1
|
Chen TC, Chang SW. Repeated cell sorting ensures the homogeneity of ocular cell populations expressing a transgenic protein. PLoS One 2022; 17:e0265183. [PMID: 35333876 PMCID: PMC8956163 DOI: 10.1371/journal.pone.0265183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 02/25/2022] [Indexed: 11/19/2022] Open
Abstract
Transgenic proteins can be routinely expressed in various mammalian cell types via different transgenic systems, but the efficiency of transgene expression is constrained by the complex interplay among factors such as the temporal consistency of expression and compatibility with specific cell types, including ocular cells. Here, we report a more efficient way to express an enhanced green fluorescent protein (EGFP) in human corneal fibroblasts, corneal epithelial cells, and conjunctival epithelial cells through a lentiviral expression system. The relative transducing unit criterion for EGFP-expressing pseudovirions was first determined in HEK-293T cells. Homogeneous populations of EGFP-positive and EGFP-negative cells could be isolated by cell sorting. The half-maximal inhibitory concentration (IC50) value for puromycin was calculated according to viability curves for each cell type. The results revealed that cell types differed with respect to EGFP expression efficiency after transduction with the same amount of EGFP-encoding pseudovirions. Using a cell sorter, the homogeneity of EGFP-positive cells reached >95%. In the initial sorting stage, however, the efficiency of EGFP expression in the sorted cells was noticeably reduced after two rounds of sequential culture, but repeated sorting for up to four rounds yielded homogeneous EGFP-positive human corneal fibroblasts that could be maintained in continuous culture in vitro. The sorted EGFP-positive cells retained their proper morphology and cell type-specific protein expression patterns. Puromycin resistance was found to depend on cell type, indicating that the IC50 for puromycin must be determined for each cell type to ensure the isolation of homogeneous EGFP-positive cells. Taken together, repeated cell sorting is an efficient means of obtaining homogeneous populations of ocular cells expressing a transgenic protein during continuous culture without the potential confounding effects of antibiotics.
Collapse
Affiliation(s)
- Tsan-Chi Chen
- Department of Ophthalmology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Shu-Wen Chang
- Department of Ophthalmology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
2
|
Lundstrom K. Application of Viral Vectors for Vaccine Development with a Special Emphasis on COVID-19. Viruses 2020; 12:E1324. [PMID: 33218001 PMCID: PMC7698750 DOI: 10.3390/v12111324] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
Viral vectors can generate high levels of recombinant protein expression providing the basis for modern vaccine development. A large number of different viral vector expression systems have been utilized for targeting viral surface proteins and tumor-associated antigens. Immunization studies in preclinical animal models have evaluated the elicited humoral and cellular responses and the possible protection against challenges with lethal doses of infectious pathogens or tumor cells. Several vaccine candidates for both infectious diseases and various cancers have been subjected to a number of clinical trials. Human immunization trials have confirmed safe application of viral vectors, generation of neutralizing antibodies and protection against challenges with lethal doses. A special emphasis is placed on COVID-19 vaccines based on viral vectors. Likewise, the flexibility and advantages of applying viral particles, RNA replicons and DNA replicon vectors of self-replicating RNA viruses for vaccine development are presented.
Collapse
|
3
|
Wang Y, Li S, Tian Z, Sun J, Liang S, Zhang B, Bai L, Zhang Y, Zhou X, Xiao S, Zhang Q, Zhang L, Zhang C, Zhou D. Generation of a caged lentiviral vector through an unnatural amino acid for photo-switchable transduction. Nucleic Acids Res 2019; 47:e114. [PMID: 31361892 PMCID: PMC6821241 DOI: 10.1093/nar/gkz659] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 07/06/2019] [Accepted: 07/18/2019] [Indexed: 12/22/2022] Open
Abstract
Application of viral vectors in gene delivery is attracting widespread attention but is hampered by the absence of control over transduction, which may lead to non-selective transduction with adverse side effects. To overcome some of these limitations, we proposed an unnatural amino acid aided caging–uncaging strategy for controlling the transduction capability of a viral vector. In this proof-of-principle study, we first expanded the genetic code of the lentiviral vector to incorporate an azido-containing unnatural amino acid (Nϵ-2-azidoethyloxycarbonyl-l-lysine, NAEK) site specifically within a lentiviral envelope protein. Screening of the resultant vectors indicated that NAEK incorporation at Y77 and Y116 was capable of inactivating viral transduction upon click conjugation with a photo-cleavable chemical molecule (T1). Exposure of the chimeric viral vector (Y77-T1) to UVA light subsequently removed the photo-caging group and restored the transduction capability of lentiviral vector both in vitro and in vivo. Our results indicate that the use of the photo-uncage activation procedure can reverse deactivated lentiviral vectors and thus enable regulation of viral transduction in a switchable manner. The methods presented here may be a general approach for generating various switchable vectors that respond to different stimulations and adapt to different viral vectors.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Shuai Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhenyu Tian
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jiaqi Sun
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Shuobin Liang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bo Zhang
- Center for Translational Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lu Bai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yuanjie Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xueying Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Sulong Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qiang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Chuanling Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Demin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
4
|
Torres-Ruiz R, Benítez-Burraco A, Martínez-Lage M, Rodríguez-Perales S, García-Bellido P. Functional characterization of two enhancers located downstream FOXP2. BMC MEDICAL GENETICS 2019; 20:65. [PMID: 31046704 PMCID: PMC6498672 DOI: 10.1186/s12881-019-0810-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 04/17/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Mutations in the coding region of FOXP2 are known to cause speech and language impairment. However, it is not clear how dysregulation of the gene contributes to language deficit. Interestingly, microdeletions of the region downstream the gene have been associated with cognitive deficits. METHODS Here, we investigate changes in FOXP2 expression in the SK-N-MC neuroblastoma human cell line after deletion by CRISPR-Cas9 of two enhancers located downstream of the gene. RESULTS Deletion of any of these two functional enhancers downregulates FOXP2, but also upregulates the closest 3' gene MDFIC. Because this effect is not statistically significant in a HEK 293 cell line, derived from the human kidney, both enhancers might confer a tissue specific regulation to both genes. We have also found that the deletion of any of these enhancers downregulates six well-known FOXP2 target genes in the SK-N-MC cell line. CONCLUSIONS We expect these findings contribute to a deeper understanding of how FOXP2 and MDFIC are regulated to pace neuronal development supporting cognition, speech and language.
Collapse
Affiliation(s)
- Raúl Torres-Ruiz
- Molecular Cytogenetics Group, Centro Nacional Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Antonio Benítez-Burraco
- Department of Spanish, Linguistics, and Theory of Literature (Linguistics), University of Seville, Seville, Spain.
| | - Marta Martínez-Lage
- Molecular Cytogenetics Group, Centro Nacional Investigaciones Oncológicas (CNIO), Madrid, Spain
| | | | - Paloma García-Bellido
- Faculty of Modern Languages, University of Oxford, Oxford, UK.,Faculty of Linguistics, Philology and Phonetics, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Sánchez-Hernández S, Gutierrez-Guerrero A, Martín-Guerra R, Cortijo-Gutierrez M, Tristán-Manzano M, Rodriguez-Perales S, Sanchez L, Garcia-Perez JL, Chato-Astrain J, Fernandez-Valades R, Carrillo-Galvez AB, Anderson P, Montes R, Real PJ, Martin F, Benabdellah K. The IS2 Element Improves Transcription Efficiency of Integration-Deficient Lentiviral Vector Episomes. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 13:16-28. [PMID: 30227274 PMCID: PMC6141704 DOI: 10.1016/j.omtn.2018.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 07/02/2018] [Accepted: 08/14/2018] [Indexed: 02/06/2023]
Abstract
Integration-defective lentiviral vectors (IDLVs) have become an important alternative tool for gene therapy applications and basic research. Unfortunately, IDLVs show lower transgene expression as compared to their integrating counterparts. In this study, we aimed to improve the expression levels of IDLVs by inserting the IS2 element, which harbors SARs and HS4 sequences, into their LTRs (SE-IS2-IDLVs). Contrary to our expectations, the presence of the IS2 element did not abrogate epigenetic silencing by histone deacetylases. In addition, the IS2 element reduced episome levels in IDLV-transduced cells. Interestingly, despite these negative effects, SE-IS2-IDLVs outperformed SE-IDLVs in terms of percentage and expression levels of the transgene in several cell lines, including neurons, neuronal progenitor cells, and induced pluripotent stem cells. We estimated that the IS2 element enhances the transcriptional activity of IDLV LTR circles 6- to 7-fold. The final effect the IS2 element in IDLVs will greatly depend on the target cell and the balance between the negative versus the positive effects of the IS2 element in each cell type. The better performance of SE-IS2-IDLVs was not due to improved stability or differences in the proportions of 1-LTR versus 2-LTR circles but probably to a re-positioning of IS2-episomes into transcriptionally active regions.
Collapse
Affiliation(s)
- Sabina Sánchez-Hernández
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada, 18016 Granada, Spain
| | - Alejandra Gutierrez-Guerrero
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada, 18016 Granada, Spain
| | - Rocío Martín-Guerra
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada, 18016 Granada, Spain
| | - Marina Cortijo-Gutierrez
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada, 18016 Granada, Spain
| | - María Tristán-Manzano
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada, 18016 Granada, Spain
| | - Sandra Rodriguez-Perales
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Department, CNIO, Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | - Laura Sanchez
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada, 18016 Granada, Spain
| | - Jose Luis Garcia-Perez
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada, 18016 Granada, Spain
| | - Jesus Chato-Astrain
- Department of Histology, Tissue Engineering Group, University of Granada, Granada, Spain
| | - Ricardo Fernandez-Valades
- Pediatric Surgery Department, University Hospital "Virgen de las Nieves," Avda. Fuerzas Armadas 2, 18014 Granada, Spain
| | - Ana Belén Carrillo-Galvez
- Oncology Department, GENYO, Centre for Genomics and Oncology, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada, 18016 Granada, Spain
| | - Per Anderson
- LentiStem Biotech, GENYO, Avda. de la Ilustración 114, 18016 PTS Granada, Spain; Oncology Department, GENYO, Centre for Genomics and Oncology, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada, 18016 Granada, Spain
| | - Rosa Montes
- Oncology Department, GENYO, Centre for Genomics and Oncology, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada, 18016 Granada, Spain
| | - Pedro J Real
- Oncology Department, GENYO, Centre for Genomics and Oncology, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada, 18016 Granada, Spain; Departament of Biochemistry and Molecular Biology I, University of Granada, Granada, Spain
| | - Francisco Martin
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada, 18016 Granada, Spain; LentiStem Biotech, GENYO, Avda. de la Ilustración 114, 18016 PTS Granada, Spain.
| | - Karim Benabdellah
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada, 18016 Granada, Spain; LentiStem Biotech, GENYO, Avda. de la Ilustración 114, 18016 PTS Granada, Spain.
| |
Collapse
|
6
|
CRISPR/Cas9 for Cancer Therapy: Hopes and Challenges. Biomedicines 2018; 6:biomedicines6040105. [PMID: 30424477 PMCID: PMC6315587 DOI: 10.3390/biomedicines6040105] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 12/13/2022] Open
Abstract
Cancer is the second leading cause of death globally and remains a major economic and social burden. Although our understanding of cancer at the molecular level continues to improve, more effort is needed to develop new therapeutic tools and approaches exploiting these advances. Because of its high efficiency and accuracy, the CRISPR-Cas9 genome editing technique has recently emerged as a potentially powerful tool in the arsenal of cancer therapy. Among its many applications, CRISPR-Cas9 has shown an unprecedented clinical potential to discover novel targets for cancer therapy and to dissect chemical-genetic interactions, providing insight into how tumours respond to drug treatment. Moreover, CRISPR-Cas9 can be employed to rapidly engineer immune cells and oncolytic viruses for cancer immunotherapeutic applications. Perhaps more importantly, the ability of CRISPR-Cas9 to accurately edit genes, not only in cell culture models and model organisms but also in humans, allows its use in therapeutic explorations. In this review, we discuss important considerations for the use of CRISPR/Cas9 in therapeutic settings and major challenges that will need to be addressed prior to its clinical translation for a complex and polygenic disease such as cancer.
Collapse
|
7
|
Hamilton AM, Foster PJ, Ronald JA. Evaluating Nonintegrating Lentiviruses as Safe Vectors for Noninvasive Reporter-Based Molecular Imaging of Multipotent Mesenchymal Stem Cells. Hum Gene Ther 2018; 29:1213-1225. [DOI: 10.1089/hum.2018.111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Amanda M. Hamilton
- Imaging Research Laboratories, Robarts Research Institute, London, Canada
| | - Paula J. Foster
- Imaging Research Laboratories, Robarts Research Institute, London, Canada
- Medical Biophysics, University of Western Ontario, London, Canada
| | - John A. Ronald
- Imaging Research Laboratories, Robarts Research Institute, London, Canada
- Medical Biophysics, University of Western Ontario, London, Canada
- Lawson Health Research Institute, London, Canada
| |
Collapse
|
8
|
Efficient Recreation of t(11;22) EWSR1-FLI1 + in Human Stem Cells Using CRISPR/Cas9. Stem Cell Reports 2018; 8:1408-1420. [PMID: 28494941 PMCID: PMC5425785 DOI: 10.1016/j.stemcr.2017.04.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 04/12/2017] [Accepted: 04/12/2017] [Indexed: 12/21/2022] Open
Abstract
Efficient methodologies for recreating cancer-associated chromosome translocations are in high demand as tools for investigating how such events initiate cancer. The CRISPR/Cas9 system has been used to reconstruct the genetics of these complex rearrangements at native loci while maintaining the architecture and regulatory elements. However, the CRISPR system remains inefficient in human stem cells. Here, we compared three strategies aimed at enhancing the efficiency of the CRISPR-mediated t(11;22) translocation in human stem cells, including mesenchymal and induced pluripotent stem cells: (1) using end-joining DNA processing factors involved in repair mechanisms, or (2) ssODNs to guide the ligation of the double-strand break ends generated by CRISPR/Cas9; and (3) all-in-one plasmid or ribonucleoprotein complex-based approaches. We report that the generation of targeted t(11;22) is significantly increased by using a combination of ribonucleoprotein complexes and ssODNs. The CRISPR/Cas9-mediated generation of targeted t(11;22) in human stem cells opens up new avenues in modeling Ewing sarcoma.
Collapse
|
9
|
Liu T, Hu Y, Guo S, Tan L, Zhan Y, Yang L, Liu W, Wang N, Li Y, Zhang Y, Liu C, Yang Y, Adelstein RS, Wang A. Identification and characterization of MYH9 locus for high efficient gene knock-in and stable expression in mouse embryonic stem cells. PLoS One 2018; 13:e0192641. [PMID: 29438440 PMCID: PMC5811019 DOI: 10.1371/journal.pone.0192641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/26/2018] [Indexed: 01/22/2023] Open
Abstract
Targeted integration of exogenous genes into so-called safe harbors/friend sites, offers the advantages of expressing normal levels of target genes and preventing potentially adverse effects on endogenous genes. However, the ideal genomic loci for this purpose remain limited. Additionally, due to the inherent and unresolved issues with the current genome editing tools, traditional embryonic stem (ES) cell-based targeted transgenesis technology is still preferred in practical applications. Here, we report that a high and repeatable homologous recombination (HR) frequency (>95%) is achieved when an approximate 6kb DNA sequence flanking the MYH9 gene exon 2 site is used to create the homology arms for the knockout/knock-in of diverse nonmuscle myosin II (NM II) isoforms in mouse ES cells. The easily obtained ES clones greatly facilitated the generation of multiple NM II genetic replacement mouse models, as characterized previously. Further investigation demonstrated that though the targeted integration site for exogenous genes is shifted to MYH9 intron 2 (about 500bp downstream exon 2), the high HR efficiency and the endogenous MYH9 gene integrity are not only preserved, but the expected expression of the inserted gene(s) is observed in a pre-designed set of experiments conducted in mouse ES cells. Importantly, we confirmed that the expression and normal function of the endogenous MYH9 gene is not affected by the insertion of the exogenous gene in these cases. Therefore, these findings suggest that like the commonly used ROSA26 site, the MYH9 gene locus may be considered a new safe harbor for high-efficiency targeted transgenesis and for biomedical applications.
Collapse
Affiliation(s)
- Tanbin Liu
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Yi Hu
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Shiyin Guo
- College of Food Science and Technology, HUNAU, Changsha, Hunan, China
| | - Lei Tan
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Yang Zhan
- Lab of Functional Proteomics (LFP), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, HUNAU, Changsha, Hunan, China
| | - Lingchen Yang
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Wei Liu
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Naidong Wang
- Lab of Functional Proteomics (LFP), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, HUNAU, Changsha, Hunan, China
| | - Yalan Li
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Yingfan Zhang
- Lab of Molecular Cardiology (LMC), National Heart, Lung, and Blood Institute (NHLBI)/National Institutes of Health (NIH), Bethesda, MD, United States of America
| | - Chengyu Liu
- Transgenic Core, NHLBI/ NIH, Bethesda, MD, United States of America
| | - Yi Yang
- Lab of Functional Proteomics (LFP), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, HUNAU, Changsha, Hunan, China
| | - Robert S. Adelstein
- Lab of Molecular Cardiology (LMC), National Heart, Lung, and Blood Institute (NHLBI)/National Institutes of Health (NIH), Bethesda, MD, United States of America
| | - Aibing Wang
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
- Lab of Molecular Cardiology (LMC), National Heart, Lung, and Blood Institute (NHLBI)/National Institutes of Health (NIH), Bethesda, MD, United States of America
- * E-mail:
| |
Collapse
|
10
|
Athanasopoulos T, Munye MM, Yáñez-Muñoz RJ. Nonintegrating Gene Therapy Vectors. Hematol Oncol Clin North Am 2017; 31:753-770. [DOI: 10.1016/j.hoc.2017.06.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
11
|
Huang C, Lan W, Wang F, Zhang C, Liu X, Chen Q. Establishment of a Human Breast Cancer Model by Fusion PCR for In Vivo and In Vitro Fluorescence Imaging of Human Breast Cancer. DNA Cell Biol 2016; 36:50-57. [PMID: 27893280 DOI: 10.1089/dna.2016.3531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
This study aimed to construct a breast cancer model that could continuously express the genes of luciferase and green fluorescent protein. The genes luciferase, EGFP, and Neo were obtained by fusion polymerase chain reaction (PCR) and inserted into pAAV-MCS. The pAAV-Luciferase-EGFP-Neo vector was transfected into MDA-MB-231 cells. After antibiotic resistance gene screening and limiting dilution assay, we constructed a monoclonal stable cell line that expresses the fusion protein Luciferase-EGFP. In comparison with the polyclonal stable cell line, the monoclonal cell line had good genetic stability and was not different from the parental cell line MDA-MB-231. The monoclonal stable cell line would be ideal for a breast cancer model. Indices of fluorescence imaging can be applied to fluorescence imaging in vitro and in vivo, providing a straightforward and reliable system for breast cancer and drug discovery research.
Collapse
Affiliation(s)
- Can Huang
- 1 College of Life Science, Shanghai University , Shanghai, China .,2 Suzhou Institute of Biomedical Engineering and Technology , Chinese Academy of Sciences, Suzhou, China
| | - Wenjun Lan
- 3 College of Life Science and Technology, China Pharmaceutical University , Nanjing, China
| | - Feifei Wang
- 1 College of Life Science, Shanghai University , Shanghai, China .,2 Suzhou Institute of Biomedical Engineering and Technology , Chinese Academy of Sciences, Suzhou, China
| | - Chun Zhang
- 2 Suzhou Institute of Biomedical Engineering and Technology , Chinese Academy of Sciences, Suzhou, China
| | - Xiaomei Liu
- 2 Suzhou Institute of Biomedical Engineering and Technology , Chinese Academy of Sciences, Suzhou, China
| | - Qin Chen
- 1 College of Life Science, Shanghai University , Shanghai, China
| |
Collapse
|
12
|
Chira S, Jackson CS, Oprea I, Ozturk F, Pepper MS, Diaconu I, Braicu C, Raduly LZ, Calin GA, Berindan-Neagoe I. Progresses towards safe and efficient gene therapy vectors. Oncotarget 2016; 6:30675-703. [PMID: 26362400 PMCID: PMC4741561 DOI: 10.18632/oncotarget.5169] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/22/2015] [Indexed: 12/11/2022] Open
Abstract
The emergence of genetic engineering at the beginning of the 1970′s opened the era of biomedical technologies, which aims to improve human health using genetic manipulation techniques in a clinical context. Gene therapy represents an innovating and appealing strategy for treatment of human diseases, which utilizes vehicles or vectors for delivering therapeutic genes into the patients' body. However, a few past unsuccessful events that negatively marked the beginning of gene therapy resulted in the need for further studies regarding the design and biology of gene therapy vectors, so that this innovating treatment approach can successfully move from bench to bedside. In this paper, we review the major gene delivery vectors and recent improvements made in their design meant to overcome the issues that commonly arise with the use of gene therapy vectors. At the end of the manuscript, we summarized the main advantages and disadvantages of common gene therapy vectors and we discuss possible future directions for potential therapeutic vectors.
Collapse
Affiliation(s)
- Sergiu Chira
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania
| | - Carlo S Jackson
- Department of Immunology and Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Iulian Oprea
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Ferhat Ozturk
- Department of Molecular Biology and Genetics, Canik Başari University, Samsun, Turkey
| | - Michael S Pepper
- Department of Immunology and Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | | | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania
| | - Lajos-Zsolt Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania.,Department of Physiopathology, Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, Cluj Napoca, Romania
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania.,Department of Immunology, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania.,Department of Functional Genomics and Experimental Pathology, Oncological Institute "Prof. Dr. Ion Chiricuţă", Cluj Napoca, Romania.,Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
13
|
CRISPR-Cas9 technology: applications and human disease modelling. Brief Funct Genomics 2016; 16:4-12. [DOI: 10.1093/bfgp/elw025] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
14
|
Torres-Ruiz R, Rodriguez-Perales S. CRISPR-Cas9: A Revolutionary Tool for Cancer Modelling. Int J Mol Sci 2015; 16:22151-68. [PMID: 26389881 PMCID: PMC4613301 DOI: 10.3390/ijms160922151] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 09/03/2015] [Accepted: 09/06/2015] [Indexed: 12/15/2022] Open
Abstract
The cancer-modelling field is now experiencing a conversion with the recent emergence of the RNA-programmable CRISPR-Cas9 system, a flexible methodology to produce essentially any desired modification in the genome. Cancer is a multistep process that involves many genetic mutations and other genome rearrangements. Despite their importance, it is difficult to recapitulate the degree of genetic complexity found in patient tumors. The CRISPR-Cas9 system for genome editing has been proven as a robust technology that makes it possible to generate cellular and animal models that recapitulate those cooperative alterations rapidly and at low cost. In this review, we will discuss the innovative applications of the CRISPR-Cas9 system to generate new models, providing a new way to interrogate the development and progression of cancers.
Collapse
Affiliation(s)
- Raul Torres-Ruiz
- Viral Vector Technical Unit, Fundacion Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernandez Almagro, 3, 28029 Madrid, Spain.
| | - Sandra Rodriguez-Perales
- Molecular Cytogenetics Group, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Melchor Fernandez Almagro, 3, 28029 Madrid, Spain.
| |
Collapse
|
15
|
Rodriguez-Perales S, Torres-Ruiz R, Suela J, Acquadro F, Martin MC, Yebra E, Ramirez JC, Alvarez S, Cigudosa JC. Truncated RUNX1 protein generated by a novel t(1;21)(p32;q22) chromosomal translocation impairs the proliferation and differentiation of human hematopoietic progenitors. Oncogene 2015; 35:125-34. [DOI: 10.1038/onc.2015.70] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 01/21/2015] [Accepted: 02/02/2015] [Indexed: 12/15/2022]
|
16
|
Torres R, Martin MC, Garcia A, Cigudosa JC, Ramirez JC, Rodriguez-Perales S. Engineering human tumour-associated chromosomal translocations with the RNA-guided CRISPR-Cas9 system. Nat Commun 2014; 5:3964. [PMID: 24888982 DOI: 10.1038/ncomms4964] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/28/2014] [Indexed: 12/31/2022] Open
Abstract
Cancer-related human chromosomal translocations are generated through the illegitimate joining of two non-homologous chromosomes affected by double-strand breaks (DSB). Effective methodologies to reproduce precise reciprocal tumour-associated chromosomal translocations are required to gain insight into the initiation of leukaemia and sarcomas. Here we present a strategy for generating cancer-related human chromosomal translocations in vitro based on the ability of the RNA-guided CRISPR-Cas9 system to induce DSBs at defined positions. Using this approach we generate human cell lines and primary cells bearing chromosomal translocations resembling those described in acute myeloid leukaemia and Ewing's sarcoma at high frequencies. FISH and molecular analysis at the mRNA and protein levels of the fusion genes involved in these engineered cells reveal the reliability and accuracy of the CRISPR-Cas9 approach, providing a powerful tool for cancer studies.
Collapse
MESH Headings
- Artificial Gene Fusion
- CRISPR-Cas Systems
- Calmodulin-Binding Proteins/genetics
- Core Binding Factor Alpha 2 Subunit/genetics
- DNA Breaks, Double-Stranded
- Humans
- In Vitro Techniques
- Leukemia, Myeloid, Acute/genetics
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Proto-Oncogene Protein c-fli-1/genetics
- Proto-Oncogene Proteins/genetics
- RNA, Guide, CRISPR-Cas Systems
- RNA, Messenger/metabolism
- RNA-Binding Protein EWS
- RNA-Binding Proteins/genetics
- RUNX1 Translocation Partner 1 Protein
- Sarcoma, Ewing/genetics
- Transcription Factors/genetics
- Translocation, Genetic/genetics
Collapse
Affiliation(s)
- R Torres
- Viral Vector Facility, Fundacion Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | - M C Martin
- Molecular Cytogenetics Group, Spanish National Cancer Centre-CNIO, Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | - A Garcia
- Viral Vector Facility, Fundacion Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | - Juan C Cigudosa
- Molecular Cytogenetics Group, Spanish National Cancer Centre-CNIO, Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | - J C Ramirez
- Viral Vector Facility, Fundacion Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | - S Rodriguez-Perales
- Molecular Cytogenetics Group, Spanish National Cancer Centre-CNIO, Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| |
Collapse
|