1
|
de la Fuente IF, Sawant SS, Tolentino MQ, Corrigan PM, Rouge JL. Viral Mimicry as a Design Template for Nucleic Acid Nanocarriers. Front Chem 2021; 9:613209. [PMID: 33777893 PMCID: PMC7987652 DOI: 10.3389/fchem.2021.613209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022] Open
Abstract
Therapeutic nucleic acids hold immense potential in combating undruggable, gene-based diseases owing to their high programmability and relative ease of synthesis. While the delivery of this class of therapeutics has successfully entered the clinical setting, extrahepatic targeting, endosomal escape efficiency, and subcellular localization. On the other hand, viruses serve as natural carriers of nucleic acids and have acquired a plethora of structures and mechanisms that confer remarkable transfection efficiency. Thus, understanding the structure and mechanism of viruses can guide the design of synthetic nucleic acid vectors. This review revisits relevant structural and mechanistic features of viruses as design considerations for efficient nucleic acid delivery systems. This article explores how viral ligand display and a metastable structure are central to the molecular mechanisms of attachment, entry, and viral genome release. For comparison, accounted for are details on the design and intracellular fate of existing nucleic acid carriers and nanostructures that share similar and essential features to viruses. The review, thus, highlights unifying themes of viruses and nucleic acid delivery systems such as genome protection, target specificity, and controlled release. Sophisticated viral mechanisms that are yet to be exploited in oligonucleotide delivery are also identified as they could further the development of next-generation nonviral nucleic acid vectors.
Collapse
Affiliation(s)
| | | | | | | | - Jessica L. Rouge
- Department of Chemistry, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
2
|
Wang T, Zhang J, Hou T, Yin X, Zhang N. Selective targeting of tumor cells and tumor associated macrophages separately by twin-like core-shell nanoparticles for enhanced tumor-localized chemoimmunotherapy. NANOSCALE 2019; 11:13934-13946. [PMID: 31305839 DOI: 10.1039/c9nr03374b] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Tumor associated macrophage (TAM)-based immunotherapy has been presented as a promising strategy in cancer therapy. The combination of TAM-based immunotherapy with sorafenib (SF) could be conceivably quite more effective in hepatocellular carcinoma (HCC) treatment. A co-delivery system was superior in improving the co-accumulation of two drugs in tumor tissues for chemoimmunotherapy, while in the case of selective targeting of separated cells such as tumor cells and immune cells, a novel targeted co-delivery strategy was badly required. In this study, twin-like core-shell nanoparticles (TCN) were developed for synchronous biodistribution and separated cell targeting delivery of SF and TAM re-polarization agents IMD-0354 to cancer cells and TAM to enhance tumor-localized chemoimmunotherapy, respectively. First of all, SF loaded cationic lipid-based nanoparticles (SF-CLN) and mannose-modified IMD-0354 loaded cationic lipid-based nanoparticles (M-IMD-CLN) were prepared, respectively. SF on the surface of SF-CLN and mannose on the M-IMD-CLN were regarded as targeting ligands for selective targeting delivery of SF-CLN and M-IMD-CLN to cancer cells and TAM separately. Then, pH-responsive charge reversal polymer O-carboxymethyl-chitosan (CMCS) was coated on the SF-CLN and M-IMD-CLN to obtain twin-like CMCS/SF-CLN and CMCS/M-IMD-CLN, respectively. The results of cellular uptake assay on Hepa1-6 cells and RAW 264.7 cells in vitro, respectively, as well as the results of tumor tissue distribution of SF and IMD-0354 in vivo suggested that CMCS/SF-CLN and CMCS/M-IMD-CLN exhibited similar properties in vitro and synchronous biodistribution in vivo, and were efficient at separated cell targeting delivery. What's more, the results of antitumor efficiency in vivo and phenotype analysis of TAM in tumor tissues proved that CMCS/SF-CLN and CMCS/M-IMD-CLN exhibited superior synergistic antitumor efficacy and M2-type TAM polarization ability compared with SF treatment in Hepa1-6 tumor bearing mice. Consequently, TCN which was the combination of co-administration and nano-drug delivery systems has great potential to be used in tumor-localized chemoimmunotherapy in clinics.
Collapse
Affiliation(s)
- Tianqi Wang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province 250012, People's Republic of China.
| | - Jing Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province 250012, People's Republic of China.
| | - Teng Hou
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province 250012, People's Republic of China.
| | - Xiaolan Yin
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province 250012, People's Republic of China.
| | - Na Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province 250012, People's Republic of China.
| |
Collapse
|
3
|
Taechalertpaisarn J, Lyu RL, Arancillo M, Lin CM, Jiang Z, Perez LM, Ioerger TR, Burgess K. Design criteria for minimalist mimics of protein-protein interface segments. Org Biomol Chem 2019; 17:908-915. [PMID: 30629068 DOI: 10.1039/c8ob02901f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Small molecules that can interrupt or inhibit protein-protein interactions (PPIs) are valuable as probes in chemical biology and medicinal chemistry, but they are also notoriously difficult to develop. Design of non-peptidic small molecules that mimic amino acid side-chain interactions in PPIs ("minimalist mimics") is seen as a way to fast track discovery of PPI inhibitors. However, there has been little comment on general design criteria for minimalist mimics, even though such guidelines could steer construction of libraries to screen against multiple PPI targets. We hypothesized insight into general design criteria for minimalist mimics could be gained by comparing preferred conformations of typical minimalist mimic designs against side-chain orientations on a huge number of PPI interfaces. That thought led to this work which features nine minimalist mimic designs: one from the literature, and eight new "hypothetical" ones conceived by us. Simulated preferred conformers of these were systematically aligned with >240 000 PPI interfaces from the Protein Data Bank. Conclusions from those analyses did indeed reveal various design considerations that are discussed here. Surprisingly, this study also showed one of the minimalist mimic designs aligned on PPI interface segments more than 15 times more frequently than any other in the series (according to uniform standards described herein); reasons for this are also discussed.
Collapse
Affiliation(s)
- Jaru Taechalertpaisarn
- Department of Chemistry and Laboratory For Molecular Simulation, Texas A & M University, Box 30012, College Station, TX 77842-3012, USA.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Kamkaew A, Fu N, Cai W, Burgess K. Novel Small Molecule Probes for Metastatic Melanoma. ACS Med Chem Lett 2017; 8:179-184. [PMID: 28197308 PMCID: PMC5304293 DOI: 10.1021/acsmedchemlett.6b00368] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/29/2016] [Indexed: 12/19/2022] Open
Abstract
Actively targeting probe 1b, an unsymmetrical bivalent dipeptide mimic, selectively bound melanoma over healthy skin tissue in histological samples from patients and Sinclair swine. Modifications to 1b gave agents 2-4 that contain a near-IR aza-BODIPY fluor. Contrary to our expectations, symmetrical probe 3 gave the highest melanoma-to-healthy skin selectivity in histochemistry and experiments with live cells; this was surprising because 2, not 3, is unsymmetrical like the original lead 1. Optical imaging of 3 in a mouse melanoma model failed to show tumor accumulation in vivo, but the probe did selectively accumulate in the tumor (some in lung and less in the liver) as proven by analysis of the organs post mortem.
Collapse
Affiliation(s)
- Anyanee Kamkaew
- Department of Chemistry, Texas A & M University, Box 30012, College Station, Texas 77842, United States
- Department of Radiology, University of
Wisconsin−Madison, Madison, Wisconsin 53705, United States
| | - Nanyan Fu
- Department of Chemistry, Texas A & M University, Box 30012, College Station, Texas 77842, United States
- Department of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Weibo Cai
- Department of Radiology, University of
Wisconsin−Madison, Madison, Wisconsin 53705, United States
- University
of Wisconsin Carbone Cancer Center, University
of Wisconsin−Madison, Madison, Wisconsin 53705, United States
| | - Kevin Burgess
- Department of Chemistry, Texas A & M University, Box 30012, College Station, Texas 77842, United States
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Slominski A, Kim TK, Brożyna AA, Janjetovic Z, Brooks DLP, Schwab LP, Skobowiat C, Jóźwicki W, Seagroves TN. The role of melanogenesis in regulation of melanoma behavior: melanogenesis leads to stimulation of HIF-1α expression and HIF-dependent attendant pathways. Arch Biochem Biophys 2014; 563:79-93. [PMID: 24997364 PMCID: PMC4221528 DOI: 10.1016/j.abb.2014.06.030] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/30/2014] [Accepted: 06/24/2014] [Indexed: 12/20/2022]
Abstract
To study the effect of melanogenesis on HIF-1α expression and attendant pathways, we used stable human and hamster melanoma cell lines in which the amelanotic vs. melanotic phenotypes are dependent upon the concentration of melanogenesis precursors in the culture media. The induction of melanin pigmentation led to significant up-regulation of HIF-1α, but not HIF-2α, protein in melanized cells for both lines. Similar upregulation of nuclear HIF-1α was observed in excisions of advanced melanotic vs. amelanotic melanomas. In cultured cells, melanogenesis also significantly stimulated expression of classical HIF-1-dependent target genes involved in angiogenesis and cellular metabolism, including glucose metabolism and stimulation of activity of key enzymes in the glycolytic pathway. Several other stress related genes containing putative HRE consensus sites were also upregulated by melanogenesis, concurrently with modulation of expression of HIF-1-independent genes encoding for steroidogenic enzymes, cytokines and growth factors. Immunohistochemical studies using a large panel of pigmented lesions revealed that higher levels of HIF-1α and GLUT-1 were detected in advanced melanomas in comparison to melanocytic nevi or thin melanomas localized to the skin. However, the effects on overall or disease free survival in melanoma patients were modest or absent for GLUT-1 or for HIF-1α, respectively. In conclusion, induction of the melanogenic pathway leads to robust upregulation of HIF-1-dependent and independent pathways in cultured melanoma cells, suggesting a key role for melanogenesis in regulation of cellular metabolism.
Collapse
Affiliation(s)
- A Slominski
- Department of Pathology and Laboratory Medicine, University of Tennessee HSC, Memphis, TN, USA; Department of Medicine, Division of Rheumatology, University of Tennessee HSC, Memphis, TN, USA; Center for Cancer Research, University of Tennessee HSC, Memphis, TN, USA.
| | - T-K Kim
- Department of Pathology and Laboratory Medicine, University of Tennessee HSC, Memphis, TN, USA; Center for Cancer Research, University of Tennessee HSC, Memphis, TN, USA
| | - A A Brożyna
- Department of Tumor Pathology and Pathomorphology, Oncology Centre - Prof. Franciszek Łukaszczyk Memorial Hospital, The Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Z Janjetovic
- Department of Pathology and Laboratory Medicine, University of Tennessee HSC, Memphis, TN, USA; Center for Cancer Research, University of Tennessee HSC, Memphis, TN, USA
| | - D L P Brooks
- Department of Pathology and Laboratory Medicine, University of Tennessee HSC, Memphis, TN, USA; Center for Cancer Research, University of Tennessee HSC, Memphis, TN, USA
| | - L P Schwab
- Department of Pathology and Laboratory Medicine, University of Tennessee HSC, Memphis, TN, USA; Center for Cancer Research, University of Tennessee HSC, Memphis, TN, USA
| | - C Skobowiat
- Department of Pathology and Laboratory Medicine, University of Tennessee HSC, Memphis, TN, USA; Center for Cancer Research, University of Tennessee HSC, Memphis, TN, USA
| | - W Jóźwicki
- Department of Tumor Pathology and Pathomorphology, Oncology Centre - Prof. Franciszek Łukaszczyk Memorial Hospital, The Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - T N Seagroves
- Department of Pathology and Laboratory Medicine, University of Tennessee HSC, Memphis, TN, USA; Center for Cancer Research, University of Tennessee HSC, Memphis, TN, USA
| |
Collapse
|
6
|
Guo J, Evans JC, O’Driscoll CM. Delivering RNAi therapeutics with non-viral technology: a promising strategy for prostate cancer? Trends Mol Med 2013; 19:250-61. [DOI: 10.1016/j.molmed.2013.02.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/30/2013] [Accepted: 02/07/2013] [Indexed: 02/07/2023]
|
7
|
Yang F, Gou M, Deng H, Yi T, Zhong Q, Wei Y, Zhao X. Efficient inhibition of ovarian cancer by recombinant CXC chemokine ligand 10 delivered by novel biodegradable cationic heparin-polyethyleneimine nanogels. Oncol Rep 2012; 28:668-76. [PMID: 22684947 DOI: 10.3892/or.2012.1853] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 05/09/2012] [Indexed: 11/06/2022] Open
Abstract
Currently, great interest is focused on the anti-neoplastic effects of CXC chemokine ligand 10 (IP-10/CXCL10). IP-10 has shown significant antitumor and anti-metastatic properties via immunological, antiangiogenic and anti-neoplastic mechanisms. However, very few studies on the antitumor activity of IP-10 in human ovarian cancer have been reported. The use of polymeric nanoparticles to deliver functional genes intraperitoneally holds much promise as an effective therapy for ovarian cancer. In our study, a recombinant plasmid expressing IP-10 (pVITRO-IP-10) was constructed, and biodegradable cationic heparin-polyethyleneimine (HPEI) nanogels were prepared to deliver pVITRO-IP-10 into SKOV3 human ovarian cancer cells. Transfection efficiency was detected by expression profiling of green fluorescent protein. The expression of IP-10 was determined using RT-PCR and western blot analysis. In vitro, cell proliferation was evaluated by MTT assay. Apoptosis was examined by Hoechst33258/PI staining and flow cytometry assays. The effect on the inhibition of angiogenesis was evaluated by tube formation assay using human umbilical vein endothelial cells (HUVECs). Moreover, a SKOV3 intraperitoneal ovarian carcinomatosis model was established to investigate the antitumor activity of HPEI+pVITRO-IP-10 complexes in nude mice. Tumor weights were evaluated during the treatment course. Cell proliferation and apoptosis were evaluated by Ki-67 immunochemical staining and TUNEL assay, and the antiangiogenic effect of pVITRO-IP-10 was assessed by CD31 immunochemical staining and alginate-encapsulated tumor cell assay. pVITRO-IP-10 was efficiently transfected into SKOV3 cells by HPEI nanogels. Intraperitoneal administration of HPEI+pVITRO-IP-10 complexes led to effective growth inhibition of ovarian cancer, in which tumor weight decreased by ~69.92% in the treatment group compared with that in the empty vector control group. Meanwhile, decreased cell proliferation, increased tumor cell apoptosis and reduction in angiogenesis were observed in the HPEI+pVITRO-IP-10 group compared with those in the control groups. These results indicated that HPEI nanogel delivery of pVITRO-IP-10 may be of value in the treatment against human ovarian cancer.
Collapse
Affiliation(s)
- Fan Yang
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, Chengdu 610041, Sichuan, PR China
| | | | | | | | | | | | | |
Collapse
|
8
|
Reversible masking using low-molecular-weight neutral lipids to achieve optimal-targeted delivery. JOURNAL OF DRUG DELIVERY 2012; 2012:173465. [PMID: 22655199 PMCID: PMC3359711 DOI: 10.1155/2012/173465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 02/09/2012] [Accepted: 02/27/2012] [Indexed: 12/28/2022]
Abstract
Intravenous injection of therapeutics is required to effectively treat or cure metastatic cancer, certain cardiovascular diseases, and other acquired or inherited diseases. Using this route of delivery allows potential uptake in all disease targets that are accessed by the bloodstream. However, normal tissues and organs also have the potential for uptake of therapeutic agents. Therefore, investigators have used targeted delivery to attempt delivery solely to the target cells; however, use of ligands on the surface of delivery vehicles to target specific cell surface receptors is not sufficient to avoid nonspecific uptake. PEGylation has been used for decades to try to avoid nonspecific uptake but suffers from many problems known as “The PEGylation Dilemma.” We have solved this dilemma by replacing PEGylation with reversible masking using low-molecular-weight neutral lipids in order to achieve optimal-targeted delivery solely to target cells. Our paper will focus on this topic.
Collapse
|
9
|
Systemic delivery of therapeutic small interfering RNA using a pH-triggered amphiphilic poly-l-lysine nanocarrier to suppress prostate cancer growth in mice. Eur J Pharm Sci 2012; 45:521-32. [DOI: 10.1016/j.ejps.2011.11.024] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 11/17/2011] [Accepted: 11/28/2011] [Indexed: 11/19/2022]
|
10
|
Simmons O, Maples PB, Senzer N, Nemunaitis J. Ewing's Sarcoma: Development of RNA Interference-Based Therapy for Advanced Disease. ISRN ONCOLOGY 2012; 2012:247657. [PMID: 22523703 PMCID: PMC3317005 DOI: 10.5402/2012/247657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 12/04/2011] [Indexed: 12/12/2022]
Abstract
Ewing's sarcoma tumors are associated with chromosomal translocation between the EWS gene and the ETS transcription factor gene. These unique target sequences provide opportunity for RNA interference(i)-based therapy. A summary of RNAi mechanism and therapeutically designed products including siRNA, shRNA and bi-shRNA are described. Comparison is made between each of these approaches. Systemic RNAi-based therapy, however, requires protected delivery to the Ewing's sarcoma tumor site for activity. Delivery systems which have been most effective in preclinical and clinical testing are reviewed, followed by preclinical assessment of various silencing strategies with demonstration of effectiveness to EWS/FLI-1 target sequences. It is concluded that RNAi-based therapeutics may have testable and achievable activity in management of Ewing's sarcoma.
Collapse
Affiliation(s)
| | | | - Neil Senzer
- Gradalis, Inc., Dallas, TX 75201, USA
- Mary Crowley Cancer Research Centers, Dallas, TX 75201, USA
- Texas Oncology, PA, Dallas, TX 75251, USA
- Medical City Dallas Hospital, Dallas, TX 75230, USA
| | - John Nemunaitis
- Gradalis, Inc., Dallas, TX 75201, USA
- Mary Crowley Cancer Research Centers, Dallas, TX 75201, USA
- Texas Oncology, PA, Dallas, TX 75251, USA
- Medical City Dallas Hospital, Dallas, TX 75230, USA
| |
Collapse
|
11
|
Non-viral gene therapy for neurological diseases, with an emphasis on targeted gene delivery. J Control Release 2012; 157:183-9. [DOI: 10.1016/j.jconrel.2011.08.026] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 08/08/2011] [Indexed: 01/16/2023]
|
12
|
Tumor-Endothelial Cell Three-dimensional Spheroids: New Aspects to Enhance Radiation and Drug Therapeutics. Transl Oncol 2011; 4:365-76. [PMID: 22191001 DOI: 10.1593/tlo.11187] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 08/04/2011] [Accepted: 08/16/2011] [Indexed: 12/31/2022] Open
Abstract
Classic cancer research for several decades has focused on understanding the biology of tumor cells in vitro. However, extending these findings to in vivo settings has been impeded owing to limited insights on the impact of microenvironment on tumor cells. We hypothesized that tumor cell biology and treatment response would be more informative when done in the presence of stromal components, like endothelial cells, which exist in the tumor microenvironment. To that end, we have developed a system to grow three-dimensional cultures of GFP-4T1 mouse mammary tumor and 2H11 murine endothelial cells in hanging drops of medium in vitro. The presence of 2H11 endothelial cells in these three-dimensional cocultures was found to sensitize 4T1-GFP tumor cells to chemotherapy (Taxol) and, at the same time, protect cells from ionizing radiation. These spheroidal cultures can also be implanted into the dorsal skinfold window chamber of mice for fluorescence imaging of vascularization and disease progression/treatment response. We observed rapid neovascularization of the tumor-endothelial spheroids in comparison to tumor spheroids grown in nude mice. Molecular analysis revealed pronounced up-regulation of several proangiogenic factors in the tumor tissue derived from the tumor-endothelial spheroids compared with tumor-only spheroids. Furthermore, the rate of tumor growth from tumor-endothelial spheroids in mice was faster than the tumor cell-only spheroids, resulting in greater metastasis to the lung. This three-dimensional coculture model presents an improved way to investigate more pertinent aspects of the therapeutic potential for radiation and/or chemotherapy alone and in combination with antiangiogenic agents.
Collapse
|
13
|
Abstract
Since its discovery in 1998, RNA interference (RNAi) has revolutionized basic and clinical research. Small RNAs, including small interfering RNA (siRNA), short hairpin RNA (shRNA) and microRNA (miRNA), mediate RNAi effects through either cleavage-dependent or cleavage-independent RNA inducible silencing complex (RISC) effector processes. As a result of its efficacy and potential, RNAi has been elevated to the status of "blockbuster therapeutic" alongside recombinant protein and monoclonal antibody. RNAi has already contributed to our understanding of neoplasia and has great promise for anti-cancer therapeutics, particularly so for personalized cancer therapy. Despite this potential, several hurdles have to be overcome for successful development of RNAi-based pharmaceuticals. This review will discuss the potential for, challenges to, and the current status of RNAi-based cancer therapeutics.
Collapse
|
14
|
Durham-Lee JC, Mokkapati VUL, Johnson KM, Nesic O. Amiloride improves locomotor recovery after spinal cord injury. J Neurotrauma 2011; 28:1319-26. [PMID: 21534729 PMCID: PMC3136742 DOI: 10.1089/neu.2011.1921] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Amiloride is a drug approved by the United States Food and Drug Administration, which has shown neuroprotective effects in different neuropathological conditions, including brain injury or brain ischemia, but has not been tested in spinal cord injury (SCI). We tested amiloride's therapeutic potential in a clinically relevant rat model of contusion SCI inflicted at the thoracic segment T10. Rats receiving daily administration of amiloride from 24 h to 35 days after SCI exhibited a significant improvement in hindlimb locomotor ability at 21, 28, and 35 days after injury, when compared to vehicle-treated SCI rats. Rats receiving amiloride treatment also exhibited a significant increase in myelin oligodendrocyte glycoprotein (MOG) levels 35 days after SCI at the site of injury (T10) when compared to vehicle-treated controls, which indicated a partial reverse in the decrease of MOG observed with injury. Our data indicate that higher levels of MOG correlate with improved locomotor recovery after SCI, and that this may explain the beneficial effects of amiloride after SCI. Given that amiloride treatment after SCI caused a significant preservation of myelin levels, and improved locomotor recovery, it should be considered as a possible therapeutic intervention after SCI.
Collapse
Affiliation(s)
- Julieann C. Durham-Lee
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
| | - Venkata Usha L. Mokkapati
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
| | - Kathia M. Johnson
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas
| | - Olivera Nesic
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
15
|
Guo J, Bourre L, Soden DM, O'Sullivan GC, O'Driscoll C. Can non-viral technologies knockdown the barriers to siRNA delivery and achieve the next generation of cancer therapeutics? Biotechnol Adv 2011; 29:402-17. [DOI: 10.1016/j.biotechadv.2011.03.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 03/08/2011] [Accepted: 03/13/2011] [Indexed: 12/22/2022]
|
16
|
Phadke AP, Jay CM, Wang Z, Chen S, Liu S, Haddock C, Kumar P, Pappen BO, Rao DD, Templeton NS, Daniels EQ, Webb C, Monsma D, Scott S, Dylewski D, Frieboes HB, Brunicardi FC, Senzer N, Maples PB, Nemunaitis J, Tong AW. In vivo safety and antitumor efficacy of bifunctional small hairpin RNAs specific for the human Stathmin 1 oncoprotein. DNA Cell Biol 2011; 30:715-26. [PMID: 21612405 DOI: 10.1089/dna.2011.1240] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Bifunctional small hairpin RNAs (bi-shRNAs) are functional miRNA/siRNA composites that are optimized for posttranscriptional gene silencing through concurrent mRNA cleavage-dependent and -independent mechanisms (Rao et al., 2010 ). We have generated a novel bi-shRNA using the miR30 scaffold that is highly effective for knockdown of human stathmin (STMN1) mRNA. STMN1 overexpression well documented in human solid cancers correlates with their poor prognosis. Transfection with the bi-shSTMN1-encoding expression plasmid (pbi-shSTMN1) markedly reduced CCL-247 human colorectal cancer and SK-Mel-28 melanoma cell growth in vitro (Rao et al., 2010 ). We now examine in vivo the antitumor efficacy of this RNA interference-based approach with human tumor xenografted athymic mice. A single intratumoral (IT) injection of pbi-shSTMN1 (8 μg) reduced CCL-247 tumor xenograft growth by 44% at 7 days when delivered as a 1,2-dioleoyl-3-trimethyl-ammoniopropane:cholesterol liposomal complex. Extended growth reductions (57% at day 15; p < 0.05) were achieved with three daily treatments of the same construct. STMN1 protein reduction was confirmed by immunoblot analysis. IT treatments with pbi-shSTMN1 similarly inhibited the growth of tumorgrafts derived from low-passage primary melanoma (≥70% reduction for 2 weeks) and abrogated osteosarcoma tumorgraft growth, with the mature bi-shRNA effector molecule detectable for up to 16 days after last injection. Antitumor efficacy was evident for up to 25 days posttreatment in the melanoma tumorgraft model. The maximum tolerated dose by IT injection of >92 μg (Human equivalent dose [HED] of >0.3 mg/kg) in CCL-247 tumor xenograft-bearing athymic mice was ∼10-fold higher than the extrapolated IC(50) of 9 μg (HED of 0.03 mg/kg). Healthy, immunocompetent rats were used as biorelevant models for systemic safety assessments. The observed maximum tolerated dose of <100 μg for intravenously injected pbi-shSTMN1 (mouse equivalent of <26.5 μg; HED of <0.09 mg/kg) confirmed systemic safety of the therapeutic dose, hence supporting early-phase assessments of clinical safety and preliminary efficacy.
Collapse
|
17
|
Fillat C, Jose A, Bofill-Deros X, Mato-Berciano A, Maliandi MV, Sobrevals L. Pancreatic cancer gene therapy: from molecular targets to delivery systems. Cancers (Basel) 2011; 3:368-95. [PMID: 24212620 PMCID: PMC3756366 DOI: 10.3390/cancers3010368] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 01/05/2011] [Accepted: 01/13/2011] [Indexed: 02/08/2023] Open
Abstract
The continuous identification of molecular changes deregulating critical pathways in pancreatic tumor cells provides us with a large number of novel candidates to engineer gene-targeted approaches for pancreatic cancer treatment. Targets—both protein coding and non-coding—are being exploited in gene therapy to influence the deregulated pathways to facilitate cytotoxicity, enhance the immune response or sensitize to current treatments. Delivery vehicles based on viral or non-viral systems as well as cellular vectors with tumor homing characteristics are a critical part of the design of gene therapy strategies. The different behavior of tumoral versus non-tumoral cells inspires vector engineering with the generation of tumor selective products that can prevent potential toxic-associated effects. In the current review, a detailed analysis of the different targets, the delivery vectors, the preclinical approaches and a descriptive update on the conducted clinical trials are presented. Moreover, future possibilities in pancreatic cancer treatment by gene therapy strategies are discussed.
Collapse
Affiliation(s)
- Cristina Fillat
- Programa Gens i Malaltia, Centre de Regulació Genòmica-CRG, UPF, Parc de Recerca Biomèdica de Barcelona-PRBB and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|