy. In this review we will discuss the impact of the tumor environment on viral therapy and examine some of the recent literature investigating methods of modulating this environment to enhance oncolysis.
Collapse
Affiliation(s)
- Jeffrey Wojton
- Dardinger Laboratory for Neuro-oncology and Neurosciences, Department of Neurological Surgery, James Comprehensive Cancer Center, Columbus, OH 43210, United States
| | | |
Collapse
|
16
|
Lewis TB, Glasgow JN, Glandon AM, Curiel DT, Standaert DG. Transduction of brain dopamine neurons by adenoviral vectors is modulated by CAR expression: rationale for tropism modified vectors in PD gene therapy. PLoS One 2010; 5. [PMID: 20862245 PMCID: PMC2941453 DOI: 10.1371/journal.pone.0012672] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 08/18/2010] [Indexed: 01/01/2023] Open
Abstract
Background Gene-based therapy is a new paradigm for the treatment of Parkinson disease (PD) and offers considerable promise for precise targeting and flexibility to impact multiple pathobiological processes for which small molecule agents are not available. Some success has been achieved utilizing adeno-associated virus for this approach, but it is likely that the characteristics of this vector system will ultimately create barriers to progress in clinical therapy. Adenovirus (Ad) vector overcomes limitations in payload size and targeting. The cellular tropism of Ad serotype 5 (Ad5)–based vectors is regulated by the Ad attachment protein binding to its primary cellular receptor, the coxsackie and adenovirus receptor (CAR). Many clinically relevant tissues are refractory to Ad5 infection due to negligible CAR levels but can be targeted by tropism-modified, CAR-independent forms of Ad. Our objective was to evaluate the role of CAR protein in transduction of dopamine (DA) neurons in vivo. Methodology/Principal Findings Ad5 was delivered to the substantia nigra (SN) in wild type (wt) and CAR transgenic animals. Cellular tropism was assessed by immunohistochemistry (IHC) in the SN and striatal terminals. CAR expression was assessed by western blot and IHC. We found in wt animals, Ad5 results in robust transgene expression in astrocytes and other non-neuronal cells but poor infection of DA neurons. In contrast, in transgenic animals, Ad5 infects SNc neurons resulting in expression of transduced protein in their striatal terminals. Western blot showed low CAR expression in the ventral midbrain of wt animals compared to transgenic animals. Interestingly, hCAR protein localizes with markers of post-synaptic structures, suggesting synapses are the point of entry into dopaminergic neurons in transgenic animals. Conclusions/Significance These findings demonstrate that CAR deficiency limits infection of wild type DA neurons by Ad5 and provide a rationale for the development of tropism-modified, CAR-independent Ad-vectors for use in gene therapy of human PD.
Collapse
Affiliation(s)
- Travis B. Lewis
- Department of Cell Biology, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Division of Human Gene Therapy, Departments of Medicine, Obstetrics and Gynecology, Pathology, and Surgery, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Joel N. Glasgow
- Division of Human Gene Therapy, Departments of Medicine, Obstetrics and Gynecology, Pathology, and Surgery, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Gene Therapy Center, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Anya M. Glandon
- Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - David T. Curiel
- Division of Human Gene Therapy, Departments of Medicine, Obstetrics and Gynecology, Pathology, and Surgery, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Gene Therapy Center, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - David G. Standaert
- Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
17
|
Abstract
Targeted therapy of cancer using oncolytic viruses has generated much interest over the past few years in the light of the limited efficacy and side effects of standard cancer therapeutics for advanced disease. In 2006, the world witnessed the first government-approved oncolytic virus for the treatment of head and neck cancer. It has been known for many years that viruses have the ability to replicate in and lyse cancer cells. Although encouraging results have been demonstrated in vitro and in animal models, most oncolytic viruses have failed to impress in the clinical setting. The explanation is multifactorial, determined by the complex interactions between the tumor and its microenvironment, the virus, and the host immune response. This review focuses on discussion of the obstacles that oncolytic virotherapy faces and recent advances made to overcome them, with particular reference to adenoviruses.
Collapse
Affiliation(s)
- Han Hsi Wong
- Centre for Molecular Oncology and Imaging, Institute of Cancer, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; E-Mails: (H.H.W.); (N.R.L.)
| | - Nicholas R. Lemoine
- Centre for Molecular Oncology and Imaging, Institute of Cancer, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; E-Mails: (H.H.W.); (N.R.L.)
- Sino-British Research Centre for Molecular Oncology, Zhengzhou University, Zhengzhou 450052, China
| | - Yaohe Wang
- Centre for Molecular Oncology and Imaging, Institute of Cancer, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; E-Mails: (H.H.W.); (N.R.L.)
- Sino-British Research Centre for Molecular Oncology, Zhengzhou University, Zhengzhou 450052, China
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +44-2078823596, Fax: +44-2078823884
| |
Collapse
|