1
|
Ammassam Veettil R, Sebastian S, McCallister T, Ghosh S, Hynds DL. Uptake of surface-functionalized thermo-responsive polymeric nanocarriers in corticospinal tract motor neurons. Biochem Biophys Res Commun 2024; 696:149503. [PMID: 38262309 DOI: 10.1016/j.bbrc.2024.149503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/25/2024]
Abstract
Nanocarrier drug delivery systems are attractive options for targeted delivery of survival- and regeneration-enhancing therapeutics to neurons damaged by degenerative or traumatic central nervous system (CNS) lesions. Functional groups on nanocarrier surfaces allow derivatization with molecules to target specific cells but may affect cellular interactions and nanocarrier uptake. We synthesized differently sized -COOH and -NH2 surface functionalized polymeric nanocarriers (SFNCs) by emulsion copolymerization and assessed uptake by different cell types in mixed cortical cultures. Following 60-min incubation with SFNCs, mean intensity measurements of fluorescently labeled SFNCs indicated that corticospinal tract motor neurons (CSMNs) took up more COOH- or NH2- functionalized SFNCs with similar sizes (150 nm), compared to glia. However, larger diameter (750 nm) SFNCs were taken up at higher concentrations compared to smaller COOH-derivatized SFNCs (150 nm). These data suggest that larger SFNCs may provide an advantage for enhanced uptake by targeted neurons.
Collapse
Affiliation(s)
- Remya Ammassam Veettil
- Division of Biology, Texas Woman's University, 1000 Old Main Circle, Denton, TX, 76204, USA.
| | - Sumod Sebastian
- Division of Biology, Texas Woman's University, 1000 Old Main Circle, Denton, TX, 76204, USA.
| | - Thomas McCallister
- Department of Engineering and Technology, Southeast Missouri State University, Cape Girardeau, One University Plaza, MO, 63701, USA
| | - Santaneel Ghosh
- Department of Engineering and Technology, Southeast Missouri State University, Cape Girardeau, One University Plaza, MO, 63701, USA
| | - DiAnna L Hynds
- Division of Biology, Texas Woman's University, 1000 Old Main Circle, Denton, TX, 76204, USA.
| |
Collapse
|
2
|
Yeo CJJ, Tizzano EF, Darras BT. Challenges and opportunities in spinal muscular atrophy therapeutics. Lancet Neurol 2024; 23:205-218. [PMID: 38267192 DOI: 10.1016/s1474-4422(23)00419-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 09/12/2023] [Accepted: 10/26/2023] [Indexed: 01/26/2024]
Abstract
Spinal muscular atrophy was the most common inherited cause of infant death until 2016, when three therapies became available: the antisense oligonucleotide nusinersen, gene replacement therapy with onasemnogene abeparvovec, and the small-molecule splicing modifier risdiplam. These drugs compensate for deficient survival motor neuron protein and have improved lifespan and quality of life in infants and children with spinal muscular atrophy. Given the lifelong implications of these innovative therapies, ways to detect and manage treatment-modified disease characteristics are needed. All three drugs are more effective when given before development of symptoms, or as early as possible in individuals who have already developed symptoms. Early subtle symptoms might be missed, and disease onset might occur in utero in severe spinal muscular atrophy subtypes; in some countries, newborn screening is allowing diagnosis soon after birth and early treatment. Adults with spinal muscular atrophy report stabilisation of disease and less fatigue with treatment. These subjective benefits need to be weighed against the high costs of the drugs to patients and health-care systems. Clinical consensus is required on therapeutic windows and on outcome measures and biomarkers that can be used to monitor drug benefit, toxicity, and treatment-modified disease characteristics.
Collapse
Affiliation(s)
- Crystal J J Yeo
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Agency for Science, Technology and Research, Singapore; National Neuroscience Institute, Tan Tock Seng and Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore
| | - Eduardo F Tizzano
- Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, Barcelona, Spain; Genetics Medicine, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Basil T Darras
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Genç B, Nho B, Seung H, Helmold B, Park H, Gözütok Ö, Kim S, Park J, Ye S, Lee H, Lee N, Yu SS, Kim S, Lee J, Özdinler H. Novel rAAV vector mediated intrathecal HGF delivery has an impact on neuroimmune modulation in the ALS motor cortex with TDP-43 pathology. Gene Ther 2023; 30:560-574. [PMID: 36823441 DOI: 10.1038/s41434-023-00383-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/21/2022] [Accepted: 01/23/2023] [Indexed: 02/25/2023]
Abstract
Recombinant adeno-associated virus (rAAV)-based gene therapies offer an immense opportunity for rare diseases, such as amyotrophic lateral sclerosis (ALS), which is defined by the loss of the upper and the lower motor neurons. Here, we describe generation, characterization, and utilization of a novel vector system, which enables expression of the active form of hepatocyte growth factor (HGF) under EF-1α promoter with bovine growth hormone (bGH) poly(A) sequence and is effective with intrathecal injections. HGF's role in promoting motor neuron survival had been vastly reported. Therefore, we investigated whether intrathecal delivery of HGF would have an impact on one of the most common pathologies of ALS: the TDP-43 pathology. Increased astrogliosis, microgliosis and progressive upper motor neuron loss are important consequences of ALS in the motor cortex with TDP-43 pathology. We find that cortex can be modulated via intrathecal injection, and that expression of HGF reduces astrogliosis, microgliosis in the motor cortex, and help restore ongoing UMN degeneration. Our findings not only introduce a novel viral vector for the treatment of ALS, but also demonstrate modulation of motor cortex by intrathecal viral delivery, and that HGF treatment is effective in reducing astrogliosis and microgliosis in the motor cortex of ALS with TDP-43 pathology.
Collapse
Affiliation(s)
- Barış Genç
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL, 60611, USA
| | - Boram Nho
- School of Biological Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Helixmith Co., Ltd., R&D Center, 21, Magokjungang 8-ro 7-gil, Gangseo-gu, Seoul, 07794, Republic of Korea
| | - Hana Seung
- Helixmith Co., Ltd., R&D Center, 21, Magokjungang 8-ro 7-gil, Gangseo-gu, Seoul, 07794, Republic of Korea
| | - Benjamin Helmold
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL, 60611, USA
| | - Huiwon Park
- Helixmith Co., Ltd., R&D Center, 21, Magokjungang 8-ro 7-gil, Gangseo-gu, Seoul, 07794, Republic of Korea
| | - Öge Gözütok
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL, 60611, USA
| | - Seunghyun Kim
- Helixmith Co., Ltd., R&D Center, 21, Magokjungang 8-ro 7-gil, Gangseo-gu, Seoul, 07794, Republic of Korea
| | - Jinil Park
- Helixmith Co., Ltd., R&D Center, 21, Magokjungang 8-ro 7-gil, Gangseo-gu, Seoul, 07794, Republic of Korea
| | - Sanghyun Ye
- Helixmith Co., Ltd., R&D Center, 21, Magokjungang 8-ro 7-gil, Gangseo-gu, Seoul, 07794, Republic of Korea
| | - Haneul Lee
- Helixmith Co., Ltd., R&D Center, 21, Magokjungang 8-ro 7-gil, Gangseo-gu, Seoul, 07794, Republic of Korea
| | - Nayeon Lee
- School of Biological Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seung-Shin Yu
- Helixmith Co., Ltd., R&D Center, 21, Magokjungang 8-ro 7-gil, Gangseo-gu, Seoul, 07794, Republic of Korea
| | - Sunyoung Kim
- School of Biological Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Helixmith Co., Ltd., R&D Center, 21, Magokjungang 8-ro 7-gil, Gangseo-gu, Seoul, 07794, Republic of Korea
| | - Junghun Lee
- School of Biological Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
- Helixmith Co., Ltd., R&D Center, 21, Magokjungang 8-ro 7-gil, Gangseo-gu, Seoul, 07794, Republic of Korea.
| | - Hande Özdinler
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL, 60611, USA.
- Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Center for Developmental Therapeutics, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
4
|
Lejman J, Panuciak K, Nowicka E, Mastalerczyk A, Wojciechowska K, Lejman M. Gene Therapy in ALS and SMA: Advances, Challenges and Perspectives. Int J Mol Sci 2023; 24:ijms24021130. [PMID: 36674643 PMCID: PMC9860634 DOI: 10.3390/ijms24021130] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Gene therapy is defined as the administration of genetic material to modify, manipulate gene expression or alter the properties of living cells for therapeutic purposes. Recent advances and improvements in this field have led to many breakthroughs in the treatment of various diseases. As a result, there has been an increasing interest in the use of these therapies to treat motor neuron diseases (MNDs), for which many potential molecular targets have been discovered. MNDs are neurodegenerative disorders that, in their most severe forms, can lead to respiratory failure and death, for instance, spinal muscular atrophy (SMA) or amyotrophic lateral sclerosis (ALS). Despite the fact that SMA has been known for many years, it is still one of the most common genetic diseases causing infant mortality. The introduction of drugs based on ASOs-nusinersen; small molecules-risdiplam; and replacement therapy (GRT)-Zolgensma has shown a significant improvement in both event-free survival and the quality of life of patients after using these therapies in the available trial results. Although there is still no drug that would effectively alleviate the course of the disease in ALS, the experience gained from SMA gene therapy gives hope for a positive outcome of the efforts to produce an effective and safe drug. The aim of this review is to present current progress and prospects for the use of gene therapy in the treatment of both SMA and ALS.
Collapse
Affiliation(s)
- Jan Lejman
- Student Scientific Society, Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
- Correspondence:
| | - Kinga Panuciak
- Student Scientific Society, Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Emilia Nowicka
- Student Scientific Society, Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Angelika Mastalerczyk
- Student Scientific Society, Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Katarzyna Wojciechowska
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
5
|
Fajardo-Serrano A, Rico AJ, Roda E, Honrubia A, Arrieta S, Ariznabarreta G, Chocarro J, Lorenzo-Ramos E, Pejenaute A, Vázquez A, Lanciego JL. Adeno-Associated Viral Vectors as Versatile Tools for Neurological Disorders: Focus on Delivery Routes and Therapeutic Perspectives. Biomedicines 2022; 10:biomedicines10040746. [PMID: 35453499 PMCID: PMC9025350 DOI: 10.3390/biomedicines10040746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/10/2022] [Accepted: 03/21/2022] [Indexed: 11/24/2022] Open
Abstract
It is without doubt that the gene therapy field is currently in the spotlight for the development of new therapeutics targeting unmet medical needs. Thus, considering the gene therapy scenario, neurological diseases in general and neurodegenerative disorders in particular are emerging as the most appealing choices for new therapeutic arrivals intended to slow down, stop, or even revert the natural progressive course that characterizes most of these devastating neurodegenerative processes. Since an extensive coverage of all available literature is not feasible in practical terms, here emphasis was made in providing some advice to beginners in the field with a narrow focus on elucidating the best delivery route available for fulfilling any given AAV-based therapeutic approach. Furthermore, it is worth nothing that the number of ongoing clinical trials is increasing at a breath-taking speed. Accordingly, a landscape view of preclinical and clinical initiatives is also provided here in an attempt to best illustrate what is ongoing in this quickly expanding field.
Collapse
Affiliation(s)
- Ana Fajardo-Serrano
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
- Correspondence: (A.F.-S.); (J.L.L.)
| | - Alberto J. Rico
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Elvira Roda
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Adriana Honrubia
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Sandra Arrieta
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Goiaz Ariznabarreta
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Julia Chocarro
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Elena Lorenzo-Ramos
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Alvaro Pejenaute
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Alfonso Vázquez
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
- Department of Neurosurgery, Servicio Navarro de Salud, Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - José Luis Lanciego
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
- Correspondence: (A.F.-S.); (J.L.L.)
| |
Collapse
|
6
|
Yeo CJJ, Simmons Z, De Vivo DC, Darras BT. Ethical Perspectives on Treatment Options with Spinal Muscular Atrophy Patients. Ann Neurol 2022; 91:305-316. [PMID: 34981567 PMCID: PMC9305104 DOI: 10.1002/ana.26299] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/31/2021] [Accepted: 12/31/2021] [Indexed: 11/08/2022]
Abstract
Since 2016, 3 innovative therapies for spinal muscular atrophy (SMA) have changed the face of the disease. Although these therapies often result in remarkable improvements in infants and children, benefits in adults are modest and treatment is not curative. Concerns have been raised about the enormous costs of these medications, the ultimate burden to taxpayers, and the costs to society of withholding treatments and sacrificing or disadvantaging some individuals. Physicians are best positioned to serve our patients by carefully considering the costs, benefits, implications for quality of life (QOL), and the interplay of these factors within the framework of core ethical principles that guide clinical care. ANN NEUROL 2022;91:305–316
Collapse
Affiliation(s)
- Crystal J. J. Yeo
- Boston Children’s Hospital, Harvard Medical School Boston MA USA
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen Scotland, UK
- LKC school of Medicine Imperial College London and NTU Singapore
- A*STAR Singapore
- Feinberg School of Medicine, Northwestern University Chicago USA
| | - Zachary Simmons
- Penn State Health Milton S. Hershey Medical Center Hershey PA USA
| | | | - Basil T. Darras
- Boston Children’s Hospital, Harvard Medical School Boston MA USA
| |
Collapse
|
7
|
Wang Y, Sun QQ. A long-range, recurrent neuronal network linking the emotion regions with the somatic motor cortex. Cell Rep 2021; 36:109733. [PMID: 34551292 PMCID: PMC8507441 DOI: 10.1016/j.celrep.2021.109733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/18/2021] [Accepted: 08/27/2021] [Indexed: 11/25/2022] Open
Abstract
Recurrent neural networks (RNNs) are designed to learn sequential patterns in silico, but it is unclear whether and how an RNN forms in the native networks of the mammalian brain. Here, we report an innate RNN, which is formed by the unidirectional connections from three basic units: input units arriving from emotion regions, a hidden unit in the medial prefrontal cortex (mPFC), and output units located at the somatic motor cortex (sMO). Specifically, the neurons from basal lateral amygdala (BLA) and the insular cortex (IC) project to the mPFC motor-cortex-projecting (MP) neurons. These MP neurons form a local self-feedback loop and target major projecting neurons of the sMO. Within the sMO, the neurons in the infragranular layers receive stronger input than the neurons in supragranular layers. Finally, we show in vivo evidence that the communications from the emotion regions to the sMO are abolished when MP neurons are chemogenetically silenced.
Collapse
Affiliation(s)
- Yihan Wang
- Graduate Neuroscience Program, University of Wyoming, Laramie, WY 82071, USA; Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
| | - Qian-Quan Sun
- Graduate Neuroscience Program, University of Wyoming, Laramie, WY 82071, USA; Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA; Wyoming Sensory Biology Center of Biomedical Research Excellence, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
8
|
Advances in Gene Delivery Methods to Label and Modulate Activity of Upper Motor Neurons: Implications for Amyotrophic Lateral Sclerosis. Brain Sci 2021; 11:brainsci11091112. [PMID: 34573134 PMCID: PMC8471472 DOI: 10.3390/brainsci11091112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/11/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022] Open
Abstract
The selective degeneration of both upper motor neurons (UMNs) and lower motor neurons (LMNs) is the pathological hallmark of amyotrophic lateral sclerosis (ALS). Unlike the simple organisation of LMNs in the brainstem and spinal cord, UMNs are embedded in the complex cytoarchitecture of the primary motor cortex, which complicates their identification. UMNs therefore remain a challenging neuronal population to study in ALS research, particularly in the early pre-symptomatic stages of animal models. A better understanding of the mechanisms that lead to selective UMN degeneration requires unequivocal visualization and cellular identification of vulnerable UMNs within the heterogeneous cortical neuronal population and circuitry. Here, we review recent novel gene delivery methods developed to cellularly identify vulnerable UMNs and modulate their activity in various mouse models. A critical overview of retrograde tracers, viral vectors encoding reporter genes and transgenic reporter mice used to visualize UMNs in mouse models of ALS is provided. Functional targeting of UMNs in vivo with the advent of optogenetic and chemogenetic technology is also discussed. These exciting gene delivery techniques will facilitate improved anatomical mapping, cell-specific gene expression profiling and targeted manipulation of UMN activity in mice. These advancements in the field pave the way for future work to uncover the precise role of UMNs in ALS and improve future therapeutic targeting of UMNs.
Collapse
|
9
|
Steffens H, Mott AC, Li S, Wegner W, Švehla P, Kan VWY, Wolf F, Liebscher S, Willig KI. Stable but not rigid: Chronic in vivo STED nanoscopy reveals extensive remodeling of spines, indicating multiple drivers of plasticity. SCIENCE ADVANCES 2021; 7:7/24/eabf2806. [PMID: 34108204 PMCID: PMC8189587 DOI: 10.1126/sciadv.abf2806] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/22/2021] [Indexed: 06/01/2023]
Abstract
Excitatory synapses on dendritic spines of pyramidal neurons are considered a central memory locus. To foster both continuous adaption and the storage of long-term information, spines need to be plastic and stable at the same time. Here, we advanced in vivo STED nanoscopy to superresolve distinct features of spines (head size and neck length/width) in mouse neocortex for up to 1 month. While LTP-dependent changes predict highly correlated modifications of spine geometry, we find both, uncorrelated and correlated dynamics, indicating multiple independent drivers of spine remodeling. The magnitude of this remodeling suggests substantial fluctuations in synaptic strength. Despite this high degree of volatility, all spine features exhibit persistent components that are maintained over long periods of time. Furthermore, chronic nanoscopy uncovers structural alterations in the cortex of a mouse model of neurodegeneration. Thus, at the nanoscale, stable dendritic spines exhibit a delicate balance of stability and volatility.
Collapse
Affiliation(s)
- Heinz Steffens
- Optical Nanoscopy in Neuroscience, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Alexander C Mott
- Optical Nanoscopy in Neuroscience, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Siyuan Li
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
- BioMedical Center, Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Waja Wegner
- Optical Nanoscopy in Neuroscience, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Pavel Švehla
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
- BioMedical Center, Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Vanessa W Y Kan
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
- BioMedical Center, Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Fred Wolf
- Max Planck Institute of Experimental Medicine, Göttingen, Germany
- Max Planck Institute for Dynamics and Self-Organization; Campus Institute for Dynamics of Biological Networks, Göttingen, Germany
| | - Sabine Liebscher
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany.
- BioMedical Center, Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Katrin I Willig
- Optical Nanoscopy in Neuroscience, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany.
- Max Planck Institute of Experimental Medicine, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
10
|
Koroleva A, Deiwick A, El-Tamer A, Koch L, Shi Y, Estévez-Priego E, Ludl AA, Soriano J, Guseva D, Ponimaskin E, Chichkov B. In Vitro Development of Human iPSC-Derived Functional Neuronal Networks on Laser-Fabricated 3D Scaffolds. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7839-7853. [PMID: 33559469 DOI: 10.1021/acsami.0c16616] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Neural progenitor cells generated from human induced pluripotent stem cells (hiPSCs) are the forefront of ″brain-on-chip″ investigations. Viable and functional hiPSC-derived neuronal networks are shaping powerful in vitro models for evaluating the normal and abnormal formation of cortical circuits, understanding the underlying disease mechanisms, and investigating the response to drugs. They therefore represent a desirable instrument for both the scientific community and the pharmacological industry. However, culture conditions required for the full functional maturation of individual neurons and networks are still unidentified. It has been recognized that three-dimensional (3D) culture conditions can better emulate in vivo neuronal tissue development compared to 2D cultures and thus provide a more desirable in vitro approach. In this paper, we present the design and implementation of a 3D scaffold platform that supports and promotes intricate neuronal network development. 3D scaffolds were produced through direct laser writing by two-photon polymerization (2PP), a high-resolution 3D laser microstructuring technology, using the biocompatible and nondegradable photoreactive resin Dental LT Clear (DClear). Neurons developed and interconnected on a 3D environment shaped by vertically stacked scaffold layers. The developed networks could support different cell types. Starting at the day 50 of 3D culture, neuronal progenitor cells could develop into cortical projection neurons (CNPs) of all six layers, different types of inhibitory neurons, and glia. Additionally and in contrast to 2D conditions, 3D scaffolds supported the long-term culturing of neuronal networks over the course of 120 days. Network health and functionality were probed through calcium imaging, which revealed a strong spontaneous neuronal activity that combined individual and collective events. Taken together, our results highlight advanced microstructured 3D scaffolds as a reliable platform for the 3D in vitro modeling of neuronal functions.
Collapse
Affiliation(s)
- Anastasia Koroleva
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
- Laser Zentrum Hannover e.V., 30419 Hannover, Germany
| | - Andrea Deiwick
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany
| | | | - Lothar Koch
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany
| | - Yichen Shi
- Axol Bioscience Ltd., CB10 1XL Cambridge, UK
| | - Estefanía Estévez-Priego
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028 Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), 08028 Barcelona, Spain
| | - Adriaan-Alexander Ludl
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028 Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), 08028 Barcelona, Spain
- Computational Biology Unit, Department of Informatics, University of Bergen, 5020 Bergen, Norway
| | - Jordi Soriano
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028 Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), 08028 Barcelona, Spain
| | - Daria Guseva
- Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
- Department of Nutritional Medicine, University of Hohenheim, 70599 Stuttgart, Germany
| | - Evgeni Ponimaskin
- Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - Boris Chichkov
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany
| |
Collapse
|
11
|
Gunay A, Shin HH, Gozutok O, Gautam M, Ozdinler PH. Importance of lipids for upper motor neuron health and disease. Semin Cell Dev Biol 2020; 112:92-104. [PMID: 33323321 DOI: 10.1016/j.semcdb.2020.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/12/2020] [Accepted: 11/11/2020] [Indexed: 12/18/2022]
Abstract
Building evidence reveals the importance of maintaining lipid homeostasis for the health and function of neurons, and upper motor neurons (UMNs) are no exception. UMNs are critically important for the initiation and modulation of voluntary movement as they are responsible for conveying cerebral cortex' input to spinal cord targets. To maintain their unique cytoarchitecture with a prominent apical dendrite and a very long axon, UMNs require a stable cell membrane, a lipid bilayer. Lipids can act as building blocks for many biomolecules, and they also contribute to the production of energy. Therefore, UMNs require sustained control over the production, utilization and homeostasis of lipids. Perturbations of lipid homeostasis lead to UMN vulnerability and progressive degeneration in diseases such as hereditary spastic paraplegia (HSP) and primary lateral sclerosis (PLS). Here, we discuss the importance of lipids, especially for UMNs.
Collapse
Affiliation(s)
- Aksu Gunay
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA, 60611
| | - Heather H Shin
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA, 60611
| | - Oge Gozutok
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA, 60611
| | - Mukesh Gautam
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA, 60611
| | - P Hande Ozdinler
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA, 60611.
| |
Collapse
|
12
|
Xu J, DeVries SH, Zhu Y. Quantification of Adeno-Associated Virus with Safe Nucleic Acid Dyes. Hum Gene Ther 2020; 31:1086-1099. [PMID: 32368927 DOI: 10.1089/hum.2020.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Adeno-associated virus (AAV) is the most commonly used viral vector for both biological and gene therapeutic applications. Although many methods have been developed to measure quantity attributes of AAV, they are often technically challenging and time-consuming. Here, we report a method to titer AAV with GelGreen® dye, a safe green fluorescence nucleic acid dye recently engineered by Biotium company (Fremont, CA). This method, hereinafter referred to as GelGreen method, provides a fast (∼30 min) and reliable strategy for AAV titration. To validate GelGreen method, we measured genome titer of an AAV reference material AAV8RSM and compared our titration results with those determined by Reference Material Working Group (ARMWG). We showed that GelGreen results and capsid enzyme-linked immunosorbent assay results are comparable with each other. We also showed that GelRed® dye, a red fluorescence dye from Biotium, can be used to directly "visualize" AAV genome titer on a conventional gel imager, presenting an especially direct approach to estimate viral quantity. Finally, we showed that GelGreen and GelRed dyes can also be used to quantify self-complementary AAV (scAAV) and crudely purified AAV samples. In summary, we described a technique to titer AAV by using new generation of safe DNA dyes. This technique is simple, safe, reliable, and cost efficient. It has potential to be broadly applied for quantifying and normalizing AAV viral vectors.
Collapse
Affiliation(s)
- Jian Xu
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Steven H DeVries
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yongling Zhu
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
13
|
Gross SK, Shim BS, Bartus RT, Deaver D, McEachin Z, Bétourné A, Boulis NM, Maragakis NJ. Focal and dose-dependent neuroprotection in ALS mice following AAV2-neurturin delivery. Exp Neurol 2020; 323:113091. [DOI: 10.1016/j.expneurol.2019.113091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/16/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022]
|
14
|
Complexity of Generating Mouse Models to Study the Upper Motor Neurons: Let Us Shift Focus from Mice to Neurons. Int J Mol Sci 2019; 20:ijms20163848. [PMID: 31394733 PMCID: PMC6720674 DOI: 10.3390/ijms20163848] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/26/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022] Open
Abstract
Motor neuron circuitry is one of the most elaborate circuitries in our body, which ensures voluntary and skilled movement that requires cognitive input. Therefore, both the cortex and the spinal cord are involved. The cortex has special importance for motor neuron diseases, in which initiation and modulation of voluntary movement is affected. Amyotrophic lateral sclerosis (ALS) is defined by the progressive degeneration of both the upper and lower motor neurons, whereas hereditary spastic paraplegia (HSP) and primary lateral sclerosis (PLS) are characterized mainly by the loss of upper motor neurons. In an effort to reveal the cellular and molecular basis of neuronal degeneration, numerous model systems are generated, and mouse models are no exception. However, there are many different levels of complexities that need to be considered when developing mouse models. Here, we focus our attention to the upper motor neurons, which are one of the most challenging neuron populations to study. Since mice and human differ greatly at a species level, but the cells/neurons in mice and human share many common aspects of cell biology, we offer a solution by focusing our attention to the affected neurons to reveal the complexities of diseases at a cellular level and to improve translational efforts.
Collapse
|
15
|
Conner JM, Bain GL, Dulin JN. Intraspinal and Intracortical Delivery of AAV Vectors for Intersectional Circuit Tracing in Non-transgenic Species. Methods Mol Biol 2019; 1950:165-176. [PMID: 30783973 DOI: 10.1007/978-1-4939-9139-6_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The mapping of long-range axonal projections is a rapidly growing endeavor in the field of neuroscience. Recent advances in the development of adeno-associated viral vectors that can achieve efficient retrograde transport now enable the characterization and manipulation of specific neuronal subpopulations using Cre-dependent, intersectional approaches. Importantly, these approaches can be applied to non-transgenic animals, making it possible to carry out detailed anatomical studies across a variety of species including nonhuman primates. In this chapter, we demonstrate the utility of such intersectional strategies by describing methods for targeting viral constructs to distinct subsets of corticospinal motor neurons based on their projections to specific spinal cord segments.
Collapse
Affiliation(s)
- James M Conner
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Greg L Bain
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Jennifer N Dulin
- Department of Biology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
16
|
Genç B, Jara JH, Lagrimas AKB, Pytel P, Roos RP, Mesulam MM, Geula C, Bigio EH, Özdinler PH. Apical dendrite degeneration, a novel cellular pathology for Betz cells in ALS. Sci Rep 2017; 7:41765. [PMID: 28165465 PMCID: PMC5292972 DOI: 10.1038/srep41765] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/29/2016] [Indexed: 12/11/2022] Open
Abstract
Apical dendrites of Betz cells are important sites for the integration of cortical input, however their health has not been fully assessed in ALS patients. We investigated the primary motor cortices isolated from post-mortem normal control subjects, patients with familial ALS (fALS), sporadic ALS (sALS), ALS with frontotemporal dementia (FTD-ALS), and Alzheimer's disease (AD), and found profound apical dendrite degeneration of Betz cells in both fALS and sALS, as well as FTD-ALS patients. In contrast, Betz cells of AD patients and normal controls retain cellular integrity in the motor cortex, and CA1 pyramidal neurons show abnormalities predominantly within their soma, rather than the apical dendrite. In line with extensive vacuolation and cytoarchitectural disintegration, the numbers of synapses were also significantly reduced only in ALS patients. Our findings indicate apical dendrite degeneration as a novel cellular pathology that distinguishes ALS and further support the importance of cortical dysfunction for disease pathology.
Collapse
Affiliation(s)
- Barış Genç
- Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Javier H Jara
- Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Amiko K B Lagrimas
- Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Peter Pytel
- Department of Pathology, University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Raymond P Roos
- Department of Neurology, University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - M Marsel Mesulam
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, Chicago, IL, 60611, USA
| | - Changiz Geula
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, Chicago, IL, 60611, USA
| | - Eileen H Bigio
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, Chicago, IL, 60611, USA
| | - P Hande Özdinler
- Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA.,Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, Chicago, IL, 60611, USA.,Robert H. Lurie Cancer Center, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|