1
|
Lo Cicero S, Castelli G, Blaconà G, Bruno SM, Sette G, Pigliucci R, Villella VR, Esposito S, Zollo I, Spadaro F, Maria RD, Biffoni M, Cimino G, Amato F, Lucarelli M, Eramo A. L1077P CFTR pathogenic variant function rescue by Elexacaftor-Tezacaftor-Ivacaftor in cystic fibrosis patient-derived air-liquid interface (ALI) cultures and organoids: in vitro guided personalized therapy of non-F508del patients. Respir Res 2023; 24:217. [PMID: 37674160 PMCID: PMC10483775 DOI: 10.1186/s12931-023-02516-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 08/17/2023] [Indexed: 09/08/2023] Open
Abstract
Cystic fibrosis (CF) is caused by defects of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CFTR-modulating drugs may overcome specific defects, such as the case of Trikafta, which is a clinically approved triple combination of Elexacaftor, Tezacaftor and Ivacaftor (ETI) that exhibited a strong ability to rescue the function of the most frequent F508del pathogenic variant even in genotypes with the mutated allele in single copy. Nevertheless, most rare genotypes lacking the F508del allele are still not eligible for targeted therapies. Via the innovative approach of using nasal conditionally reprogrammed cell (CRC) cell-based models that mimic patient disease in vitro, which are obtainable from each patient due to the 100% efficiency of the cell culture establishment, we theratyped orphan CFTR mutation L1077P. Protein studies, Forskolin-induced organoid swelling, and Ussing chamber assays congruently proved the L1077P variant function rescue by ETI. Notably, this rescue takes place even in the context of a single-copy L1077P allele, which appears to enhance its expression. Thus, the possibility of single-allele treatment also arises for rare genotypes, with an allele-specific modulation as part of the mechanism. Of note, besides providing indication of drug efficacy with respect to specific CFTR pathogenic variants or genotypes, this approach allows the evaluation of the response of single-patient cells within their genetic background. In this view, our studies support in vitro guided personalized CF therapies also for rare patients who are nearly excluded from clinical trials.
Collapse
Affiliation(s)
- Stefania Lo Cicero
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Germana Castelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanna Blaconà
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Sabina Maria Bruno
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Giovanni Sette
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Riccardo Pigliucci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Valeria Rachela Villella
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
- CEINGE-Biotecnologie Avanzate S.c.a.r.l, Naples, Italy
| | - Speranza Esposito
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
- CEINGE-Biotecnologie Avanzate S.c.a.r.l, Naples, Italy
| | - Immacolata Zollo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
- CEINGE-Biotecnologie Avanzate S.c.a.r.l, Naples, Italy
| | - Francesca Spadaro
- Confocal Microscopy Unit, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Ruggero De Maria
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario 'A. Gemelli'-IRCCS, Rome, Italy
| | - Mauro Biffoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppe Cimino
- Cystic Fibrosis Reference Center of Lazio Region, AOU Policlinico Umberto I, Rome, Italy
| | - Felice Amato
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
- CEINGE-Biotecnologie Avanzate S.c.a.r.l, Naples, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
- Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Adriana Eramo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
2
|
Lee NCO, Petrov NS, Larionov V, Kouprina N. Assembly of Multiple Full-Size Genes or Genomic DNA Fragments on Human Artificial Chromosomes Using the Iterative Integration System. Curr Protoc 2021; 1:e316. [PMID: 34919348 PMCID: PMC8730363 DOI: 10.1002/cpz1.316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Human artificial chromosomes (HACs) are gene delivery vectors that have been used for decades for gene functional studies. HACs have several advantages over viral‐based gene transfer systems, including stable episomal maintenance in a single copy in the cell and the ability to carry up to megabase‐sized genomic DNA segments. We have previously developed the alphoidtetO‐HAC, which has a single gene acceptor loxP site that allows insertion of an individual gene of interest using Chinese hamster ovary (CHO) hybrid cells. The HAC, along with a DNA segment of interest, can then be transferred from donor CHO cells to various recipient cells of interest via microcell‐mediated chromosome transfer (MMCT). Here, we detail a protocol for loading multiple genomic DNA segments or genes into the alphoidtetO‐HAC vector using an iterative integration system (IIS) that utilizes recombinases Cre, ΦC31, and ΦBT. This IIS‐alphoidtetO‐HAC can be used for either serially assembling genomic loci or fragments of a large gene, or for inserting multiple genes into the same artificial chromosome. The insertions are executed iteratively, whereby each round results in the insertion of a new DNA segment of interest. This is accompanied by changes of expression of marker fluorescent proteins, which simplifies screening of correct clones, and changes of selection and counterselection markers, which constitutes an error‐proofing mechanism that removes mis‐incorporated DNA segments. In addition, the IIS‐alphoidtetO‐HAC carrying the genes can be eliminated from the cells, offering the possibility to compare the phenotypes of human cells with and without functional copies of the genes of interest. The resulting HAC molecules may be used to investigate biomedically relevant pathways or the regulation of multiple genes, and to potentially engineer synthetic chromosomes with a specific set of genes of interest. The IIS‐alphoidtetO‐HAC system is expected to be beneficial in creating multiple‐gene humanized models with the purpose of understanding complex multi‐gene genetic disorders. Published 2021. This article is a U.S. Government work and is in the public domain in the USA. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Integration of the first DNA segment of interest into the IIS‐alphoidteto‐HAC Basic Protocol 2: Integration of a second DNA segment of interest into the IIS‐alphoidteto‐HAC Basic Protocol 3: Integration of a third DNA segment of interest into the IIS‐alphoidteto‐HAC Support Protocol: Fluorescence in situ hybridization analysis for the circular IIS‐alphoidtetO‐HAC
Collapse
Affiliation(s)
- Nicholas C O Lee
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Nikolai S Petrov
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
3
|
Sette G, Lo Cicero S, Blaconà G, Pierandrei S, Bruno SM, Salvati V, Castelli G, Falchi M, Fabrizzi B, Cimino G, De Maria R, Biffoni M, Eramo A, Lucarelli M. Theratyping cystic fibrosis in vitro in ALI-culture and organoid models generated from patient-derived nasal epithelial Conditionally Reprogrammed Stem Cells. Eur Respir J 2021; 58:13993003.00908-2021. [PMID: 34413153 PMCID: PMC8675295 DOI: 10.1183/13993003.00908-2021] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/28/2021] [Indexed: 11/05/2022]
Abstract
QUESTION Cystic Fibrosis (CF) is due to pathogenic variants in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene. Recent improvement enabled pharmacologic therapy aiming at restoring mutated CFTR expression and function. CFTR "modulators" have revolutionised the CF therapeutic landscape, particularly the last approved Trikafta. This drug-combination is indicated by FDA and very recently by EMA for genotypes carrying at least one copy of CFTR with F508del pathogenic variant. However, several genotypes, are not eligible for Trikafta treatment, yet. MATERIALS/PATIENTS AND METHODS We exploited an innovative cellular approach allowing highly efficient in vitro-expansion of airway epithelial stem cells (AESC) through conditional reprogramming (CRC) from nasal brushing of CF patients. This approach, coupled to development of AESC-derived personalised disease models, as organoids and air liquid interface (ALI) cultures, revealed highly suitable for CFTR pharmacological-testing. RESULTS AND ANSWER TO THE QUESTION We fully validated the experimental models and implemented the CFTR functional assays and biochemical CFTR protein characterisation, that allowed to evaluate the efficacy of clinically available modulators in restoring CFTR maturation and function of each patient-derived "avatar" (theratyping). F508del homozygous genotypes, used as controls, confirmed the higher clinical activity of Trikafta in comparison with older modulators. Trikafta showed its efficacy also on three rare genotypes previously not eligible for modulators-treatment, opening the way to clinical translation. Finally, encouraging results for innovative drug combinations were also obtained.
Collapse
Affiliation(s)
- Giovanni Sette
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.,Co-first authors
| | - Stefania Lo Cicero
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.,Co-first authors
| | - Giovanna Blaconà
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Silvia Pierandrei
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Sabina Maria Bruno
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Valentina Salvati
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Germana Castelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Mario Falchi
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | - Benedetta Fabrizzi
- Cystic Fibrosis Care Center, Mother - Child Department, United Hospitals, Ancona, Italy
| | - Giuseppe Cimino
- Cystic Fibrosis Reference Center of Lazio Region, AOU Policlinico Umberto I, Rome, Italy
| | - Ruggero De Maria
- U.O.C. Medical Oncology, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario "A. Gemelli" - IRCCS, Rome, Italy
| | - Mauro Biffoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Adriana Eramo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy .,Co-last authors
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.,Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy.,Co-last authors
| |
Collapse
|
4
|
Pierandrei S, Truglio G, Ceci F, Del Porto P, Bruno SM, Castellani S, Conese M, Ascenzioni F, Lucarelli M. DNA Methylation Patterns Correlate with the Expression of SCNN1A, SCNN1B, and SCNN1G (Epithelial Sodium Channel, ENaC) Genes. Int J Mol Sci 2021; 22:ijms22073754. [PMID: 33916525 PMCID: PMC8038451 DOI: 10.3390/ijms22073754] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/12/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022] Open
Abstract
The interplay between the cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial sodium channel (ENaC) in respiratory epithelia has a crucial role in the pathogenesis of cystic fibrosis (CF). The comprehension of the mechanisms of transcriptional regulation of ENaC genes is pivotal to better detail the pathogenic mechanism and the genotype-phenotype relationship in CF, as well as to realize therapeutic approaches based on the transcriptional downregulation of ENaC genes. Since we aimed to study the epigenetic transcriptional control of ENaC genes, an assessment of their expression and DNA methylation patterns in different human cell lines, nasal brushing samples, and leucocytes was performed. The mRNA expression of CFTR and ENaC subunits α, β and γ (respectively SCNN1A, SCNN1B, and SCNN1G genes) was studied by real time PCR. DNA methylation of 5'-flanking region of SCNN1A, SCNN1B, and SCNN1G genes was studied by HpaII/PCR. The levels of expression and DNA methylation of ENaC genes in the different cell lines, brushing samples, and leukocytes were very variable. The DNA regions studied of each ENaC gene showed different methylation patterns. A general inverse correlation between expression and DNA methylation was evidenced. Leukocytes showed very low expression of all the 3 ENaC genes corresponding to a DNA methylated pattern. The SCNN1A gene resulted to be the most expressed in some cell lines that, accordingly, showed a completely demethylated pattern. Coherently, a heavy and moderate methylated pattern of, respectively, SCNN1B and SCNN1G genes corresponded to low levels of expression. As exceptions, we found that dexamethasone treatment appeared to stimulate the expression of all the 3 ENaC genes, without an evident modulation of the DNA methylation pattern, and that in nasal brushing a considerable expression of all the 3 ENaC genes were found despite an apparent methylated pattern. At least part of the expression modulation of ENaC genes seems to depend on the DNA methylation patterns of specific DNA regions. This points to epigenetics as a controlling mechanism of ENaC function and as a possible therapeutic approach for CF.
Collapse
Affiliation(s)
- Silvia Pierandrei
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Roma, Italy; (S.P.); (G.T.); (F.C.); (S.M.B.)
| | - Gessica Truglio
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Roma, Italy; (S.P.); (G.T.); (F.C.); (S.M.B.)
| | - Fabrizio Ceci
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Roma, Italy; (S.P.); (G.T.); (F.C.); (S.M.B.)
| | - Paola Del Porto
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Via dei Sardi 70, 00185 Roma, Italy;
| | - Sabina Maria Bruno
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Roma, Italy; (S.P.); (G.T.); (F.C.); (S.M.B.)
| | - Stefano Castellani
- Department of Biomedical Sciences and Human Oncology, University of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy;
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Via Napoli 121, 71122 Foggia, Italy;
| | - Fiorentina Ascenzioni
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Via dei Sardi 70, 00185 Roma, Italy;
- Correspondence: (F.A.); (M.L.)
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Roma, Italy; (S.P.); (G.T.); (F.C.); (S.M.B.)
- Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, Viale Regina Elena 291, 00161 Roma, Italy
- Correspondence: (F.A.); (M.L.)
| |
Collapse
|
5
|
Pierandrei S, Blaconà G, Fabrizzi B, Cimino G, Cirilli N, Caporelli N, Angeloni A, Cipolli M, Lucarelli M. Two novel and correlated CF-causing insertions in the (TG)mTn tract of the CFTR gene. PLoS One 2019; 14:e0222838. [PMID: 31593572 PMCID: PMC6782095 DOI: 10.1371/journal.pone.0222838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 08/06/2019] [Indexed: 02/05/2023] Open
Abstract
Two novel and related pathogenic variants of the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene were structurally and functionally characterized. These alterations have not been previously described in literature. Two patients with diagnosis of Cystic Fibrosis (CF) based on the presence of one mutated allele, p.Phe508del, pathological sweat test and clinical symptoms were studied. To complete the genotypes of both patients, an extensive genetic and functional analysis of the CFTR gene was performed. Extensive genetic characterization confirmed the presence of p.Phe508del pathogenic variant and revealed, in both patients, the presence of an insertion of part of intron 10 in intron 9 of the CFTR gene, within the (TG)m repeat, with a variable poly-T stretch. The molecular lesions resulted to be very similar in both patients, with only a difference in the number of T in the poly-T stretch. The functional characterization at RNA level revealed a complete anomalous splicing, without exon 10, from the allele with the insertion of both patients. Consequently, the alleles with the insertions are expected not to contribute to the formation of a functional CFTR protein. Molecular and functional features of these alterations are compatible with the definition of novel CF-causing variants of the CFTR gene. This also allowed the completion of the genetic characterization of both patients.
Collapse
Affiliation(s)
- Silvia Pierandrei
- Dept. of Mother-Child and Urologic Sciences, Sapienza University of Rome, Rome, Italy
| | - Giovanna Blaconà
- Dept. of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Benedetta Fabrizzi
- Cystic Fibrosis Care Center, Mother - Child Department, United Hospitals, Ancona, Italy
| | - Giuseppe Cimino
- Cystic Fibrosis Care Center, Umberto I Hospital, Rome, Italy
| | - Natalia Cirilli
- Cystic Fibrosis Care Center, Mother - Child Department, United Hospitals, Ancona, Italy
| | - Nicole Caporelli
- Cystic Fibrosis Care Center, Mother - Child Department, United Hospitals, Ancona, Italy
| | - Antonio Angeloni
- Dept. of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Marco Cipolli
- Cystic Fibrosis Care Center, Mother - Child Department, United Hospitals, Ancona, Italy
| | - Marco Lucarelli
- Dept. of Experimental Medicine, Sapienza University of Rome, Rome, Italy
- Pasteur Institute Cenci Bolognetti Foundation, Rome, Italy
- * E-mail:
| |
Collapse
|
6
|
Assembly and Functional Analysis of an S/MAR Based Episome with the Cystic Fibrosis Transmembrane Conductance Regulator Gene. Int J Mol Sci 2018; 19:ijms19041220. [PMID: 29673202 PMCID: PMC5979583 DOI: 10.3390/ijms19041220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 12/24/2022] Open
Abstract
Improving the efficacy of gene therapy vectors is still an important goal toward the development of safe and efficient gene therapy treatments. S/MAR (scaffold/matrix attached region)-based vectors are maintained extra-chromosomally in numerous cell types, which is similar to viral-based vectors. Additionally, when established as an episome, they show a very high mitotic stability. In the present study we tested the idea that addition of an S/MAR element to a CFTR (cystic fibrosis transmembrane conductance regulator) expression vector, may allow the establishment of a CFTR episome in bronchial epithelial cells. Starting from the observation that the S/MAR vector pEPI-EGFP (enhanced green fluorescence protein) is maintained as an episome in human bronchial epithelial cells, we assembled the CFTR vector pBQ-S/MAR. This vector, transfected in bronchial epithelial cells with mutated CFTR, supported long term wt CFTR expression and activity, which in turn positively impacted on the assembly of tight junctions in polarized epithelial cells. Additionally, the recovery of intact pBQ-S/MAR, but not the parental vector lacking the S/MAR element, from transfected cells after extensive proliferation, strongly suggested that pBQ-S/MAR was established as an episome. These results add a new element, the S/MAR, that can be considered to improve the persistence and safety of gene therapy vectors for cystic fibrosis pulmonary disease.
Collapse
|
7
|
Rapino D, Sabirzhanova I, Lopes-Pacheco M, Grover R, Guggino WB, Cebotaru L. Rescue of NBD2 mutants N1303K and S1235R of CFTR by small-molecule correctors and transcomplementation. PLoS One 2015; 10:e0119796. [PMID: 25799511 PMCID: PMC4370480 DOI: 10.1371/journal.pone.0119796] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 01/30/2015] [Indexed: 11/18/2022] Open
Abstract
Although, the most common Cystic Fibrosis mutation, ΔF508, in the cystic fibrosis transmembrane regulator. (CFTR), is located in nucleotide binding domain (NBD1), disease-causing mutations also occur in NBD2. To provide information on potential therapeutic strategies for mutations in NBD2, we studied, using a combination of biochemical approaches and newly created cell lines, two disease-causing NBD2 mutants, N1303K and S1235R. Surprisingly, neither was rescued by low temperature. Inhibition of proteasomes with MG132 or aggresomes with tubacin rescued the immature B and mature C bands of N1303K and S1235R, indicating that degradation occurs via proteasomes and aggresomes. We found no effect of the lysosome inhibitor E64. Thus, our results show that these NBD2 mutants are processing mutants with unique characteristics. Several known correctors developed to rescue ΔF508-CFTR, when applied either alone or in combination, significantly increased the maturation of bands B and C of both NBD 2 mutants. The best correction occurred with the combinations of C4 plus C18 or C3 plus C4. Co-transfection of truncated CFTR (∆27-264) into stably transfected cells was also able to rescue them. This demonstrates for the first time that transcomplementation with a truncated version of CFTR can rescue NBD2 mutants. Our results show that the N1303K mutation has a more profound effect on NBD2 processing than S1235R and that small-molecule correctors increase the maturation of bands B and C in NBD2 mutants. In addition, ∆27-264 was able to transcomplement both NDB2 mutants. We conclude that differences and similarities occur in the impact of mutations on NBD2 when compared to ΔF508-CFTR suggesting that individualized strategies may be needed to restore their function. Finally our results are important because they suggest that gene or corrector molecule therapies either alone or in combination individualized for NBD2 mutants may be beneficial for patients bearing N1303K or S1235R mutations.
Collapse
Affiliation(s)
- Daniele Rapino
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
- Department of Physiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Inna Sabirzhanova
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
- Department of Physiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Miquéias Lopes-Pacheco
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
- Department of Physiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Rahul Grover
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
- Department of Physiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - William B. Guggino
- Department of Physiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Liudmila Cebotaru
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: .
| |
Collapse
|
8
|
Reactive-oxygen-species-mediated P. aeruginosa killing is functional in human cystic fibrosis macrophages. PLoS One 2013; 8:e71717. [PMID: 23977124 PMCID: PMC3747231 DOI: 10.1371/journal.pone.0071717] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 07/01/2013] [Indexed: 01/07/2023] Open
Abstract
Pseudomonas aeruginosa is the most common pathogen for chronic lung infection in cystic fibrosis (CF) patients. About 80% of adult CF patients have chronic P. aeruginosa infection, which accounts for much of the morbidity and most of the mortality. Both bacterial genetic adaptations and defective innate immune responses contribute to the bacteria persistence. It is well accepted that CF transmembrane conductance regulator (CFTR) dysfunction impairs the airways-epithelium-mediated lung defence; however, other innate immune cells also appear to be affected, such as neutrophils and macrophages, which thus contribute to this infectious pathology in the CF lung. In macrophages, the absence of CFTR has been linked to defective P. aeruginosa killing, increased pro-inflammatory cytokine secretion, and reduced reactive oxygen species (ROS) production. To learn more about macrophage dysfunction in CF patients, we investigated the generation of the oxidative burst and its impact on bacterial killing in CF macrophages isolated from peripheral blood or lung parenchyma of CF patients, after P. aeruginosa infection. Our data demonstrate that CF macrophages show an oxidative response of similar intensity to that of non-CF macrophages. Intracellular ROS are recognized as one of the earliest microbicidal mechanisms against engulfed pathogens that are activated by macrophages. Accordingly, NADPH inhibition resulted in a significant increase in the intracellular bacteria survival in CF and non-CF macrophages, both as monocyte-derived macrophages and as lung macrophages. These data strongly suggest that the contribution of ROS to P. aeruginosa killing is not affected by CFTR mutations.
Collapse
|
9
|
Conese M, Ascenzioni F, Boyd AC, Coutelle C, De Fino I, De Smedt S, Rejman J, Rosenecker J, Schindelhauer D, Scholte BJ. Gene and cell therapy for cystic fibrosis: from bench to bedside. J Cyst Fibros 2011; 10 Suppl 2:S114-28. [PMID: 21658631 DOI: 10.1016/s1569-1993(11)60017-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Clinical trials in cystic fibrosis (CF) patients established proof-of-principle for transfer of the wild-type cystic fibrosis transmembrane conductance regulator (CFTR) gene to airway epithelial cells. However, the limited efficacy of gene transfer vectors as well as extra- and intracellular barriers have prevented the development of a gene therapy-based treatment for CF. Here, we review the use of new viral and nonviral gene therapy vectors, as well as human artificial chromosomes, to overcome barriers to successful CFTR expression. Pre-clinical studies will surely benefit from novel animal models, such as CF pigs and ferrets. Prenatal gene therapy is a potential alternative to gene transfer to fully developed lungs. However, unresolved issues, including the possibility of adverse effects on pre- and postnatal development, the risk of initiating oncogenic or degenerative processes and germ line transmission require further investigation. Finally, we discuss the therapeutic potential of stem cells for CF lung disease.
Collapse
Affiliation(s)
- Massimo Conese
- Institute for the Experimental Treatment of Cystic Fibrosis, Milan, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Del Porto P, Cifani N, Guarnieri S, Di Domenico EG, Mariggiò MA, Spadaro F, Guglietta S, Anile M, Venuta F, Quattrucci S, Ascenzioni F. Dysfunctional CFTR alters the bactericidal activity of human macrophages against Pseudomonas aeruginosa. PLoS One 2011; 6:e19970. [PMID: 21625641 PMCID: PMC3097223 DOI: 10.1371/journal.pone.0019970] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 04/20/2011] [Indexed: 11/19/2022] Open
Abstract
Chronic inflammation of the lung, as a consequence of persistent bacterial infections by several opportunistic pathogens represents the main cause of mortality and morbidity in cystic fibrosis (CF) patients. Mechanisms leading to increased susceptibility to bacterial infections in CF are not completely known, although the involvement of cystic fibrosis transmembrane conductance regulator (CFTR) in microbicidal functions of macrophages is emerging. Tissue macrophages differentiate in situ from infiltrating monocytes, additionally, mature macrophages from different tissues, although having a number of common activities, exhibit variation in some molecular and cellular functions. In order to highlight possible intrinsic macrophage defects due to CFTR dysfunction, we have focused our attention on in vitro differentiated macrophages from human peripheral blood monocytes. Here we report on the contribution of CFTR in the bactericidal activity against Pseudomonas aeruginosa of monocyte derived human macrophages. At first, by real time PCR, immunofluorescence and patch clamp recordings we demonstrated that CFTR is expressed and is mainly localized to surface plasma membranes of human monocyte derived macrophages (MDM) where it acts as a cAMP-dependent chloride channel. Next, we evaluated the bactericidal activity of P. aeruginosa infected macrophages from healthy donors and CF patients by antibiotic protection assays. Our results demonstrate that control and CF macrophages do not differ in the phagocytic activity when infected with P. aeruginosa. Rather, although a reduction of intracellular live bacteria was detected in both non-CF and CF cells, the percentage of surviving bacteria was significantly higher in CF cells. These findings further support the role of CFTR in the fundamental functions of innate immune cells including eradication of bacterial infections by macrophages.
Collapse
Affiliation(s)
- Paola Del Porto
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|