1
|
Chitena L, Masisi K, Masisi K, Kwape TE, Gaobotse G. Application of Stem Cell Therapy during the treatment of HIV/AIDS and Duchenne Muscular Dystrophy. Curr Stem Cell Res Ther 2021; 17:633-647. [PMID: 35135463 DOI: 10.2174/1574888x16666210810104445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 11/22/2022]
Abstract
Treating diseases such as Muscular dystrophy (MD) and HIV/AIDS poses several challenges to the rapidly evolving field of regenerative medicine. Previously, stem cell therapy has been said to affect the clinical courses of HIV/AIDS and MD, but, in practice, eradication or control of these diseases was not achievable. The introduction of gene editing into stem cell therapy has stimulated HIV/AIDS and MD cell therapy research studies substantially. Here, we review current methods of treating HIV/AIDS and MD using stem cell therapy. This review also details the use of different types of cells and methods in cell therapy and the modeling of new cell-based therapies to treat Duchenne muscular dystrophy. We speculate that the effective use stem cell therapy in conjunction with other treatment therapies such as steroids and rehabilitation could improve livelihood.
Collapse
Affiliation(s)
- Lorraine Chitena
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye. Botswana
| | - Keletso Masisi
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye. Botswana
| | - Kabo Masisi
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye. Botswana
| | - Tebogo E Kwape
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye. Botswana
| | - Goabaone Gaobotse
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye. Botswana
| |
Collapse
|
2
|
Su X, Wang Q, Wen Y, Jiang S, Lu L. Protein- and Peptide-Based Virus Inactivators: Inactivating Viruses Before Their Entry Into Cells. Front Microbiol 2020; 11:1063. [PMID: 32523582 PMCID: PMC7261908 DOI: 10.3389/fmicb.2020.01063] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 04/29/2020] [Indexed: 12/20/2022] Open
Abstract
Infectious diseases caused by human immunodeficiency virus (HIV) and other highly pathogenic enveloped viruses, have threatened the global public health. Most antiviral drugs act as passive defenders to inhibit viral replication inside the cell, while a few of them function as gate keepers to combat viruses outside the cell, including fusion inhibitors, e.g., enfuvirtide, and receptor antagonists, e.g., maraviroc, as well as virus inactivators (including attachment inhibitors). Different from fusion inhibitors and receptor antagonists that must act in the presence of target cells, virus inactivators can actively inactivate cell-free virions in the blood, through interaction with one or more sites in the envelope glycoproteins (Envs) on virions. Notably, a number of protein- and peptide-based virus inactivators (PPVIs) under development are expected to have a better utilization rate than the current antiviral drugs and be safer for in vivo human application than the chemical-based virus inactivators. Here we have highlighted recent progress in developing PPVIs against several important enveloped viruses, including HIV, influenza virus, Zika virus (ZIKV), dengue virus (DENV), and herpes simplex virus (HSV), and the potential use of PPVIs for urgent treatment of infection by newly emerging or re-emerging viruses.
Collapse
Affiliation(s)
- Xiaojie Su
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yumei Wen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China.,Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Pu J, Wang Q, Xu W, Lu L, Jiang S. Development of Protein- and Peptide-Based HIV Entry Inhibitors Targeting gp120 or gp41. Viruses 2019; 11:v11080705. [PMID: 31374953 PMCID: PMC6722851 DOI: 10.3390/v11080705] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/26/2019] [Accepted: 07/26/2019] [Indexed: 01/08/2023] Open
Abstract
Application of highly active antiretroviral drugs (ARDs) effectively reduces morbidity and mortality in HIV-infected individuals. However, the emergence of multiple drug-resistant strains has led to the increased failure of ARDs, thus calling for the development of anti-HIV drugs with targets or mechanisms of action different from those of the current ARDs. The first peptide-based HIV entry inhibitor, enfuvirtide, was approved by the U.S. FDA in 2003 for treatment of HIV/AIDS patients who have failed to respond to the current ARDs, which has stimulated the development of several series of protein- and peptide-based HIV entry inhibitors in preclinical and clinical studies. In this review, we highlighted the properties and mechanisms of action for those promising protein- and peptide-based HIV entry inhibitors targeting the HIV-1 gp120 or gp41 and discussed their advantages and disadvantages, compared with the current ARDs.
Collapse
Affiliation(s)
- Jing Pu
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Fudan University, Shanghai 200032, China
| | - Qian Wang
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Fudan University, Shanghai 200032, China
| | - Wei Xu
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Fudan University, Shanghai 200032, China
| | - Lu Lu
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Fudan University, Shanghai 200032, China.
| | - Shibo Jiang
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Fudan University, Shanghai 200032, China.
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| |
Collapse
|
4
|
Falkenhagen A, Joshi S. Genetic Strategies for HIV Treatment and Prevention. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 13:514-533. [PMID: 30388625 PMCID: PMC6205348 DOI: 10.1016/j.omtn.2018.09.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 08/28/2018] [Accepted: 09/02/2018] [Indexed: 01/02/2023]
Abstract
Conventional HIV gene therapy approaches are based on engineering HIV target cells that are non-permissive to viral replication. However, expansion of gene-modified HIV target cells has been limited in patients. Alternative genetic strategies focus on generating gene-modified producer cells that secrete antiviral proteins (AVPs). The secreted AVPs interfere with HIV entry, and, therefore, they extend the protection against infection to unmodified HIV target cells. Since any cell type can potentially secrete AVPs, hematopoietic and non-hematopoietic cell lineages can function as producer cells. Secretion of AVPs from non-hematopoietic cells opens the possibility of using a genetic approach for HIV prevention. Another strategy aims at modifying cytotoxic T cells to selectively target and eliminate infected cells. This review provides an overview of the different genetic approaches for HIV treatment and prevention.
Collapse
Affiliation(s)
- Alexander Falkenhagen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Sadhna Joshi
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
5
|
Falkenhagen A, Joshi S. HIV Entry and Its Inhibition by Bifunctional Antiviral Proteins. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 13:347-364. [PMID: 30340139 PMCID: PMC6197789 DOI: 10.1016/j.omtn.2018.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 12/14/2022]
Abstract
HIV entry is a highly specific and time-sensitive process that can be divided into receptor binding, coreceptor binding, and membrane fusion. Bifunctional antiviral proteins (bAVPs) exploit the multi-step nature of the HIV entry process by binding to two different extracellular targets. They are generated by expressing a fusion protein containing two entry inhibitors with a flexible linker. The resulting fusion proteins exhibit exceptional neutralization potency and broad cross-clade inhibition. In this review, we summarize the HIV entry process and provide an overview of the design, antiviral potency, and methods of delivery of bAVPs. Additionally, we discuss the advantages and limitations of bAVPs for HIV prevention and treatment.
Collapse
Affiliation(s)
- Alexander Falkenhagen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E2, Canada
| | - Sadhna Joshi
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E2, Canada.
| |
Collapse
|
6
|
Control of HIV Infection In Vivo Using Gene Therapy with a Secreted Entry Inhibitor. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 9:132-144. [PMID: 29246292 PMCID: PMC5633861 DOI: 10.1016/j.omtn.2017.08.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/29/2017] [Accepted: 08/29/2017] [Indexed: 11/22/2022]
Abstract
HIV entry inhibitors are highly effective in controlling virus replication. We have developed a lentiviral vector that expresses a secreted entry inhibitor, soluble CD4 (sCD4), which binds to the HIV envelope glycoproteins and inactivates the virus. We have shown that sCD4 was secreted from gene-modified CD4+ T cells, as well as from human umbilical cord blood-derived CD34+ hematopoietic stem/progenitor cells (HSPCs), and protected unmodified HIV target cells from infection in vitro. To investigate the in vivo application of our approach, we injected gene-modified HSPCs into NOD/SCID/γcnull (NSG) mice. NSG hosts supported multi-lineage differentiation of human gene-modified HSPCs. Upon challenge with HIV, humanized mice capable of secreting sCD4 demonstrated a reduction of viral load over time compared to control humanized mice. In contrast to gene therapy approaches that render only gene-modified HIV target cells resistant to infection, our approach also showed protection of unmodified CD4+ T cells in the peripheral blood and tissues. Our findings provide support for the continuous delivery of secreted entry inhibitors via gene therapy as an alternative to oral administration of antiretroviral drugs or injection of antiretroviral proteins, including antibodies.
Collapse
|
7
|
Falkenhagen A, Joshi S. Further Characterization of the Bifunctional HIV Entry Inhibitor sCD4-FI T45. MOLECULAR THERAPY-NUCLEIC ACIDS 2017. [PMID: 28624214 PMCID: PMC5432676 DOI: 10.1016/j.omtn.2017.04.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
HIV entry into target cells is a highly sequential and time-sensitive process. In recent years, potent HIV Env-targeting antibodies, such as VRC01, have been identified. However, antibodies bind only to a single epitope, and mutations that confer resistance to antibody-mediated inhibition of HIV entry have been detected. In contrast, HIV cannot escape from binding to soluble CD4 (sCD4) without a fitness disadvantage. sCD4 has the unique ability to induce conformational changes within the HIV envelope glycoproteins (Env) that allow fusion inhibitors to bind. We have previously linked sCD4 to the fusion inhibitor FIT45 (sCD4-FIT45) and examined delivery of the bifunctional entry inhibitor via gene therapy. Here, we extend our studies and analyze the ability of sCD4-FIT45 to inhibit HIV Env-mediated cell fusion and HIV entry of several primary isolates. sCD4-FIT45 inhibited both cell fusion and HIV entry with remarkable antiviral activity. The mean 50% inhibitory concentrations (IC50) for sCD4-FIT45 were <0.2 μg/mL in both assays. Importantly, inhibition by sCD4-FIT45 was more potent than by VRC01, sCD4, or the previously described bifunctional protein sCD4-scFv17b. In contrast to sCD4, sCD4-FIT45 as well as VRC01 and sCD4-scFv17b did not mediate cell fusion between HIV Env+ and CD4−CCR5+ cells. The results presented here provide further evidence for the testing of sCD4-FIT45 and development of bifunctional proteins based on the sCD4-fusion inhibitor architecture.
Collapse
Affiliation(s)
- Alexander Falkenhagen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 150 College Street, Rm. 210, Toronto, ON M5S 3E2, Canada
| | - Sadhna Joshi
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 150 College Street, Rm. 210, Toronto, ON M5S 3E2, Canada; Department of Molecular Genetics, University of Toronto, 150 College Street, Rm. 210, Toronto, ON M5S 3E2, Canada.
| |
Collapse
|
8
|
Falkenhagen A, Asad S, Read SE, Joshi S. Lentiviral expression system for the purification of secreted proteins from human cell cultures. BMC Biotechnol 2016; 16:66. [PMID: 27590008 PMCID: PMC5009704 DOI: 10.1186/s12896-016-0288-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 07/29/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recombinant proteins of therapeutic use are ideally produced in human cells to ensure appropriate co- and post-translational modifications. However, purification of secreted proteins from the culture media is impeded by low expression from transfected cell lines and the presence of serum proteins. Here we describe a simple and cost-effective approach based on lentiviral vector-mediated gene delivery and expression of a secreted His-tagged protein from human embryonic kidney 293 T cells and direct affinity chromatography purification from the cell culture media. RESULTS Using a protein-based HIV entry inhibitor, soluble CD4 (sCD4), we demonstrated that 293 T cells transduced with a lentiviral vector mediated over 10-fold higher secretion of sCD4 in comparison to 293 T cells transfected with the corresponding plasmid. Secretion of sCD4 increased with the dose of the lentiviral vector up to a multiplicity of infection of 50. Exchanging the native signal peptide of sCD4 with the signal peptide of human alpha-1 antitrypsin increased expression by 50 %. There was no difference in expression from a monocistronic or bicistronic lentiviral vector. Reduction of the serum concentration in the culture media had no significant effect on the secretion of sCD4. Small-scale purification from 50 ml of culture media with reduced serum content yielded up to 1 mg of pure sCD4. Purified sCD4 bound to recombinant HIV envelope glycoprotein 120 (Env gp120) and inhibited HIV entry at concentrations comparable to published results. CONCLUSION The procedure outlined in this study can be performed without the need for specialized reagents or equipment and could easily be adapted by any laboratory. Furthermore, the method could be used to produce sCD4 fusion proteins or other His-tagged proteins.
Collapse
Affiliation(s)
- Alexander Falkenhagen
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Canada
| | - Sabah Asad
- Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada
| | - Stanley E Read
- Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada
| | - Sadhna Joshi
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, Canada.
| |
Collapse
|
9
|
Herrera-Carrillo E, Berkhout B. Bone Marrow Gene Therapy for HIV/AIDS. Viruses 2015; 7:3910-36. [PMID: 26193303 PMCID: PMC4517133 DOI: 10.3390/v7072804] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/09/2015] [Accepted: 07/13/2015] [Indexed: 12/24/2022] Open
Abstract
Bone marrow gene therapy remains an attractive option for treating chronic immunological diseases, including acquired immunodeficiency syndrome (AIDS) caused by human immunodeficiency virus (HIV). This technology combines the differentiation and expansion capacity of hematopoietic stem cells (HSCs) with long-term expression of therapeutic transgenes using integrating vectors. In this review we summarize the potential of bone marrow gene therapy for the treatment of HIV/AIDS. A broad range of antiviral strategies are discussed, with a particular focus on RNA-based therapies. The idea is to develop a durable gene therapy that lasts the life span of the infected individual, thus contrasting with daily drug regimens to suppress the virus. Different approaches have been proposed to target either the virus or cellular genes encoding co-factors that support virus replication. Some of these therapies have been tested in clinical trials, providing proof of principle that gene therapy is a safe option for treating HIV/AIDS. In this review several topics are discussed, ranging from the selection of the antiviral molecule and the viral target to the optimal vector system for gene delivery and the setup of appropriate preclinical test systems. The molecular mechanisms used to formulate a cure for HIV infection are described, including the latest antiviral strategies and their therapeutic applications. Finally, a potent combination of anti-HIV genes based on our own research program is described.
Collapse
Affiliation(s)
- Elena Herrera-Carrillo
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands.
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands.
| |
Collapse
|
10
|
Focosi D, Maggi F, Ceccherini-Nelli L, Pistello M. Cell therapies for treatment of human immunodeficiency virus infection. Rev Med Virol 2015; 25:156-74. [PMID: 25727480 DOI: 10.1002/rmv.1831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/30/2015] [Accepted: 02/05/2015] [Indexed: 12/15/2022]
Abstract
After the serendipitous discovery of HIV eradication in the "Berlin patient", interest has grown in curing HIV infection by replacing the patient's replication-competent blood cells with infection-resistant ones. At the same time, induced pluripotent stem cell technologies and genetic engineering have boosted cell therapy transfer into the clinic. Currently available cell therapy approaches to attempt to cure HIV infection include the following: (1) Transplantation of autologous or allogeneic cells spontaneously resistant or edited to resist HIV infection; (2) Transplantation of autologous T-lymphocytes spontaneously targeting or redirected against HIV; and (3) Transplantation of autologous cells engineered to work as anti-HIV antibody factories. We review here the preliminary results and potential for future applications of these approaches.
Collapse
Affiliation(s)
- Daniele Focosi
- Retrovirus Center and Virology Section, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | | | | | | |
Collapse
|