1
|
He H, Liao Q, Zhao C, Zhu C, Feng M, Liu Z, Jiang L, Zhang L, Ding X, Yuan M, Zhang X, Xu J. Conditioned CAR-T cells by hypoxia-inducible transcription amplification (HiTA) system significantly enhances systemic safety and retains antitumor efficacy. J Immunother Cancer 2021; 9:jitc-2021-002755. [PMID: 34615704 PMCID: PMC8496395 DOI: 10.1136/jitc-2021-002755] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2021] [Indexed: 11/30/2022] Open
Abstract
Background Hypoxia is a striking feature of most solid tumors and could be used to discriminate tumors from normoxic tissues. Therefore, the design of hypoxia-conditioned Chimeric Antigen Receptor (CAR) T cells is a promising strategy to reduce on-target off-tumor toxicity in adoptive cell therapy. However, existing hypoxia-conditioned CAR-T designs have been only partially successful in enhancing safety profile but accompanied with reduced cytotoxic efficacy. Our goal is to further improve safety profile with retained excellent antitumor efficacy. Methods In this study, we designed and constructed a hypoxia-inducible transcription amplification system (HiTA-system) to control the expression of CAR in T (HiTA-CAR-T) cells. CAR expression was determined by Flow cytometry, and the activation and cytotoxicity of HiTA-CAR-T cells in vitro were evaluated in response to antigenic stimulations under hypoxic or normoxic conditions. The safety of HiTA-CAR-T cells was profiled in a mouse model for its on-target toxicity to normal liver and other tissues, and antitumor efficacy in vivo was monitored in murine xenograft models. Results Our results showed that HiTA-CAR-T cells are highly restricted to hypoxia for their CAR expression, activation and cytotoxicity to tumor cells in vitro. In a mouse model in vivo, HiTA-CAR-T cells targeting Her2 antigen showed undetectable CAR expression in all different normoxic tissues including human Her2-expresing liver, accordingly, no liver and systemic toxicity were observed; In contrast, regular CAR-T cells targeting Her2 displayed significant toxicity on human Her2-expression liver. Importantly, HiTA-CAR-T cells were able to achieve significant tumor suppression in murine xenograft models. Conclusion Our HiTA system showed a remarkable improvement in hypoxia-restricted transgene expression in comparison with currently available systems. HiTA-CAR-T cells presented significant antitumor activities in absence of any significant liver or systemic toxicity in vivo. This approach could be also applied to design CAR-T cell targeting other tumor antigens.
Collapse
Affiliation(s)
- Huan He
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Qibin Liao
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chen Zhao
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Cuisong Zhu
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Meiqi Feng
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhuoqun Liu
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Lang Jiang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Linxia Zhang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiangqing Ding
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Min Yuan
- Shanghai Public Health Clinical Center, Shanghai, China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Hemminki O, Dos Santos JM, Hemminki A. Oncolytic viruses for cancer immunotherapy. J Hematol Oncol 2020; 13:84. [PMID: 32600470 PMCID: PMC7325106 DOI: 10.1186/s13045-020-00922-1] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/17/2020] [Indexed: 12/24/2022] Open
Abstract
In this review, we discuss the use of oncolytic viruses in cancer immunotherapy treatments in general, with a particular focus on adenoviruses. These serve as a model to elucidate how versatile viruses are, and how they can be used to complement other cancer therapies to gain optimal patient benefits. Historical reports from over a hundred years suggest treatment efficacy and safety with adenovirus and other oncolytic viruses. This is confirmed in more contemporary patient series and multiple clinical trials. Yet, while the first viruses have already been granted approval from several regulatory authorities, room for improvement remains. As good safety and tolerability have been seen, the oncolytic virus field has now moved on to increase efficacy in a wide array of approaches. Adding different immunomodulatory transgenes to the viruses is one strategy gaining momentum. Immunostimulatory molecules can thus be produced at the tumor with reduced systemic side effects. On the other hand, preclinical work suggests additive or synergistic effects with conventional treatments such as radiotherapy and chemotherapy. In addition, the newly introduced checkpoint inhibitors and other immunomodulatory drugs could make perfect companions to oncolytic viruses. Especially tumors that seem not to be recognized by the immune system can be made immunogenic by oncolytic viruses. Logically, the combination with checkpoint inhibitors is being evaluated in ongoing trials. Another promising avenue is modulating the tumor microenvironment with oncolytic viruses to allow T cell therapies to work in solid tumors. Oncolytic viruses could be the next remarkable wave in cancer immunotherapy.
Collapse
Affiliation(s)
- Otto Hemminki
- Division of Urologic Oncology, Department of Surgical Oncology, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada. .,Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland. .,Department of Urology, Helsinki University Hospital, Helsinki, Finland.
| | - João Manuel Dos Santos
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland. .,TILT Biotherapeutics Ltd, Helsinki, Finland. .,Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.
| |
Collapse
|
3
|
Oncolytic Adenoviruses: Strategies for Improved Targeting and Specificity. Cancers (Basel) 2020; 12:cancers12061504. [PMID: 32526919 PMCID: PMC7352392 DOI: 10.3390/cancers12061504] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/29/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer is a major health problem. Most of the treatments exhibit systemic toxicity, as they are not targeted or specific to cancerous cells and tumors. Adenoviruses are very promising gene delivery vectors and have immense potential to deliver targeted therapy. Here, we review a wide range of strategies that have been tried, tested, and demonstrated to enhance the specificity of oncolytic viruses towards specific cancer cells. A combination of these strategies and other conventional therapies may be more effective than any of those strategies alone.
Collapse
|
4
|
|
5
|
Liang D, Yang M, Guo B, Yang L, Cao J, Zhang X. HIF-1α induced by β-elemene protects human osteosarcoma cells from undergoing apoptosis. J Cancer Res Clin Oncol 2012; 138:1865-77. [PMID: 22736026 DOI: 10.1007/s00432-012-1256-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 05/22/2012] [Indexed: 12/26/2022]
Abstract
BACKGROUND β-Elemene, isolated from more than 50 Chinese herbs and plants, has shown promising anticancer effects against a broad spectrum of tumors, such as lung, breast, prostate, cervical, colon and ovarian carcinomas (Wang et al. in Cell Mol Life Sci 62:881-893, 2005; Li et al. in Cell Mol Life Sci 62:894-904, 2005; J Pharm Pharmacol 62(8):1018-1027, 2010). But it has not reported in osteosarcoma cells. The aim of the present study is to investigate the antitumor effect of β-elemene on human osteosarcoma cancer cells and the molecular mechanism involved. RESULTS β-Elemene inhibited the viability of human osteosarcoma cells in a dose-time-dependent manner. The suppression of cell viability was due to the induction of apoptosis. Our study also found that β-elemene treatment upregulated HIF-1α protein, which partially inhibits apoptosis. Knockdown of HIF-1α with small interfering RNA or co-treatment with the HIF-1α inhibitor YC-1 significantly enhanced the antitumor effects of β-elemene. CONCLUSIONS Our study first found that β-elemene could increase the expression of HIF-1α through ROS and PI3K/Akt/mTor signaling pathway. And HIF-1α partially prevents human osteosarcoma cells from undergoing apoptosis. The anticancer effects of β-elemene was weakened by HIF-1α. So, we recognize that a combination of β-elemene with HIF-1α inhibitor might be a useful therapeutic option for osteosarcoma.
Collapse
Affiliation(s)
- Dan Liang
- Department of Orthopedics, The First Affiliated Hospital, China Medical University, No 155 Nanjing North Street, Shenyang, Liaoning, People's Republic of China
| | | | | | | | | | | |
Collapse
|
6
|
Gadani SP, Cronk JC, Norris GT, Kipnis J. IL-4 in the brain: a cytokine to remember. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:4213-9. [PMID: 23087426 PMCID: PMC3481177 DOI: 10.4049/jimmunol.1202246] [Citation(s) in RCA: 405] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
IL-4 has been extensively studied in the context of its role in immunity. Accumulating evidence indicates, however, that it also plays a critical role in higher functions of the normal brain, such as memory and learning. In this review, we summarize current knowledge of the basic immunology of IL-4, describe how and where this cytokine appears to operate in normal brain function, and propose a hypothesis concerning its potential role in neurological pathologies.
Collapse
Affiliation(s)
- Sachin P Gadani
- Department of Neuroscience and Graduate Program in Neuroscience, Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
7
|
Cawood R, Hills T, Wong SL, Alamoudi AA, Beadle S, Fisher KD, Seymour LW. Recombinant viral vaccines for cancer. Trends Mol Med 2012; 18:564-74. [PMID: 22917663 DOI: 10.1016/j.molmed.2012.07.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 07/14/2012] [Accepted: 07/18/2012] [Indexed: 01/21/2023]
Abstract
Cancer arises from 'self' in a series of steps that are all subject to immunoediting. Therefore, therapeutic cancer vaccines must stimulate an immune response against tumour antigens that have already evaded the body's immune defences. Vaccines presenting a tumour antigen in the context of obvious danger signals seem more likely to stimulate a response. This approach can be facilitated by genetic engineering using recombinant viral vectors expressing tumour antigens, cytokines, or both, from an immunogenic virus particle. We overview clinical attempts to use these agents for systemic immunisation and contrast the results with strategies employing direct intratumoural administration. We focus on the challenge of producing an effective response within the immune-suppressive tumour microenvironment, and discuss how the technology can overcome these obstacles.
Collapse
Affiliation(s)
- Ryan Cawood
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | | | | | | | | | | | | |
Collapse
|
8
|
Transcriptional regulators in hepatocarcinogenesis--key integrators of malignant transformation. J Hepatol 2012; 57:186-95. [PMID: 22446689 DOI: 10.1016/j.jhep.2011.11.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 11/28/2011] [Accepted: 11/30/2011] [Indexed: 12/26/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent human malignancies with poor prognosis and increasing incidence in the Western world. Only for a minority of HCC patients, surgical treatment options offer potential cure and therapeutic success of pharmacological approaches is limited. Highly specific approaches (e.g., kinase inhibitors) did not significantly improve the situation so far, possibly due to functional compensation, genetic heterogeneity of HCC, and development of resistance under selective pressure. In contrast, transcriptional regulators (especially transcription factors and co-factors) may integrate and process input signals of different (oncogenic) pathways and therefore represent cellular bottlenecks that regulate tumor cell biology. In this review, we want to summarize the current knowledge about central transcriptional regulators in human hepatocarcinogenesis and their potential as therapeutic target structures. Genomic and transcriptomic data of primary human HCC revealed that many of these factors showed up in subgroups of HCCs with a more aggressive phenotype, suggesting that aberrant activity of transcriptional regulators collect input information to promote tumor initiation and progression. Therefore, expression and dysfunction of transcription factors and co-factors may gain relevance for diagnostics and therapy of HCC.
Collapse
|
9
|
Wang YY, Liu J, Zheng Q, Ran ZH, Salomé N, Vogel M, Rommelaere J, Xiao SD, Wang Z. Effect of the parvovirus H-1 non-structural protein NS1 on the tumorigenicity of human gastric cancer cells. J Dig Dis 2012; 13:366-73. [PMID: 22713086 DOI: 10.1111/j.1751-2980.2012.00601.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate the in vivo oncosuppressive effect of the non-structural protein NS1 of parvovirus H-1 on human gastric cancer cell lines. METHODS Recombinant plasmid pcDNA3.1-NS1 containing the complete NS1 gene of parvovirus H-1 was constructed and characterized by restriction enzyme digestion and sequence analysis. The human gastric cancer cell lines MKN28, SGC7901 and MKN45 were stably transfected with empty or recombinant plasmids. NS1 gene transcription and protein expression in the latter transfectants were verified by reverse transcriptase polymerase chain reaction and Western blot, respectively. The oncosuppressive effect of the parvoviral protein NS1 on the gastric cancer cell lines was tested by comparing the tumorigenicity of empty and recombinant vector-transfected cells in nude mice. RESULTS Well differentiated gastric cancer cells (MKN28) transfected with either empty plasmid or pcDNA3.1-NS1 were tumorigenic in nude mice. Moderately (SGC7901) and poorly (MKN45) differentiated gastric cancer cells transfected with empty plasmid were also tumorigenic, but no tumor resulted from the injection when they were transfected with pcDNA3.1-NS1. This NS1-associated suppression of SGC7901 and MKN45 tumors correlated with the decreased percentage of CD44 positive cells. CONCLUSIONS NS1 expression in poorly differentiated gastric cancer cells prevents them from forming tumors, perhaps by impairing the stem-like phenotype. The parvoviral NS1 protein warrants further investigation for its therapeutic potential against cancer.
Collapse
Affiliation(s)
- Yuan Yuan Wang
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, China
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Lott JB. Oncolytic viruses: a new paradigm for treatment of head and neck cancer. Oral Surg Oral Med Oral Pathol Oral Radiol 2012; 113:155-60. [DOI: 10.1016/j.tripleo.2011.05.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 05/12/2011] [Indexed: 10/17/2022]
|
11
|
Longo SL, Padalino DJ, McGillis S, Petersen K, Schirok H, Politz O, Canute GW, Post DE. Bay846, a new irreversible small molecule inhibitor of EGFR and Her2, is highly effective against malignant brain tumor models. Invest New Drugs 2011; 30:2161-72. [PMID: 22203214 DOI: 10.1007/s10637-011-9784-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 12/09/2011] [Indexed: 12/22/2022]
Abstract
The epidermal growth factor receptor (EGFR) pathway is aberrantly activated in tumors and plays a key role in promoting tumor growth. Small molecule inhibitors which bind reversibly to EGFR have demonstrated limited clinical activity. Thus, there is a continued need to develop novel EGFR inhibitors with improved anti-tumor activity. Bay846 is a newly developed small molecule inhibitor that binds irreversibly to the tyrosine kinase domains of EGFR and Her2. The in vitro and in vivo efficacy of Bay846 was tested using a panel of nine human malignant brain tumor (glioma) models. Lapatinib, a reversible inhibitor of EGFR and Her2, was included for comparison. Six glioma cell lines were sensitive to Bay846 treatment. Bay846 strongly suppressed tumor cell growth in vitro by inducing cell lysis/death rather than cell cycle arrest. Consistent with this, Bay846 had potent anti-tumor activity which led to regressions in tumor size. The active, phosphorylated form of EGFR was reduced by Bay846 treatment in vitro and in tumors. Importantly, the efficacy of Bay846 was significantly greater than lapatinib in all assays. Bay846-sensitivity was associated with expression of a wild-type PTEN in conjunction with high levels of an oncogenic EGFR variant (A289V or EGFRvIII). These studies demonstrate that targeting the EGFR pathway with the irreversible inhibitor Bay846 has great potential to increase the efficacy of this cancer therapy.
Collapse
Affiliation(s)
- Sharon L Longo
- Department of Neurosurgery, State University of New York (SUNY), Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Longo SL, Griffith C, Glass A, Shillitoe EJ, Post DE. Development of an oncolytic herpes simplex virus using a tumor-specific HIF-responsive promoter. Cancer Gene Ther 2010; 18:123-34. [PMID: 20930860 PMCID: PMC3021095 DOI: 10.1038/cgt.2010.62] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We exploited the differential activation of hypoxia-inducible factor (HIF)-dependent gene expression in tumors versus normal tissue for the design of a targeted oncolytic Herpes simplex virus type-1 (HSV-1). A gene that is essential for viral replication, ICP4, was placed under the regulation of a HIF-responsive promoter and then introduced into the thymidine kinase locus (UL23) of HSV d120 which contains partial deletions in the two endogenous ICP4 genes. Recombinant HIF-HSV were isolated and their derivation from d120 was verified by expression of a truncated, nonfunctional form of ICP4 protein. Disruption of the UL23 locus was confirmed by loss of thymidine kinase expression and resistance to acyclovir. Unexpectedly, HIF-HSV expressed ICP4 and induced tumor cell lysis at similar levels under normoxia and hypoxia. The lack of HIF-dependent ICP4 transgene expression by HIF-HSV was due to two factors that have not previously been reported- reversion of the ICP4 gene region to its wild-type configuration and increased HIF-transcriptional activity under normoxia when cells were infected with any strain of HSV-1. The findings that an oncolytic HSV-1 is genetically unstable and can activate a tumor-related promoter in a non-specific manner have important implications for any proposed use of this virus in cancer therapy.
Collapse
Affiliation(s)
- S L Longo
- Department of Neurosurgery, State University of New York (SUNY), Upstate Medical University, Syracuse, NY, USA
| | | | | | | | | |
Collapse
|