1
|
Olsen TC, LaGuardia JS, Chen DR, Lebens RS, Huang KX, Milek D, Noble M, Leckenby JI. Influencing factors and repair advancements in rodent models of peripheral nerve regeneration. Regen Med 2024; 19:561-577. [PMID: 39469920 PMCID: PMC11633413 DOI: 10.1080/17460751.2024.2405318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/12/2024] [Indexed: 10/30/2024] Open
Abstract
Peripheral nerve injuries lead to severe functional impairments, with rodent models essential for studying regeneration. This review examines key factors affecting outcomes. Age-related declines, like reduced nerve fiber density and impaired axonal transport of vesicles, hinder recovery. Hormonal differences influence regeneration, with BDNF/trkB critical for testosterone and nerve growth factor for estrogen signaling pathways. Species and strain selection impact outcomes, with C57BL/6 mice and Sprague-Dawley rats exhibiting varying regenerative capacities. Injury models - crush for early regeneration, chronic constriction for neuropathic pain, stretch for traumatic elongation and transection for severe lacerations - provide insights into clinically relevant scenarios. Repair techniques, such as nerve grafts and conduits, show that autografts are the gold standard for gaps over 3 cm, with success influenced by graft type and diameter. Time course analysis highlights crucial early degeneration and regeneration phases within the first month, with functional recovery stabilizing by three to six months. Early intervention optimizes regeneration by reducing scar tissue formation, while later interventions focus on remyelination. Understanding these factors is vital for designing robust preclinical studies and translating research into effective clinical treatments for peripheral nerve injuries.
Collapse
Affiliation(s)
- Timothy C Olsen
- Division of Plastic & Reconstructive Surgery, University of Rochester Medical Center, 601 Elmwood Avenue Box 661Rochester, NY14642, USA
| | - Jonnby S LaGuardia
- Division of Plastic & Reconstructive Surgery, University of Rochester Medical Center, 601 Elmwood Avenue Box 661Rochester, NY14642, USA
| | - David R Chen
- University of California, 410 Charles E. Young Drive, East Los Angeles, CA90095, USA
| | - Ryan S Lebens
- University of California, 410 Charles E. Young Drive, East Los Angeles, CA90095, USA
| | - Kelly X Huang
- University of California, 410 Charles E. Young Drive, East Los Angeles, CA90095, USA
| | - David Milek
- Division of Plastic & Reconstructive Surgery, University of Rochester Medical Center, 601 Elmwood Avenue Box 661Rochester, NY14642, USA
| | - Mark Noble
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue Box 661Rochester, NY14642, USA
| | - Jonathan I Leckenby
- Division of Plastic & Reconstructive Surgery, University of Rochester Medical Center, 601 Elmwood Avenue Box 661Rochester, NY14642, USA
| |
Collapse
|
2
|
Oguri G, Ikegami R, Ugawa H, Katoh M, Obi S, Sakuma M, Takeda N, Kano Y, Toyoda S, Nakajima T. Muscle Atrophy and mRNA-miRNA Network Analysis of Vascular Endothelial Growth Factor (VEGF) in a Mouse Model of Denervation-Induced Disuse. Cureus 2024; 16:e68974. [PMID: 39385898 PMCID: PMC11462388 DOI: 10.7759/cureus.68974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Skeletal muscle atrophy is frequently caused by the disuse of muscles. It impacts quality of life, especially in aging populations and those with chronic diseases. Understanding the molecular mechanisms underlying muscle atrophy is crucial for developing effective therapies. OBJECTIVE To investigate the roles of vascular endothelial growth factor (VEGF) and various microRNAs (miRNAs) in muscle atrophy using a mouse model of denervation (DEN)-induced disuse, and to elucidate their interactions and regulatory functions through comprehensive network analysis. METHODS The right sciatic nerve of C57BL/6J mice (n=6) was excised to simulate DEN, with the left serving as a sham surgery control (Sham). Following a two-week period, wet muscle weight was measured. Total RNA was extracted from the tibialis anterior muscle for microarray analysis. Significant expression changes were analyzed via Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and miRNet for miRNAs. RESULTS Denervated limbs showed a significant reduction in muscle weight. Over 1,000 genes displayed increased expression, while 527 showed reductions to less than half of control levels. VEGF, along with specific miRNAs such as miR-106a-5p, miR-mir20a-5p, mir93-5p and mir17-5p, occupied central regulatory nodes within the gene network. Functional analysis revealed that these molecules are involved in key biological processes including regulation of cell migration, vasculature development, and regulation of endothelial cell proliferation. The increased miRNAs were subjected to further network analysis that revealed significant regulatory interactions with target mRNAs. CONCLUSION VEGF and miRNAs play crucial roles in the progression of skeletal muscle atrophy, offering potential targets for therapeutic interventions aimed at reducing atrophy and enhancing muscle regeneration.
Collapse
Affiliation(s)
- Gaku Oguri
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, JPN
| | - Ryo Ikegami
- Department of Information Science and Technology, The University of Electro-Communications, Tokyo, JPN
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, JPN
| | - Haruka Ugawa
- Department of Information Science and Technology, The University of Electro-Communications, Tokyo, JPN
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, JPN
| | - Manami Katoh
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, JPN
| | - Syotaro Obi
- Department of Cardiovascular Medicine, Dokkyo Medical University Hospital, Mibu, JPN
| | - Masashi Sakuma
- Department of Cardiovascular Medicine, Dokkyo Medical University Hospital, Mibu, JPN
| | - Norihiko Takeda
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, JPN
| | - Yutaka Kano
- Department of Information Science and Technology, The University of Electro-Communications, Tokyo, JPN
| | - Shigeru Toyoda
- Department of Cardiovascular Medicine, Dokkyo Medical University Hospital, Mibu, JPN
| | - Toshiaki Nakajima
- Department of Cardiovascular Medicine, Dokkyo Medical University Hospital, Mibu, JPN
- Department of Medical KAATSU Training, Dokkyo Medical University Hospital, Mibu, JPN
| |
Collapse
|
3
|
He L, Yu T, Xiao Y, Huang Y, Guan Y, Zhao F, Ma L. Co-overexpression of VEGF and Smad7 improved the therapeutic effects of adipose-derived stem cells on neurogenic erectile dysfunction in the rat model. Andrologia 2022; 54:e14538. [PMID: 35912795 DOI: 10.1111/and.14538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/23/2022] [Accepted: 07/11/2022] [Indexed: 11/29/2022] Open
Abstract
Cavernous nerve injury is the main cause of erectile dysfunction (ED) after radical prostatectomy (RP). In our previous study, injection of adipose-derived stem cells (ADSCs) into the cavernosum can repair damaged cavernosum nerves and ED can be restored to a certain extent. In order to improve these therapeutic effects, we evaluated the efficacy of ADSCs co-modified with VEGF and Smad7 in a rat model. SD rats were randomly divided into six groups: a sham surgery group, and the five bilateral cavernous nerve injury (BCNI) groups were injected with ADSC or ADSCs genetically modified by VEGF (ADSC-V), Smad7 (ADSC-S), or VEGF&Smad7 (ADSC-V&S) or phosphate-buffered saline (PBS). The results indicated that the erectile function of the ADSC-V, ADSC-S, and ADSC-V&S groups was significantly recovered, and the erectile function of the ADSC-V&S group was more distinctly recovered as compared to the other groups. The same results are shown in the expression of neuronal nitric oxide synthase and the smooth muscle/collagen ratio of penile tissue comparing the ADSC-V&S group to the ADSC-V and ADSC-S group. These experimental data suggest that ADSCs co-overexpressed with VEGF and Smad7 can significantly improve erectile function after BCNI. This study provides new therapeutic thoughts for ED following RP.
Collapse
Affiliation(s)
- Lei He
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, China.,Medical College, Nantong University, Nantong, China
| | - Tiannan Yu
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, China.,Medical College, Nantong University, Nantong, China
| | - Ying Xiao
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, China.,Medical College, Nantong University, Nantong, China
| | - Yeqing Huang
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yangbo Guan
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, China
| | - Fan Zhao
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, China
| | - Limin Ma
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
4
|
de Moura JA, de Morais J, Barbosa SMN, Ferreira MC, de Sousa Neto IV, Leite HR, Oliveira MX, Gaiad TP, Santos AP. Negative neuromuscular and functional repercussion of forced swimming after axonotmesis. J Exerc Rehabil 2022; 18:179-186. [PMID: 35846236 PMCID: PMC9271644 DOI: 10.12965/jer.2244150.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/04/2022] [Indexed: 11/22/2022] Open
Abstract
Peripheral nerve injuries are cause of sensory disturbances and in functional abilities, and are associated personal and social costs. Strategies that maximize nerve regeneration and functional recovery are necessary, the exercise is an option. This study evaluated the effects of forced swimming exercise on neuromuscular histomorphometry and on functional recovery in a median nerve crush model. Sixteen Wistar rats underwent median nerve crush and were divided into control group (CG) and swimming group (SG). The forced swimming protocol started one week after the injury and was performed for 1 hr a day, 5 days per week, for 2 weeks. The rats swam with an overload of 5% and 10% of body weight in the first and second week, respectively. The functional recovery was assessed in three moments using the grasping test. On day 21, fragments of the median nerve and of the forearm flexors muscles were removed for histomorphometric analysis. The SG had functional recovery impaired (P<0.001) and presented lower myelinated fibers number, fiber and axon minimal diameter, myelin thickness and g-ratio in the proximal e distal segments of the median nerve (P<0.005) and area muscle fiber (P<0.005) than CG. Also, the SG presented a number of capillaries in the proximal segments of the median nerve greater than CG (P<0.005). The exercise protocol used in this study impaired the regeneration of the median nerve and negatively influenced the functional recovery.
Collapse
Affiliation(s)
- Júlia Araújo de Moura
- Departamento de Fisioterapia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Jaqueline de Morais
- Departamento de Fisioterapia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Samara Maria Neves Barbosa
- Departamento de Fisioterapia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Marcílio Coelho Ferreira
- Departamento de Fisioterapia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | | | - Hércules Ribeiro Leite
- Departamento de Fisioterapia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Murilo Xavier Oliveira
- Departamento de Fisioterapia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Thaís Peixoto Gaiad
- Departamento de Fisioterapia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Ana Paula Santos
- Departamento de Fisioterapia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
- Corresponding author: Ana Paula Santos, Departamento de Fisioterapia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, CEP 39100-000, Brazil,
| |
Collapse
|
5
|
Zhao G, Zhou H, Jin G, Jin B, Geng S, Luo Z, Ge Z, Xu F. Rational Design of Electrically Conductive Biomaterials toward Excitable Tissues Regeneration. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Idrisova KF, Zeinalova AK, Masgutova GA, Bogov AA, Allegrucci C, Syromiatnikova VY, Salafutdinov II, Garanina EE, Andreeva DI, Kadyrov AA, Rizvanov AA, Masgutov RF. Application of neurotrophic and proangiogenic factors as therapy after peripheral nervous system injury. Neural Regen Res 2022; 17:1240-1247. [PMID: 34782557 PMCID: PMC8643040 DOI: 10.4103/1673-5374.327329] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/14/2020] [Accepted: 06/04/2021] [Indexed: 11/24/2022] Open
Abstract
The intrinsic ability of peripheral nerves to regenerate after injury is extremely limited, especially in case of severe injury. This often leads to poor motor function and permanent disability. Existing approaches for the treatment of injured nerves do not provide appropriate conditions to support survival and growth of nerve cells. This drawback can be compensated by the use of gene therapy and cell therapy-based drugs that locally provide an increase in the key regulators of nerve growth, including neurotrophic factors and extracellular matrix proteins. Each growth factor plays its own specific angiotrophic or neurotrophic role. Currently, growth factors are widely studied as accelerators of nerve regeneration. Particularly noteworthy is synergy between various growth factors, that is essential for both angiogenesis and neurogenesis. Fibroblast growth factor 2 and vascular endothelial growth factor are widely known for their proangiogenic effects. At the same time, fibroblast growth factor 2 and vascular endothelial growth factor stimulate neural cell growth and play an important role in neurodegenerative diseases of the peripheral nervous system. Taken together, their neurotrophic and angiogenic properties have positive effect on the regeneration process. In this review we provide an in-depth overview of the role of fibroblast growth factor 2 and vascular endothelial growth factor in the regeneration of peripheral nerves, thus demonstrating their neurotherapeutic efficacy in improving neuron survival in the peripheral nervous system.
Collapse
Affiliation(s)
| | | | | | | | - Cinzia Allegrucci
- Biodiscovery Institute, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | | | | | | | | | | | | | - Ruslan Faridovich Masgutov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Republican Clinical Hospital, Kazan, Russia
| |
Collapse
|
7
|
Liu Q, Deng J, Qiu Y, Gao J, Li J, Guan L, Lee H, Zhou Q, Xiao J. Non-coding RNA basis of muscle atrophy. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:1066-1078. [PMID: 34786211 PMCID: PMC8569427 DOI: 10.1016/j.omtn.2021.10.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Muscle atrophy is a common complication of many chronic diseases including heart failure, cancer cachexia, aging, etc. Unhealthy habits and usage of hormones such as dexamethasone can also lead to muscle atrophy. However, the underlying mechanisms of muscle atrophy are not completely understood. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), play vital roles in muscle atrophy. This review mainly discusses the regulation of ncRNAs in muscle atrophy induced by various factors such as heart failure, cancer cachexia, aging, chronic obstructive pulmonary disease (COPD), peripheral nerve injury (PNI), chronic kidney disease (CKD), unhealthy habits, and usage of hormones; highlights the findings of ncRNAs as common regulators in multiple types of muscle atrophy; and summarizes current therapies and underlying mechanisms for muscle atrophy. This review will deepen the understanding of skeletal muscle biology and provide new strategies and insights into gene therapy for muscle atrophy.
Collapse
Affiliation(s)
- Qi Liu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Jiali Deng
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Yan Qiu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Juan Gao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Jin Li
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Longfei Guan
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China
| | - Hangil Lee
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Qiulian Zhou
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| |
Collapse
|
8
|
Saio S, Konishi K, Hohjoh H, Tamura Y, Masutani T, Iddamalgoda A, Ichihashi M, Hasegawa H, Mizutani KI. Extracellular Environment-Controlled Angiogenesis, and Potential Application for Peripheral Nerve Regeneration. Int J Mol Sci 2021; 22:ijms222011169. [PMID: 34681829 PMCID: PMC8541280 DOI: 10.3390/ijms222011169] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/18/2022] Open
Abstract
Endothelial cells acquire different phenotypes to establish functional vascular networks. Vascular endothelial growth factor (VEGF) signaling induces endothelial proliferation, migration, and survival to regulate vascular development, which leads to the construction of a vascular plexuses with a regular morphology. The spatiotemporal localization of angiogenic factors and the extracellular matrix play fundamental roles in ensuring the proper regulation of angiogenesis. This review article highlights how and what kinds of extracellular environmental molecules regulate angiogenesis. Close interactions between the vascular and neural systems involve shared molecular mechanisms to coordinate developmental and regenerative processes. This review article focuses on current knowledge about the roles of angiogenesis in peripheral nerve regeneration and the latest therapeutic strategies for the treatment of peripheral nerve injury.
Collapse
Affiliation(s)
- Shingo Saio
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan; (S.S.); (K.K.); (Y.T.); (M.I.)
| | - Kanna Konishi
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan; (S.S.); (K.K.); (Y.T.); (M.I.)
| | - Hirofumi Hohjoh
- Laboratory of Hygienic Sciences, Kobe Pharmaceutical University, 4-19-1, Motoyamakitamachi, Higashinada-ku, Kobe 658-8558, Japan;
| | - Yuki Tamura
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan; (S.S.); (K.K.); (Y.T.); (M.I.)
| | - Teruaki Masutani
- Research & Development Dept., Ichimaru Pharcos Co., Ltd., 318-1 Asagi, Motosu 501-0475, Japan; (T.M.); (A.I.)
- Medical Education Development Center, Gifu University School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Arunasiri Iddamalgoda
- Research & Development Dept., Ichimaru Pharcos Co., Ltd., 318-1 Asagi, Motosu 501-0475, Japan; (T.M.); (A.I.)
| | - Masamitsu Ichihashi
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan; (S.S.); (K.K.); (Y.T.); (M.I.)
| | - Hiroshi Hasegawa
- Laboratory of Hygienic Sciences, Kobe Pharmaceutical University, 4-19-1, Motoyamakitamachi, Higashinada-ku, Kobe 658-8558, Japan;
- Correspondence: (H.H.); (K.-i.M.)
| | - Ken-ichi Mizutani
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan; (S.S.); (K.K.); (Y.T.); (M.I.)
- Correspondence: (H.H.); (K.-i.M.)
| |
Collapse
|
9
|
Nascimento JJAC, Machado ASD, Della-Santa GML, Fernandes DC, Ferreira MC, Machado GAP, Chaves BCG, Costa KB, Rocha-Vieira E, Oliveira MX, Gaiad TP, Santos AP. Effects of photobiomodulation therapy on functional recovery, angiogenesis and redox status in denervated muscle of rats. EINSTEIN-SAO PAULO 2021; 19:eAO6001. [PMID: 34586157 PMCID: PMC8439560 DOI: 10.31744/einstein_journal/2021ao6001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/21/2020] [Indexed: 12/23/2022] Open
Abstract
Objective: To evaluate the effects of photobiomodulation therapy in redox status, angiogenesis marker – vascular endothelial growth factor – and in the functional recovery in denervated muscle. Methods: A total of 32 female Wistar rats underwent a crush injury and were randomly divided into four groups: Light Emitting Diode Group 2 and Control Group 2 (muscle collected 2 days after injury), and Light Emitting Diode Group 21 and Control Group 21 (muscle collected 21 days afterinjury). Light Emitting Diode Group 2 and Light Emitting Diode Group 21 received two and ten light emitting diode applications (630±20nm, 9J/cm2, 300mW), respectively, and the Control Group 2 and Control Group 21 did not receive any treatment. The function was evaluated by grasping test at four moments (pre-injury, 2, 10 and 21 post-injury days). The flexor digitorum muscle was collected for analysis of immunolocalization of vascular endothelial growth factor and redox parameters. Results: Functional improvement was observed at the second and tenth post-injury day in treated groups compared to control (p<0.005). The muscle tissue of treated groups presented higher immunohistochemical expression of vascular endothelial growth factor. Photobiomodulation therapy decreased the oxidative damage to lipid in Light Emitting Diode Group 2 compared to Control Group 2 (p=0.023) in the denervated muscle. Conclusion: Photobiomodulation therapy accelerated the functional recovery, increased angiogenesis and reduced lipid peroxidation in the denervated muscle at 2 days after injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Karine Beatriz Costa
- Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Etel Rocha-Vieira
- Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | | | - Thais Peixoto Gaiad
- Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Ana Paula Santos
- Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| |
Collapse
|
10
|
Peng Y, Lin H. [Regulatory role of long non-coding RNA in peripheral nerve injury and neural regeneration]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:1051-1056. [PMID: 34387437 DOI: 10.7507/1002-1892.202103107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To summarize the regulatory role of long non-coding RNA (lncRNA) in peripheral nerve injury (PNI) and neural regeneration. Methods The characteristics and mechanisms of lncRNA were summarized and its regulatory role in PNI and neural regeneration were elaborated by referring to relevant domestic and foreign literature in recent years. Results Neuropathic pain and denervated muscle atrophy are common complications of PNI, affecting patients' quality of life. Numerous lncRNAs are upregulated after PNI, which promote the progress of neuropathic pain by regulating nerve excitability and neuroinflammation. Several lncRNAs are found to promote the progress of denervated muscle atrophy. Importantly, peripheral nerve regeneration occurs after PNI. LncRNAs promote peripheral nerve regeneration through promoting neuronal axonal outgrowth and the proliferation and migration of Schwann cells. Conclusion At present, the research on lncRNA regulating PNI and neural regeneration is still in its infancy. The specific mechanism remains to be further explored. How to achieve clinical translation of experimental results is also a major challenge for future research.
Collapse
Affiliation(s)
- Ying Peng
- Trauma Clinic Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, P.R.China
| | - Haodong Lin
- Trauma Clinic Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, P.R.China
| |
Collapse
|
11
|
Costa AL, Papadopulos N, Porzionato A, Natsis K, Bassetto F, Tiengo C, Giunta R, Soldado F, Bertelli JA, Baeza AR, Battiston B, Titolo P, Tos P, Radtke C, Aszmann O, Moschella F, Cordova A, Toia F, Perrotta RE, Ronchi G, Geuna S, Colonna MR. Studying nerve transfers: Searching for a consensus in nerve axons count. J Plast Reconstr Aesthet Surg 2021; 74:2731-2736. [PMID: 33962889 DOI: 10.1016/j.bjps.2021.03.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/13/2021] [Indexed: 11/26/2022]
Abstract
Axonal count is the base for efficient nerve transfer; despite its capital importance, few studies have been published on human material, most research approaches being performed on experimental animal models of nerve injury. Thus, standard analysis methods are still lacking. Quantitative data obtained have to be reproducible and comparable with published data by other research groups. To share results with the scientific community, the standardization of quantitative analysis is a fundamental step. For this purpose, the experiences of the Italian, Austrian, German, Greek, and Iberian-Latin American groups have been compared with each other and with the existing literature to reach a consensus in the fiber count and draw up a protocol that can make future studies from different centers comparable. The search for a standardization of the methodology was aimed to reduce all the factors that are associated with an increase in the variability of the results. All the preferential methods to be used have been suggested. On the other hand, alternative methods and different methods have been identified to achieve the same goal, which in our experience are completely comparable; therefore, they can be used indifferently by the different centers according to their experience and availability.
Collapse
Affiliation(s)
- Alfio Luca Costa
- Department of Human Pathology of the Adult, the Child and the Adolescent, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy.
| | - Nikolaos Papadopulos
- Department of Plastic Surgery and Burns, Alexandroupoli University Hospital, Democritus University of Thace, Alexandroupoli, Greece
| | - Andrea Porzionato
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, Padova, Italy
| | - Konstantinos Natsis
- Department of Anatomy and Surgical Anatomy, (Chairperson: Professor Dr. K. NATSIS), Medical School, Aristotle University of Thessaloniki, Greece
| | - Franco Bassetto
- Clinic of Plastic Surgery, Padova University Hospital, Padova, Italy
| | - Cesare Tiengo
- Clinic of Plastic Surgery, Padova University Hospital, Padova, Italy
| | - Riccardo Giunta
- Division of Hand, Plastic and Aesthetic Surgery, Ludwig-Maximilians-University (LMU), Pettenkoferstraße. 8a, 80336 Munich, Germany
| | - Francisco Soldado
- Pediatric Upper Extremity Surgery and Microsurgery, Vithas San Jose Hospital, Vitoria and Hospital HM nens, Barcelona, Spain
| | - Jayme Augusto Bertelli
- Department of Orthopedic Surgery, Governador Celso Ramos Hospital, Florianópolis, Brazil
| | - Alfonso Rodrìguez Baeza
- Unit of Human Anatomy and Embryology, Department of Morphological Sciences, Faculty of Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra, 08193 Barcelona, Spain
| | - Bruno Battiston
- Human Anatomy Unit, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Paolo Titolo
- Human Anatomy Unit, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pierluigi Tos
- Azienda Ospedaliero-Universitaria Citta della Salute e della Scienza di Torino, Depatment of Traumatology, Turin, Italy
| | - Christine Radtke
- Hand Surgery and Reconstructive Microsurgery Unit, ASST G Pini-CTO, Milano, Italy
| | - Oscar Aszmann
- Hand Surgery and Reconstructive Microsurgery Unit, ASST G Pini-CTO, Milano, Italy
| | - Francesco Moschella
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Adriana Cordova
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Francesca Toia
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Rosario Emanuele Perrotta
- Section of Plastic and Reconstructive Surgery. Department of Surgical, Oncological and Oral Sciences. University of Palermo, Italy
| | - Guilia Ronchi
- Department of Plastic and Reconstructive Surgery, University of Catania, Catania 95100, Italy; Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - Stefano Geuna
- Department of Plastic and Reconstructive Surgery, University of Catania, Catania 95100, Italy
| | - Michele Rosario Colonna
- Department of Human Pathology of the Adult, the Child and the Adolescent, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
| |
Collapse
|
12
|
Design-Based stereology and binary image histomorphometry in nerve assessment. J Neurosci Methods 2020; 336:108635. [PMID: 32070676 PMCID: PMC8045463 DOI: 10.1016/j.jneumeth.2020.108635] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/02/2020] [Accepted: 02/14/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND Stereology and histomorphometry are widely used by investigators to quantify nerve characteristics in normal and pathological states, including nerve injury and regeneration. While these methods of analysis are complementary, no study to date has systematically compared both approaches in peripheral nerve. This study investigated the reliability of design-based stereology versus semi-automated binary imaging histomorphometry for assessing healthy peripheral nerve characteristics. NEW METHOD Stereological analysis was compared to histomorphometry with binary image analysis on uninjured sciatic nerves to determine nerve fiber number, nerve area, neural density, and fiber distribution. RESULTS Sciatic nerves were harvested from 6 male Lewis rats, aged 8-12 weeks for comprehensive analysis of 6 nerve specimens. From each animal, sciatic nerve specimens were fixed, stained, and sectioned for analysis by light and electron microscopy. Both histomorphometry and stereological peripheral nerve analyses were performed on all specimens by two blinded and independent investigators who quantified nerve fiber count, fiber width, density, and related distribution parameters. COMPARISON WITH EXISTING METHODS Histomorphometry and stereological analysis provided similar outcomes in nerve fiber number and total nerve area. However, the light microscopy, but not electron microscopy, stereological analysis yielded higher nerve fiber area compared to histomorphometry or manual measurement. CONCLUSION Both methods measure similar fiber number and overall nerve fiber area; however, stereology with light microscopy quantified higher fiber area. Histomorphometry optimizes throughput and comprehensive analysis but requires user thresholding.
Collapse
|
13
|
Yang W, Chen Z, Ma X, Ouyang X, Fang J, Wei H. Co-overexpression of VEGF and GDNF in adipose-derived stem cells optimizes therapeutic effect in neurogenic erectile dysfunction model. Cell Prolif 2020; 53:e12756. [PMID: 31943490 PMCID: PMC7046481 DOI: 10.1111/cpr.12756] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/09/2019] [Accepted: 12/18/2019] [Indexed: 12/15/2022] Open
Abstract
Objectives To evaluate the rapid repair potential of adipose‐derived stem cells (ADSCs) co‐overexpressing VEGF and GDNF on bilateral cavernous nerve injury (BCNI) in rat models. Progressive fibrosis of the penis that occurs shortly after BCNI is a key cause of clinical treatment difficulty of erectile dysfunction (ED). Traditional medications are ineffective for ED caused by BCNI. ADSCs have shown therapeutic effects in animal models, but disappointing in clinical treatment suggests that we should explore optimal treatment of it. Materials and methods We extracted ADSCs from rat epididymis. Lentiviral transfection was verified by western blot and immunofluorescence. Thirty‐six SD rats (10 weeks old) were randomly divided into six groups (n = 6 per group): sham surgery, and remaining five BCNI groups transplanted PBS or ADSCs which were genetically modified by vehicle, VEGF (ADSC‐V), GDNF (ADSC‐G), or VEGF&GDNF (ADSC‐G&V) around major pelvic ganglion (MPG). We investigated the therapeutic effects of BCNI rat model which is characterized by ED, penile tissue fibrosis and hypoxia, and lack of nitrogen nerves or vascular atrophy. Results Erectile function was almost recovered after 2 weeks of transplantation of ADSC‐G&V, promoted cavernous nerve repair, prevented penile fibrosis and preserving the vascular endothelium, which was significant differences amongst ADSC‐V or ADSC‐G. Moreover, GM‐ADSCs were detected in MPG and penis, indicating that their participation in repair of target organs and transverse nerves. Conclusions These promising data indicate that ADSCs co‐overexpressed VEGF and GDNF‐induced synergistic effects, make it a potential tool for recovering of erectile function speedily after BCNI.
Collapse
Affiliation(s)
- Wende Yang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zehong Chen
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaolei Ma
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xi Ouyang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiafeng Fang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hongbo Wei
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
14
|
|
15
|
Imran A, Xiao L, Ahmad W, Anwar H, Rasul A, Imran M, Aziz N, Razzaq A, Arshad MU, Shabbir A, Gonzalez de Aguilar JL, Sun T, Hussain G. Foeniculum vulgare (Fennel) promotes functional recovery and ameliorates oxidative stress following a lesion to the sciatic nerve in mouse model. J Food Biochem 2019; 43:e12983. [PMID: 31489666 DOI: 10.1111/jfbc.12983] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/16/2019] [Accepted: 06/21/2019] [Indexed: 11/29/2022]
Abstract
Peripheral nerve injury is one of the major health concerns of the present era which can lead to the long-lasting disability and even demise. Currently, no effective and side effect free remedy exists and exploration of effective therapeutic strategies to regain functional outcome is a need of hour. In the present study, we used BALB/c mice (N = 14 age, 10-12 weeks & weight 32-34 g) that were divided into two groups: Normal chow (n = 7) and Fennel chow (n = 7) group. Here, we have explored the role of crude Foeniculum vulgare mill seeds in promoting functional recovery following a mechanical insult to the sciatic nerve by an oral administration of a crude dose of 500 mg/kg BW. The recovery of both sensory and motor functions was significantly (p > .05) accelerated in the treatment group, assessed by behavioral analyses alongside total antioxidant capacity increase. Conclusively, F. vulgare can be a potential therapeutic candidate for accelerating functional recovery after peripheral nerve injury. PRACTICAL APPLICATIONS: The outcomes of study have vital practical application both for scientists and consumers. The therapeutic role of phytochemicals on functional recovery has not been explored yet. This study will help figure out plant based regimen as booster for brain health and intervention against traumatic nerve injuries. Moreover, it may also attract the food and pharmaceutical industries to formulate cost effective therapeutic products. Likewise, it can prove instrumental for scientists for advance research on this aspect with more mechanistic targets.
Collapse
Affiliation(s)
- Ali Imran
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Lei Xiao
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
| | - Waseem Ahmad
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Haseeb Anwar
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore-Lahore, Pakistan
| | - Nimra Aziz
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Aroona Razzaq
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Umair Arshad
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Asghar Shabbir
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Jose-Luis Gonzalez de Aguilar
- Université de Strasbourg, UMR_S 1118, Strasbourg, France.,INSERM, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Strasbourg, France
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
| | - Ghulam Hussain
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| |
Collapse
|
16
|
Ronchi G, Morano M, Fregnan F, Pugliese P, Crosio A, Tos P, Geuna S, Haastert-Talini K, Gambarotta G. The Median Nerve Injury Model in Pre-clinical Research - A Critical Review on Benefits and Limitations. Front Cell Neurosci 2019; 13:288. [PMID: 31316355 PMCID: PMC6609919 DOI: 10.3389/fncel.2019.00288] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 06/13/2019] [Indexed: 12/21/2022] Open
Abstract
The successful introduction of innovative treatment strategies into clinical practise strongly depends on the availability of effective experimental models and their reliable pre-clinical assessment. Considering pre-clinical research for peripheral nerve repair and reconstruction, the far most used nerve regeneration model in the last decades is the sciatic nerve injury and repair model. More recently, the use of the median nerve injury and repair model has gained increasing attention due to some significant advantages it provides compared to sciatic nerve injury. Outstanding advantages are the availability of reliable behavioural tests for assessing posttraumatic voluntary motor recovery and a much lower impact on the animal wellbeing. In this article, the potential application of the median nerve injury and repair model in pre-clinical research is reviewed. In addition, we provide a synthetic overview of a variety of methods that can be applied in this model for nerve regeneration assessment. This article is aimed at helping researchers in adequately adopting this in vivo model for pre-clinical evaluation of peripheral nerve reconstruction as well as for interpreting the results in a translational perspective.
Collapse
Affiliation(s)
- Giulia Ronchi
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi Foundation (NICO), University of Turin, Turin, Italy
| | - Michela Morano
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi Foundation (NICO), University of Turin, Turin, Italy
| | - Federica Fregnan
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi Foundation (NICO), University of Turin, Turin, Italy
| | - Pierfrancesco Pugliese
- Dipartimento di Chirurgia Generale e Specialistica, Azienda Ospedaliera Universitaria, Ancona, Italy
| | - Alessandro Crosio
- UO Microchirurgia e Chirurgia della Mano, Ospedale Gaetano Pini, Milan, Italy
| | - Pierluigi Tos
- UO Microchirurgia e Chirurgia della Mano, Ospedale Gaetano Pini, Milan, Italy
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi Foundation (NICO), University of Turin, Turin, Italy
| | - Kirsten Haastert-Talini
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hanover, Germany.,Center for Systems Neuroscience (ZSN) Hannover, Hanover, Germany
| | - Giovanna Gambarotta
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| |
Collapse
|
17
|
Zhou L, Huang YF, Xie H, Mei XY, Gao J. Buyang Huanwu Tang alleviates inflammation and improves motor endplate functions in DSMA rat models by activating several biological molecules and associated signaling pathways. Am J Transl Res 2019; 11:3056-3068. [PMID: 31217875 PMCID: PMC6556633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
Denervated-dependent skeletal muscle atrophy (DSMA) is considered to be the neuro-disconnection of skeletal muscle. This study aimed to investigate the protective effects of Buyang Huanwu Tang (BYHWT) on the DSMA and clarify associated molecular and genetic mechanisms. DSMA rat models were established according to the previously published study and divided into Model group and BYHWT group. Meanwhile, normal rats were assigned as Normal control (NC) group. Hematoxylin and eosin (HE) staining was used to examine inflammatory responses. Motor endplate activity was evaluated with wholemount acetylcholinesterase (AChE) staining. Mass-spectrometry analysis was conducted to compare differentially expressed proteins. RNAs were prepared and applied to gene functional analysis. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were employed to analyze biological functions. The results indicated that BYHWT remarkably alleviated inflammatory responses and significantly improved motor endplate function, compared to that in DSMA Model rats (P<0.05). In BYHWT group, there were 393 differentially up-regulated and 576 differentially down-regulated molecules compared to that in Model group. Comparing to Model group, the cellular response to interferon-gamma, integral component of plasma membrane and voltage-gated potassium channel activity genes in BYHWT group were the most biological process (BP), cellular component (CC) and molecular function (MF) differential genes, respectively. Fructose/mannose metabolism and glycerolipid metabolism KEGG signaling pathways illustrated the most significant enrichment of differentially expressed genes. In conclusion, BYHWT alleviated the inflammations and improved the motor endplate function of DSMA rats by activating cellular response to interferon-gamma, integral component of plasma membrane and voltage-gated potassium channel activity genes and associated signaling pathways.
Collapse
Affiliation(s)
- Lan Zhou
- Basic Theory of Traditional Chinese Medicine Staff Room, Basic Medical College, Nanjing University of Traditional Chinese MedicineNanjing, China
| | - Yu-Fang Huang
- Pathological Staff Room, Basic Medical College, Nanjing University of Traditional Chinese MedicineNanjing, China
| | - Hui Xie
- Pharmacological Staff Room, School of Pharmacy, Nanjing University of Traditional Chinese MedicineNanjing, China
| | - Xiao-Yun Mei
- Basic Theory of Traditional Chinese Medicine Staff Room, Basic Medical College, Nanjing University of Traditional Chinese MedicineNanjing, China
| | - Jun Gao
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjing, China
| |
Collapse
|
18
|
Caillaud M, Richard L, Vallat JM, Desmoulière A, Billet F. Peripheral nerve regeneration and intraneural revascularization. Neural Regen Res 2019; 14:24-33. [PMID: 30531065 PMCID: PMC6263011 DOI: 10.4103/1673-5374.243699] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Peripheral nerves are particularly vulnerable to injuries and are involved in numerous pathologies for which specific treatments are lacking. This review summarizes the pathophysiological features of the most common traumatic nerve injury in humans and the different animal models used in nerve regeneration studies. The current knowledge concerning Wallerian degeneration and nerve regrowth is then described. Finally, the involvement of intraneural vascularization in these processes is addressed. As intraneural vascularization has been poorly studied, histological experiments were carried out from rat sciatic nerves damaged by a glycerol injection. The results, taken together with the data from literature, suggest that revascularization plays an important role in peripheral nerve regeneration and must therefore be studied more carefully.
Collapse
Affiliation(s)
- Martial Caillaud
- University of Limoges, Myelin Maintenance and Peripheral Neuropathies, Faculties of Medicine and Pharmacy, Limoges, France
| | - Laurence Richard
- University Hospital of Limoges, Department of Neurology, "Reference Center for Rare Peripheral Neuropathies", Department of Neurology, Limoges, France
| | - Jean-Michel Vallat
- University Hospital of Limoges, Department of Neurology, "Reference Center for Rare Peripheral Neuropathies", Department of Neurology, Limoges, France
| | - Alexis Desmoulière
- University of Limoges, Myelin Maintenance and Peripheral Neuropathies, Faculties of Medicine and Pharmacy, Limoges, France
| | - Fabrice Billet
- University of Limoges, Myelin Maintenance and Peripheral Neuropathies, Faculties of Medicine and Pharmacy, Limoges, France
| |
Collapse
|
19
|
Zhang B, Yan W, Zhu Y, Yang W, Le W, Chen B, Zhu R, Cheng L. Nanomaterials in Neural-Stem-Cell-Mediated Regenerative Medicine: Imaging and Treatment of Neurological Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705694. [PMID: 29543350 DOI: 10.1002/adma.201705694] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/17/2017] [Indexed: 05/24/2023]
Abstract
Patients are increasingly being diagnosed with neuropathic diseases, but are rarely cured because of the loss of neurons in damaged tissues. This situation creates an urgent clinical need to develop alternative treatment strategies for effective repair and regeneration of injured or diseased tissues. Neural stem cells (NSCs), highly pluripotent cells with the ability of self-renewal and potential for multidirectional differentiation, provide a promising solution to meet this demand. However, some serious challenges remaining to be addressed are the regulation of implanted NSCs, tracking their fate, monitoring their interaction with and responsiveness to the tissue environment, and evaluating their treatment efficacy. Nanomaterials have been envisioned as innovative components to further empower the field of NSC-based regenerative medicine, because their unique physicochemical characteristics provide unparalleled solutions to the imaging and treatment of diseases. By building on the advantages of nanomaterials, tremendous efforts have been devoted to facilitate research into the clinical translation of NSC-based therapy. Here, recent work on emerging nanomaterials is highlighted and their performance in the imaging and treatment of neurological diseases is evaluated, comparing the strengths and weaknesses of various imaging modalities currently used. The underlying mechanisms of therapeutic efficacy are discussed, and future research directions are suggested.
Collapse
Affiliation(s)
- Bingbo Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200443, China
- Department of Spine Surgery, Tongji Hospital, Institute of Spine and Spinal Cord Injury, Tongji University School of Medicine, Tongji University, Shanghai, 200065, China
| | - Wei Yan
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Yanjing Zhu
- Department of Spine Surgery, Tongji Hospital, Institute of Spine and Spinal Cord Injury, Tongji University School of Medicine, Tongji University, Shanghai, 200065, China
| | - Weitao Yang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200443, China
| | - Wenjun Le
- Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200443, China
| | - Bingdi Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200443, China
| | - Rongrong Zhu
- Department of Spine Surgery, Tongji Hospital, Institute of Spine and Spinal Cord Injury, Tongji University School of Medicine, Tongji University, Shanghai, 200065, China
| | - Liming Cheng
- Department of Spine Surgery, Tongji Hospital, Institute of Spine and Spinal Cord Injury, Tongji University School of Medicine, Tongji University, Shanghai, 200065, China
| |
Collapse
|
20
|
Weng J, Zhang P, Yin X, Jiang B. The Whole Transcriptome Involved in Denervated Muscle Atrophy Following Peripheral Nerve Injury. Front Mol Neurosci 2018; 11:69. [PMID: 29563865 PMCID: PMC5845901 DOI: 10.3389/fnmol.2018.00069] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 02/19/2018] [Indexed: 01/07/2023] Open
Abstract
Peripheral nerve injury (PNI) usually leads to progressive muscle atrophy and poor functional recovery. Previous studies have demonstrated that non-coding ribonucleic acid (ncRNA) is a key regulator of muscle atrophy and beneficial for the treatment of PNI. We aimed to analyze the whole transcriptome involved in denervated muscle atrophy after PNI. Animal models of sciatic nerve injury were assessed at 0 (control group), 1, 2, 4, and 8 weeks after injury. The expression patterns in the whole transcriptome in the gastrocnemius muscle were profiled using RNA sequencing at each time point and compared to that obtained in the control group. Six-hundred and sixty-four long non-coding RNAs, 671 microRNAs, 236 circular RNAs, and 12,768 messenger RNAs (mRNAs) were differentially expressed (DE) after injury. Changes in some of the DE ncRNAs and mRNAs were validated using quantitative polymerase chain reaction. Gene Ontology and Kyoko Encyclopedia of Genes and Genomes analysis revealed the potential functions of and relationships among the DE ncRNAs and mRNAs. To our knowledge, this is the first study to expound the whole transcriptome involved in denervated muscle atrophy, and provides a theoretical basis for further research targeting ncRNAs.
Collapse
Affiliation(s)
| | | | - Xiaofeng Yin
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing, China
| | - Baoguo Jiang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
21
|
Hosseinian MA, Shirian S, Loron AG, Ebrahimy AA, Hayatolah GH. Distal sensory to distal motor nerve anastomosis can protect lower extremity muscle atrophy in a murine model. EUROPEAN JOURNAL OF PLASTIC SURGERY 2018. [DOI: 10.1007/s00238-017-1313-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
22
|
Weng J, Wang YH, Li M, Zhang DY, Jiang BG. GSK3β inhibitor promotes myelination and mitigates muscle atrophy after peripheral nerve injury. Neural Regen Res 2018; 13:324-330. [PMID: 29557384 PMCID: PMC5879906 DOI: 10.4103/1673-5374.226403] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2018] [Indexed: 12/21/2022] Open
Abstract
Delay of axon regeneration after peripheral nerve injury usually leads to progressive muscle atrophy and poor functional recovery. The Wnt/β-catenin signaling pathway is considered to be one of the main molecular mechanisms that lead to skeletal muscle atrophy in the elderly. We hold the hypothesis that the innervation of target muscle can be promoted by accelerating axon regeneration and decelerating muscle cell degeneration so as to improve functional recovery of skeletal muscle following peripheral nerve injury. This process may be associated with the Wnt/β-catenin signaling pathway. Our study designed in vitro cell models to simulate myelin regeneration and muscle atrophy. We investigated the effects of SB216763, a glycogen synthase kinase 3 beta inhibitor, on the two major murine cell lines RSC96 and C2C12 derived from Schwann cells and muscle satellite cells. The results showed that SB216763 stimulated the Schwann cell migration and myotube contraction. Quantitative polymerase chain reaction results demonstrated that myelin related genes, myelin associated glycoprotein and cyclin-D1, muscle related gene myogenin and endplate-associated gene nicotinic acetylcholine receptors levels were stimulated by SB216763. Immunocytochemical staining revealed that the expressions of β-catenin in the RSC96 and C2C12 cytosolic and nuclear compartments were increased in the SB216763-treated cells. These findings confirm that the glycogen synthase kinase 3 beta inhibitor, SB216763, promoted the myelination and myotube differentiation through the Wnt/β-catenin signaling pathway and contributed to nerve remyelination and reduced denervated muscle atrophy after peripheral nerve injury.
Collapse
Affiliation(s)
- Jian Weng
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China
| | - Yan-hua Wang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China
| | - Ming Li
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China
| | - Dian-ying Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China
| | - Bao-guo Jiang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China
| |
Collapse
|
23
|
Muscle Atrophy: Present and Future. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:605-624. [DOI: 10.1007/978-981-13-1435-3_29] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Dual-delivery of VEGF and NGF by emulsion electrospun nanofibrous scaffold for peripheral nerve regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 82:253-264. [DOI: 10.1016/j.msec.2017.08.030] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/10/2017] [Accepted: 08/10/2017] [Indexed: 11/20/2022]
|
25
|
Refaat MM, Zickri MB, Fares AE, Gabr H, El-Jaafary SI, Mahmoud BE, Madbouly MA, Abdelfadel MA, Hammad AM, Farghali HAM. Enhancement of neural regeneration after spinal cord injury using muscle graft in experimental dogs. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:9330-9340. [PMID: 31966805 PMCID: PMC6965910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/17/2017] [Indexed: 06/10/2023]
Abstract
AIMS Spinal cord injuries (SCIs) can cause severe disability or death. The principal treatments for traumatic SCI include surgical stabilization and decompression. Using muscle as a scaffold is a new approach. The aim of this work is to evaluate the clinical efficacy of muscle graft as a scaffold for the growing axons organizing their growth, preventing gliosis in the damaged area and enhancing neural recovery in canine model of traumatic spinal cord injury. METHODS 14 dogs were divided into group I (Control group) 4 control dogs subjected to Sham operation, group II (Trauma control group) 5 dogs subjected to dorsal laminectomy with excision of 1 cm segment of the spinal cord and group III (Muscle graft group) 5 dogs subjected to dorsal laminectomy then muscle graft was taken from the longissimus thoraces and inserted into the spinal cord gap. The animals of all groups were euthanatized after 8 weeks. Olby and modified Tarlov scores were used to clinically evaluate the therapeutic effects. Spinal cord specimens were subjected to histological, morphometric and statistical studies. RESULTS Olby and modified Tarlov scores revealed significant clinical improvement in the muscle graft group. Histological sections showed overgrowth of axons on the muscle graft and the sections started to organize as central gray matter and peripheral white matter. CD44 & CD105 stains were positive for endogenous stem cells. CONCLUSIONS This study proved the clinical efficacy of muscle grafting as a tool for induction of neuroregeneration after traumatic spinal cord injury.
Collapse
Affiliation(s)
- Mohamed M Refaat
- Department of Neurosurgery, Faculty of Medicine, Benisuef UniversityEgypt
| | - Maha Baligh Zickri
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Cairo UniversityEgypt
| | - Amal Elham Fares
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Cairo UniversityEgypt
| | - Hala Gabr
- Department of Clinical Pathology, Faculty of Medicine, Cairo UniversityEgypt
| | | | | | | | | | | | - Haithem AM Farghali
- Surgery, Anesthesiology and Radiology Department, Faculty of Veterinary Medicine, Cairo UniversityEgypt
| |
Collapse
|
26
|
Bueno CRDS, Pereira M, Favaretto IA, Bortoluci CHF, dos Santos TCP, Dias DV, Daré LR, Rosa GM. Electrical stimulation attenuates morphological alterations and prevents atrophy of the denervated cranial tibial muscle. EINSTEIN-SAO PAULO 2017; 15:71-76. [PMID: 28444093 PMCID: PMC5433311 DOI: 10.1590/s1679-45082017ao3808] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/05/2017] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE To investigate if electrical stimulation through Russian current is able to maintain morphology of the cranial tibial muscle of experimentally denervated rats. METHODS Thirty-six Wistar rats were divided into four groups: the Initial Control Group, Final Control Group, Experimental Denervated and Treated Group, Experimental Denervated Group. The electrostimulation was performed with a protocol of Russian current applied three times per week, for 45 days. At the end, the animals were euthanized and histological and morphometric analyses were performed. Data were submitted to statistical analysis with a significance level of p<0.05. RESULTS The Experimental Denervated Group and the Experimental Denervated and Treated Group had cross-sectional area of smaller fiber compared to the Final Control Group. However, there was significant difference between the Experimental Denervated Group and Experimental Denervated and Treated Group, showing that electrical stimulation minimized muscle atrophy. The Experimental Denervated and Treated Group and Initial Control Group showed similar results. CONCLUSION Electrical stimulation through Russian current acted favorably in maintaining morphology of the cranial tibial muscle that was experimentally denervated, minimizing muscle atrophy. OBJETIVO Investigar se a estimulação elétrica pela corrente russa é capaz de manter a morfologia do músculo tibial cranial de ratos desnervados experimentalmente. MÉTODOS Foram utilizados 36 ratos Wistar, distribuídos em quatro grupos: Grupo Controle Inicial, Grupo Controle Final, Grupo Experimental Desnervado Tratado, Grupo Experimental Desnervado. A eletroestimulação foi realizada com um protocolo de corrente russa aplicada três vezes por semanas, durante 45 dias. Ao final, os animais foram eutanasiados e, em seguida, foram realizadas as análises histológica e morfométrica. Os dados foram submetidos à análise estatística, com nível de significância de p<0,05. RESULTADOS Os Grupos Experimental Desnervado e o Grupo Experimental Desnervado Tratado apresentaram área de secção transversal da fibra menor quando comparados ao Grupo Controle Final. Entretanto, constatou-se diferença significativa entre o Grupo Experimental Desnervado e o Grupo Experimental Desnervado Tratado, mostrando que a estimulação elétrica minimizou atrofia muscular. Ainda, observou-se que o Grupo Experimental Desnervado Tratado apresentou resultados semelhantes ao Grupo Controle Inicial. CONCLUSÃO A estimulação elétrica por meio da corrente russa foi favorável na manutenção da morfologia do músculo tibial cranial desnervado experimentalmente, minimizando a atrofia muscular.
Collapse
Affiliation(s)
| | - Mizael Pereira
- Faculdade de Odontologia, Universidade de São Paulo, Bauru, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
27
|
Si HB, Zeng Y, Lu YR, Cheng JQ, Shen B. Control-released basic fibroblast growth factor-loaded poly-lactic-co-glycolic acid microspheres promote sciatic nerve regeneration in rats. Exp Ther Med 2016; 13:429-436. [PMID: 28352311 PMCID: PMC5348676 DOI: 10.3892/etm.2016.4013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 10/04/2016] [Indexed: 02/05/2023] Open
Abstract
Although peripheral nerve injury may result in a loss of function in innervated areas, the most effective method for nerve regeneration remains to be determined. The aim of the present study was to investigate the effect of control-released basic fibroblast growth factor (bFGF)-loaded poly-lactic-co-glycolic acid (PLGA) microspheres on sciatic nerve regeneration following injury in rats. bFGF-PLGA microspheres were prepared and their characteristics were evaluated. The sciatic nerve was segmentally resected to create a 10 mm defect in 36 Sprague Dawley (SD) rats and, following the anastomosis of the nerve ends with a silicone tube, bFGF-PLGA microspheres, free bFGF or PBS were injected into the tube (n=12 in each group). The outcome of nerve regeneration was evaluated using the sciatic function index (SFI), electrophysiological test and histological staining at 6 weeks and 12 weeks post-surgery. The bFGF-PLGA microspheres were successfully synthesized with an encapsulation efficiency of 66.43%. The recovery of SFI and electrophysiological values were significantly greater (P<0.05), and morphological and histological observations were significantly greater (P<0.05) in bFGF-PLGA microspheres and bFGF groups compared with those in the PBS group, and the quickest recovery was observed in the bFGF-PLGA microspheres group. In conclusion, the bFGF-PLGA microspheres may promote nerve regeneration and functional recovery in the sciatic nerve, and may have potential therapeutic applications in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Hai-Bo Si
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China; Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Centre, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yi Zeng
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yan-Rong Lu
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Centre, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jing-Qiu Cheng
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Centre, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Bin Shen
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
28
|
Wang Y, Jia H, Li WY, Guan LX, Deng L, Liu YC, Liu GB. Molecular examination of bone marrow stromal cells and chondroitinase ABC-assisted acellular nerve allograft for peripheral nerve regeneration. Exp Ther Med 2016; 12:1980-1992. [PMID: 27698684 PMCID: PMC5038205 DOI: 10.3892/etm.2016.3585] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/17/2016] [Indexed: 12/17/2022] Open
Abstract
The present study aimed to evaluate the molecular mechanisms underlying combinatorial bone marrow stromal cell (BMSC) transplantation and chondroitinase ABC (Ch-ABC) therapy in a model of acellular nerve allograft (ANA) repair of the sciatic nerve gap in rats. Sprague Dawley rats (n=24) were used as nerve donors and Wistar rats (n=48) were randomly divided into the following groups: Group I, Dulbecco's modified Eagle's medium (DMEM) control group (ANA treated with DMEM only); Group II, Ch-ABC group (ANA treated with Ch-ABC only); Group III, BMSC group (ANA seeded with BMSCs only); Group IV, Ch-ABC + BMSCs group (Ch-ABC treated ANA then seeded with BMSCs). After 8 weeks, the expression of nerve growth factor, brain-derived neurotrophic factor and vascular endothelial growth factor in the regenerated tissues were detected by reverse transcription-quantitative polymerase chain reaction and immunohistochemistry. Axonal regeneration, motor neuron protection and functional recovery were examined by immunohistochemistry, horseradish peroxidase retrograde neural tracing and electrophysiological and tibialis anterior muscle recovery analyses. It was observed that combination therapy enhances the growth response of the donor nerve locally as well as distally, at the level of the spinal cord motoneuron and the target muscle organ. This phenomenon is likely due to the propagation of retrograde and anterograde transport of growth signals sourced from the graft site. Collectively, growth improvement on the donor nerve, target muscle and motoneuron ultimately contribute to efficacious axonal regeneration and functional recovery. Thorough investigation of molecular peripheral nerve injury combinatorial strategies are required for the optimization of efficacious therapy and full functional recovery following ANA.
Collapse
Affiliation(s)
- Ying Wang
- Department of Anatomy, Mudanjiang College of Medicine, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Hua Jia
- Department of Anatomy, College of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia Hui 750004, P.R. China
| | - Wen-Yuan Li
- Department of Anatomy, Mudanjiang College of Medicine, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Li-Xin Guan
- Department of Anatomy, Mudanjiang College of Medicine, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Lingxiao Deng
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yan-Cui Liu
- Department of Anatomy, Mudanjiang College of Medicine, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Gui-Bo Liu
- Department of Anatomy, Mudanjiang College of Medicine, Mudanjiang, Heilongjiang 157011, P.R. China
| |
Collapse
|
29
|
Buchaim DV, Rodrigues ADC, Buchaim RL, Barraviera B, Junior RSF, Junior GMR, Bueno CRDS, Roque DD, Dias DV, Dare LR, Andreo JC. The new heterologous fibrin sealant in combination with low-level laser therapy (LLLT) in the repair of the buccal branch of the facial nerve. Lasers Med Sci 2016; 31:965-72. [PMID: 27112578 DOI: 10.1007/s10103-016-1939-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 04/11/2016] [Indexed: 01/09/2023]
Abstract
This study aimed to evaluate the effects of low-level laser therapy (LLLT) in the repair of the buccal branch of the facial nerve with two surgical techniques: end-to-end epineural suture and coaptation with heterologous fibrin sealant. Forty-two male Wistar rats were randomly divided into five groups: control group (CG) in which the buccal branch of the facial nerve was collected without injury; (2) experimental group with suture (EGS) and experimental group with fibrin (EGF): The buccal branch of the facial nerve was transected on both sides of the face. End-to-end suture was performed on the right side and fibrin sealant on the left side; (3) Experimental group with suture and laser (EGSL) and experimental group with fibrin and laser (EGFL). All animals underwent the same surgical procedures in the EGS and EGF groups, in combination with the application of LLLT (wavelength of 830 nm, 30 mW optical power output of potency, and energy density of 6 J/cm(2)). The animals of the five groups were euthanized at 5 weeks post-surgery and 10 weeks post-surgery. Axonal sprouting was observed in the distal stump of the facial nerve in all experimental groups. The observed morphology was similar to the fibers of the control group, with a predominance of myelinated fibers. In the final period of the experiment, the EGSL presented the closest results to the CG, in all variables measured, except in the axon area. Both surgical techniques analyzed were effective in the treatment of peripheral nerve injuries, where the use of fibrin sealant allowed the manipulation of the nerve stumps without trauma. LLLT exhibited satisfactory results on facial nerve regeneration, being therefore a useful technique to stimulate axonal regeneration process.
Collapse
Affiliation(s)
- Daniela Vieira Buchaim
- Human Morphophysiology (Anatomy), Faculty of Medicine, University of Marilia (UNIMAR), Marilia, SP, Brazil.
| | - Antonio de Castro Rodrigues
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Rogerio Leone Buchaim
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Benedito Barraviera
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu, São Paulo State, Brazil
| | - Rui Seabra Ferreira Junior
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu, São Paulo State, Brazil
| | | | | | - Domingos Donizeti Roque
- Human Morphophysiology (Anatomy), Faculty of Medicine, University of Marilia (UNIMAR), Marilia, SP, Brazil
| | | | | | - Jesus Carlos Andreo
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| |
Collapse
|
30
|
Glat MJ, Benninger F, Barhum Y, Ben-Zur T, Kogan E, Steiner I, Yaffe D, Offen D. Ectopic Muscle Expression of Neurotrophic Factors Improves Recovery After Nerve Injury. J Mol Neurosci 2015; 58:39-45. [PMID: 26385386 DOI: 10.1007/s12031-015-0648-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 08/26/2015] [Indexed: 02/05/2023]
Abstract
Sciatic nerve damage is a common medical problem. The main causes include direct trauma, prolonged external nerve compression, and pressure from disk herniation. Possible complications include leg numbness and the loss of motor control. In mild cases, conservative treatment is feasible. However, following severe injury, recovery may not be possible. Neuronal regeneration, survival, and maintenance can be achieved by neurotrophic factors (NTFs). In this study, we examined the potency of combining brain-derived neurotrophic factor (BDNF), glial-derived neurotrophic factor (GDNF), vascular endothelial growth factor (VEGF), and insulin-like growth factor-1 (IGF-1) on the recovery of motor neuron function after crush injury of the sciatic nerve. We show that combined NTF application increases the survival of motor neurons exposed to a hypoxic environment. The ectopic expression of NTFs in the injured muscle improves the recovery of the sciatic nerve after crush injury. A significantly faster recovery of compound muscle action potential (CMAP) amplitude and conduction velocity is observed after muscle injections of viral vectors expressing a mixture of the four NTF genes. Our findings suggest a rationale for using genetic treatment with a combination of NTF-expressing vectors, as a potential therapeutic approach for severe peripheral nerve injury.
Collapse
Affiliation(s)
- Micaela Johanna Glat
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.,Felsenstein Medical Research Center, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Felix Benninger
- Department of Neurology, Rabin Medical Center, Petach Tikva, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yael Barhum
- Felsenstein Medical Research Center, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Tali Ben-Zur
- Felsenstein Medical Research Center, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Elena Kogan
- Department of Neurology, Rabin Medical Center, Petach Tikva, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Israel Steiner
- Department of Neurology, Rabin Medical Center, Petach Tikva, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - David Yaffe
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Daniel Offen
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel. .,Felsenstein Medical Research Center, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel. .,The Neuroscience Laboratory, Felsenstein Medical Research Center, Rabin Medical Center, 49100, Petah Tikva, Israel.
| |
Collapse
|
31
|
Gambarotta G, Pascal D, Ronchi G, Morano M, Jager SB, Moimas S, Zentilin L, Giacca M, Perroteau I, Tos P, Geuna S, Raimondo S. Local delivery of the Neuregulin1 receptor ecto-domain (ecto-ErbB4) has a positive effect on regenerated nerve fiber maturation. Gene Ther 2015; 22:901-7. [DOI: 10.1038/gt.2015.46] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/09/2015] [Accepted: 04/22/2015] [Indexed: 01/02/2023]
|
32
|
Faroni A, Mobasseri SA, Kingham PJ, Reid AJ. Peripheral nerve regeneration: experimental strategies and future perspectives. Adv Drug Deliv Rev 2015; 82-83:160-7. [PMID: 25446133 DOI: 10.1016/j.addr.2014.11.010] [Citation(s) in RCA: 371] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 09/01/2014] [Accepted: 11/08/2014] [Indexed: 12/15/2022]
Abstract
Peripheral nerve injuries represent a substantial clinical problem with insufficient or unsatisfactory treatment options. This review summarises all the events occurring after nerve damage at the level of the cell body, the site of injury and the target organ. Various experimental strategies to improve neuronal survival, axonal regeneration and target reinnervation are described including pharmacological approaches and cell-based therapies. Given the complexity of nerve regeneration, further studies are needed to address the biology of nerve injury, to improve the interaction with implantable scaffolds, and to implement cell-based therapies in nerve tissue engineering.
Collapse
|
33
|
Geuna S. The sciatic nerve injury model in pre-clinical research. J Neurosci Methods 2015; 243:39-46. [PMID: 25629799 DOI: 10.1016/j.jneumeth.2015.01.021] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 01/15/2015] [Accepted: 01/16/2015] [Indexed: 12/15/2022]
Abstract
In the pre-clinical view, the study of peripheral nerve repair and regeneration still needs to be carried out in animal models due to the structural complexity of this organ which can be only partly simulated in vitro. The far most used experimental model is based on the injury of the sciatic nerve, the largest nerve trunk in mammals. In this paper, the potential application of the sciatic nerve injury model in pre-clinical research is critically reviewed. This paper is aimed at helping researchers in properly employing this in vivo model for the study of nerve repair and regeneration as well as interpreting the results in a clinical translation perspective.
Collapse
Affiliation(s)
- Stefano Geuna
- Neuroscience Institute of the Cavalieri Ottolenghi Foundation & Department of Clinical and Biological Sciences, University of Turin, Italy.
| |
Collapse
|
34
|
A Contemporary Overview of Peripheral Nerve Research from Cleveland Clinic Microsurgery Laboratory. Plast Reconstr Surg 2015. [DOI: 10.1007/978-1-4471-6335-0_50] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
35
|
Gelatin-based hydrogel for vascular endothelial growth factor release in peripheral nerve tissue engineering. J Tissue Eng Regen Med 2014; 11:459-470. [DOI: 10.1002/term.1936] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 05/24/2014] [Accepted: 05/27/2014] [Indexed: 01/19/2023]
|
36
|
Geuna S, Tos P, Titolo P, Ciclamini D, Beningo T, Battiston B. Update on nerve repair by biological tubulization. J Brachial Plex Peripher Nerve Inj 2014; 9:3. [PMID: 24606921 PMCID: PMC3953745 DOI: 10.1186/1749-7221-9-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 03/02/2014] [Indexed: 12/18/2022] Open
Abstract
Many surgical techniques are available for bridging peripheral nerve defects. Autologous nerve grafts are the current gold standard for most clinical conditions. In selected cases, alternative types of conduits can be used. Although most efforts are today directed towards the development of artificial synthetic nerve guides, the use of non-nervous autologous tissue-based conduits (biological tubulization) can still be considered a valuable alternative to nerve autografts. In this paper we will overview the advancements in biological tubulization of nerve defects, with either mono-component or multiple-component autotransplants, with a special focus on the use of a vein segment filled with skeletal muscle fibers, a technique that has been widely investigated in our laboratory and that has already been successfully introduced in the clinical practice.
Collapse
Affiliation(s)
- Stefano Geuna
- Neuroscience Institute of the Cavalieri Ottolenghi Foundation (NICO), University of Turin, Turin 10043, Italy
- Department of Clinical and Biological Sciences, University of Turin, Turin 10043, Italy
| | - Pierluigi Tos
- Department of Traumatology, Microsurgery Unit, CTO Hospital, Turin, Italy
| | - Paolo Titolo
- UOC Traumatology–Reconstructive Microsurgery, Department of Orthopaedics and Traumatology, CTO Hospital, Torino, Italy
| | - Davide Ciclamini
- Department of Traumatology, Microsurgery Unit, CTO Hospital, Turin, Italy
| | - Teresa Beningo
- Department of Traumatology, Microsurgery Unit, CTO Hospital, Turin, Italy
| | - Bruno Battiston
- Department of Traumatology, Microsurgery Unit, CTO Hospital, Turin, Italy
- UOC Traumatology–Reconstructive Microsurgery, Department of Orthopaedics and Traumatology, CTO Hospital, Torino, Italy
| |
Collapse
|