1
|
Singh D, Memari E, He S, Yusefi H, Helfield B. Cardiac gene delivery using ultrasound: State of the field. Mol Ther Methods Clin Dev 2024; 32:101277. [PMID: 38983873 PMCID: PMC11231612 DOI: 10.1016/j.omtm.2024.101277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Over the past two decades, there has been tremendous and exciting progress toward extending the use of medical ultrasound beyond a traditional imaging tool. Ultrasound contrast agents, typically used for improved visualization of blood flow, have been explored as novel non-viral gene delivery vectors for cardiovascular therapy. Given this adaptation to ultrasound contrast-enhancing agents, this presents as an image-guided and site-specific gene delivery technique with potential for multi-gene and repeatable delivery protocols-overcoming some of the limitations of alternative gene therapy approaches. In this review, we provide an overview of the studies to date that employ this technique toward cardiac gene therapy using cardiovascular disease animal models and summarize their key findings.
Collapse
Affiliation(s)
- Davindra Singh
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Elahe Memari
- Department of Physics, Concordia University, Montreal, QC, Canada
| | - Stephanie He
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Hossein Yusefi
- Department of Physics, Concordia University, Montreal, QC, Canada
| | - Brandon Helfield
- Department of Biology, Concordia University, Montreal, QC, Canada
- Department of Physics, Concordia University, Montreal, QC, Canada
| |
Collapse
|
2
|
Dinis TB, Valente AI, P. M. Tavares A, Sousa F, Freire MG. Integrated platform resorting to ionic liquids comprising the extraction, purification and preservation of DNA. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
3
|
Scalzo S, Santos AK, Ferreira HAS, Costa PA, Prazeres PHDM, da Silva NJA, Guimarães LC, E Silva MDM, Rodrigues Alves MTR, Viana CTR, Jesus ICG, Rodrigues AP, Birbrair A, Lobo AO, Frezard F, Mitchell MJ, Guatimosim S, Guimaraes PPG. Ionizable Lipid Nanoparticle-Mediated Delivery of Plasmid DNA in Cardiomyocytes. Int J Nanomedicine 2022; 17:2865-2881. [PMID: 35795081 PMCID: PMC9252585 DOI: 10.2147/ijn.s366962] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/19/2022] [Indexed: 12/18/2022] Open
Abstract
Introduction Gene therapy is a promising approach to be applied in cardiac regeneration after myocardial infarction and gene correction for inherited cardiomyopathies. However, cardiomyocytes are crucial cell types that are considered hard-to-transfect. The entrapment of nucleic acids in non-viral vectors, such as lipid nanoparticles (LNPs), is an attractive approach for safe and effective delivery. Methods Here, a mini-library of engineered LNPs was developed for pDNA delivery in cardiomyocytes. LNPs were characterized and screened for pDNA delivery in cardiomyocytes and identified a lead LNP formulation with enhanced transfection efficiency. Results By varying lipid molar ratios, the LNP formulation was optimized to deliver pDNA in cardiomyocytes with enhanced gene expression in vitro and in vivo, with negligible toxicity. In vitro, our lead LNP was able to reach a gene expression greater than 80%. The in vivo treatment with lead LNPs induced a twofold increase in GFP expression in heart tissue compared to control. In addition, levels of circulating myeloid cells and inflammatory cytokines remained without significant changes in the heart after LNP treatment. It was also demonstrated that cardiac cell function was not affected after LNP treatment. Conclusion Collectively, our results highlight the potential of LNPs as an efficient delivery vector for pDNA to cardiomyocytes. This study suggests that LNPs hold promise to improve gene therapy for treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Sérgio Scalzo
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Anderson K Santos
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Heloísa A S Ferreira
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pedro A Costa
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pedro H D M Prazeres
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Natália J A da Silva
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lays C Guimarães
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mário de Morais E Silva
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marco T R Rodrigues Alves
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Celso T R Viana
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Itamar C G Jesus
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alice P Rodrigues
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alexander Birbrair
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Anderson O Lobo
- Department of Materials Engineering, Federal University of Piauí, Teresina, PI, Brazil
| | - Frederic Frezard
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Silvia Guatimosim
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | |
Collapse
|
4
|
Fu B, Wang X, Chen Z, Jiang N, Guo Z, Zhang Y, Zhang S, Liu X, Liu L. Improved myocardial performance in infarcted rat heart by injection of disulfide-cross-linked chitosan hydrogels loaded with basic fibroblast growth factor. J Mater Chem B 2022; 10:656-665. [PMID: 35014648 DOI: 10.1039/d1tb01961a] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Myocardial infarction (MI) has been considered as the leading cause of cardiovascular-related deaths worldwide. Basic fibroblast growth factor (bFGF) is a member of the fibroblast growth factor family that promotes angiogenesis after MI; however, it has poor clinical efficacy due to proteolytic degradation, low drug accumulation, and severe drug-induced side effects. In this study, an injectable disulfide-cross-linked chitosan hydrogel loaded with bFGF was prepared via a thiol-disulfide exchange reaction for MI treatment. The thiol-disulfide exchange reaction between pyridyl disulfide-modified carboxymethyl chitosan (CMCS-S-S-Py) and reduced BSA (rBSA) was carried out under physiological conditions (37 °C and pH 7.4). The mechanical properties of the disulfide-cross-linked chitosan hydrogel were evaluated based on the molar ratio of the pyridyl disulfide groups of CMCS-S-S-Py and the thiol groups of rBSA. The disulfide-cross-linked chitosan hydrogel showed good swelling performance, rapid glutathione-triggered degradation behavior and well-defined cell proliferation towards NIH 3T3 fibroblast cells. In the process of establishing a rat MI model, the squeezing heart method was used to make the operation more accurate and the mortality of rats was decreased by using a ventilator. The disulfide-cross-linked chitosan hydrogel loaded with bFGF (bFGF-hydrogel) was injected into a peri-infarcted area of cardiac tissue immediately following MI. Echocardiography demonstrated that the left ventricular functions were improved by the bFGF-hydrogel after 28 days of treatment. Histological results revealed that the hydrogel significantly reduced the fibrotic area of MI, and this was further improved by the bFGF-hydrogel treatment. TUNEL and immunohistochemical staining results showed that the bFGF-hydrogel had a more synergistic effect on antiapoptosis and proangiogenesis than using either bFGF or the hydrogel alone.
Collapse
Affiliation(s)
- Bo Fu
- Department of Cardiovascular Surgery, Tianjin Chest Hospital, Tianjin 300051, P. R. China. .,Tianjin Medical University, Tianjin 300203, P. R. China
| | - Xiaobei Wang
- Department of Materials Engineering, North China Institute of Aerospace Engineering, Langfang 065000, P. R. China
| | - Zhengda Chen
- Department of Cardiovascular Surgery, Tianjin Chest Hospital, Tianjin 300051, P. R. China. .,Tianjin Medical University, Tianjin 300203, P. R. China
| | - Nan Jiang
- Department of Cardiovascular Surgery, Tianjin Chest Hospital, Tianjin 300051, P. R. China.
| | - Zhigang Guo
- Department of Cardiovascular Surgery, Tianjin Chest Hospital, Tianjin 300051, P. R. China.
| | - Yuhui Zhang
- Department of Cardiovascular Surgery, Tianjin Chest Hospital, Tianjin 300051, P. R. China.
| | - Shaopeng Zhang
- Department of Cardiovascular Surgery, Tianjin Chest Hospital, Tianjin 300051, P. R. China.
| | - Xiankun Liu
- Department of Cardiovascular Surgery, Tianjin Chest Hospital, Tianjin 300051, P. R. China.
| | - Li Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| |
Collapse
|
5
|
Gopal S, Osborne AE, Hock L, Zemianek J, Fang K, Gee G, Ghosh R, McNally D, Cramer SM, Dordick JS. Advancing a rapid, high throughput screening platform for optimization of lentivirus production. Biotechnol J 2021; 16:e2000621. [PMID: 34260824 DOI: 10.1002/biot.202000621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 07/05/2021] [Accepted: 07/12/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND Lentiviral vectors (LVVs) hold great promise as delivery tools for gene therapy and chimeric antigen receptor T cell (CAR-T) therapy. Their ability to target difficult to transfect cells and deliver genetic payloads that integrate into the host genome makes them ideal delivery candidates. However, several challenges remain to be addressed before LVVs are more widely used as therapeutics including low viral vector concentrations and the absence of suitable scale-up methods for large-scale production. To address these challenges, we have developed a high throughput microscale HEK293 suspension culture platform that enables rapid screening of conditions for improving LVV productivity. KEY RESULTS High density culture (40 million cells mL-1 ) of HEK293 suspension cells in commercially available media was achieved in microscale 96-deep well plate platform at liquid volumes of 200 μL. Comparable transfection and LVV production efficiencies were observed at the microscale, in conventional shake flasks and a 1-L bioreactor, indicating that significant scale-down does not affect LVV concentrations and predictivity of scale-up. Optimization of production step allowed for final yields of LVVs to reach 1.5 × 107 TU mL-1 . CONCLUSIONS The ability to test a large number of conditions simultaneously with minimal reagent use allows for the rapid optimization of LVV production in HEK293 suspension cells. Therefore, such a system may serve as a valuable tool in early stage process development and can be used as a screening tool to improve LVV concentrations for both batch and perfusion based systems.
Collapse
Affiliation(s)
- Sneha Gopal
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Adam E Osborne
- MassBiologics, University of Massachusetts Medical School, Mattapan, Massachusetts, USA
| | - Lindsay Hock
- MassBiologics, University of Massachusetts Medical School, Mattapan, Massachusetts, USA
| | - Jill Zemianek
- MassBiologics, University of Massachusetts Medical School, Mattapan, Massachusetts, USA
| | - Kun Fang
- MassBiologics, University of Massachusetts Medical School, Mattapan, Massachusetts, USA
| | - Gretchen Gee
- MassBiologics, University of Massachusetts Medical School, Mattapan, Massachusetts, USA
| | - Ronit Ghosh
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - David McNally
- MassBiologics, University of Massachusetts Medical School, Mattapan, Massachusetts, USA
| | - Steven M Cramer
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA.,Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA.,Departments of Biomedical Engineering and Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| |
Collapse
|
6
|
Complexity and diversity of bioanalytical support for gene therapy modalities. Bioanalysis 2021; 13:65-68. [PMID: 33496630 DOI: 10.4155/bio-2020-0295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
7
|
Silicon Nanotubes as Potential Therapeutic Platforms. Pharmaceutics 2019; 11:pharmaceutics11110571. [PMID: 31683869 PMCID: PMC6920902 DOI: 10.3390/pharmaceutics11110571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 02/06/2023] Open
Abstract
Silicon nanotubes (SiNTs) with unique well-defined structural morphologies have been successfully fabricated and recognized as a novel architecture in the nanoscale Si family. While the typical dendritic microstructure of mesoporous silicon prepared anodically has been exploited previously for therapeutics and biosensing, our status of utilizing SiNTs in this regard is still in its infancy. In this review, we focus on the fundamental properties of such nanotubes relevant to therapeutic applications, beginning with a description of our ability to sensitively tune the structure of a given SiNT through synthetic control and the associated detailed in vitro dissolution behavior (reflecting biodegradability). Emphasis is also placed here on the range of functional moieties available to attach to the surface of SiNTs through a summary of current studies involving surface functionalization and strategies that facilitate conjugation with molecules of interest for multiple purposes, including cell labeling, nucleotide attachment, and scaffolding of therapeutic metallic nanoparticles. Experiments addressing our ability to load the interior of a given nanotube with species capable of providing magnetic field-assisted drug delivery are also briefly described. Given the range of diverse properties demonstrated to date, we believe the future to be quite promising for employing SiNTs as therapeutic platforms.
Collapse
|
8
|
Bioanalysis of adeno-associated virus gene therapy therapeutics: regulatory expectations. Bioanalysis 2019; 11:2011-2024. [DOI: 10.4155/bio-2019-0135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The number of gene therapy (GTx) modality therapies in development has grown significantly in the last few years. Adeno-associated virus (AAV)-based delivery approach has become most prevalent among other virus-based GTx vectors. Several regulatory guidelines provide the industry with general considerations related to AAV GTx development including discussion and recommendations related to highly diverse bioanalytical support of the AAV-based therapeutics. This includes assessment of pre- and post-treatment immunity, evaluation of post-treatment viral shedding and infectivity, as well as detection of transgene protein expression. An overview of the current regulatory recommendations as found in currently active and published draft US FDA and EMA guidance or guideline documents is presented herein.
Collapse
|
9
|
Wang F, Wang X, Gao L, Meng LY, Xie JM, Xiong JW, Luo Y. Nanoparticle-mediated delivery of siRNA into zebrafish heart: a cell-level investigation on the biodistribution and gene silencing effects. NANOSCALE 2019; 11:18052-18064. [PMID: 31576876 DOI: 10.1039/c9nr05758g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanomaterials hold promise for the delivery of nucleic acids to facilitate gene therapy in cardiac diseases. However, as much of the in vivo study of nanomaterials was conducted via the "trial and error" method, the understanding of the nanomaterial-mediated delivery in cardiac tissue was limited to the gross efficiency in manipulating the gene expression while little was known about the delivery process and mechanism in particular at the cell level. In this study, small interfering RNA (siRNA) nanoparticles formulated with a polyamidoamine (PAMAM) nanomaterial were applied to the injured heart of zebrafish. The distribution of nanoparticles in cardiomyocytes, endothelial cells, macrophages and leukocytes was quantitatively analyzed with precision at the cell level by using transgenic models. Based on the distribution characteristics, gene silencing effects in a specific group of cells were analyzed to illustrate how siRNA nanoparticles could get potent gene silencing in different cells in vivo. The results elucidated the heterogeneous distribution of siRNA nanoparticles and how nanoparticles could be efficient despite the significant difference in cellular uptake efficiency in different cells. It demonstrated a paradigm and the need to decouple cellular processes to understand nanoparticle-mediated delivery in complex tissue and the investigation/methodology may lead to important information to guide the design of advanced targeted drug-delivery systems in heart.
Collapse
Affiliation(s)
- Fang Wang
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China.
| | | | | | | | | | | | | |
Collapse
|
10
|
Bishawi M, Roan JN, Milano CA, Daneshmand MA, Schroder JN, Chiang Y, Lee FH, Brown ZD, Nevo A, Watson MJ, Rowell T, Paul S, Lezberg P, Walczak R, Bowles DE. A normothermic ex vivo organ perfusion delivery method for cardiac transplantation gene therapy. Sci Rep 2019; 9:8029. [PMID: 31142753 PMCID: PMC6541710 DOI: 10.1038/s41598-019-43737-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 04/27/2019] [Indexed: 01/21/2023] Open
Abstract
Clinically, both percutaneous and surgical approaches to deliver viral vectors to the heart either have resulted in therapeutically inadequate levels of transgene expression or have raised safety concerns associated with extra-cardiac delivery. Recent developments in the field of normothermic ex vivo cardiac perfusion storage have now created opportunities to overcome these limitations and safety concerns of cardiac gene therapy. This study examined the feasibility of ex vivo perfusion as an approach to deliver a viral vector to a donor heart during storage and the resulting bio distribution and expression levels of the transgene in the recipient post-transplant. The influence of components (proprietary solution, donor blood, and ex vivo circuitry tubing and oxygenators) of the Organ Care System (OC) (TransMedics, Inc., Andover MA) on viral vector transduction was examined using a cell-based luciferase assay. Our ex vivo perfusion strategy, optimized for efficient Adenoviral vector transduction, was utilized to deliver 5 × 1013 total viral particles of an Adenoviral firefly luciferase vector with a cytomegalovirus (CMV) promotor to porcine donor hearts prior to heterotopic implantation. We have evaluated the overall levels of expression, protein activity, as well as the bio distribution of the firefly luciferase protein in a series of three heart transplants at a five-day post-transplant endpoint. The perfusion solution and the ex vivo circuitry did not influence viral vector transduction, but the serum or plasma fractions of the donor blood significantly inhibited viral vector transduction. Thus, subsequent gene delivery experiments to the explanted porcine heart utilized an autologous blood recovery approach to remove undesired plasma or serum components of the donor blood prior to its placement into the circuit. Enzymatic assessment of luciferase activity in tissues (native heart, allograft, liver etc.) obtained post-transplant day five revealed wide-spread and robust luciferase activity in all regions of the allograft (right and left atria, right and left ventricles, coronary arteries) compared to the native recipient heart. Importantly, luciferase activity in recipient heart, liver, lung, spleen, or psoas muscle was within background levels. Similar to luciferase activity, the luciferase protein expression in the allograft appeared uniform and robust across all areas of the myocardium as well as in the coronary arteries. Importantly, despite high copy number of vector genomic DNA in transplanted heart tissue, there was no evidence of vector DNA in either the recipient’s native heart or liver. Overall we demonstrate a simple protocol to achieve substantial, global gene delivery and expression isolated to the cardiac allograft. This introduces a novel method of viral vector delivery that opens the opportunity for biological modification of the allograft prior to implantation that may improve post-transplant outcomes.
Collapse
Affiliation(s)
- Muath Bishawi
- Division of Cardiothoracic Surgery, Department of Surgery, Duke University, Durham, NC, USA.,Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Jun-Neng Roan
- Division of Cardiothoracic Surgery, Department of Surgery, Duke University, Durham, NC, USA.,Division of Cardiovascular Surgery, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, Tainan City, Taiwan
| | - Carmelo A Milano
- Division of Cardiothoracic Surgery, Department of Surgery, Duke University, Durham, NC, USA
| | - Mani A Daneshmand
- Division of Cardiothoracic Surgery, Department of Surgery, Duke University, Durham, NC, USA
| | - Jacob N Schroder
- Division of Cardiothoracic Surgery, Department of Surgery, Duke University, Durham, NC, USA
| | - Yuting Chiang
- Division of Cardiothoracic Surgery, Department of Surgery, Duke University, Durham, NC, USA
| | - Franklin H Lee
- Division of Cardiothoracic Surgery, Department of Surgery, Duke University, Durham, NC, USA
| | - Zachary D Brown
- Division of Cardiothoracic Surgery, Department of Surgery, Duke University, Durham, NC, USA
| | - Adam Nevo
- Division of Cardiothoracic Surgery, Department of Surgery, Duke University, Durham, NC, USA
| | - Michael J Watson
- Division of Cardiothoracic Surgery, Department of Surgery, Duke University, Durham, NC, USA
| | | | - Sally Paul
- Perfusion Services, Duke University, Durham, NC, USA
| | | | | | - Dawn E Bowles
- Division of Surgical Sciences, Department of Surgery, Duke University, Durham, NC, USA.
| |
Collapse
|
11
|
Singh RD, Hillestad ML, Livia C, Li M, Alekseev AE, Witt TA, Stalboerger PG, Yamada S, Terzic A, Behfar A. M 3RNA Drives Targeted Gene Delivery in Acute Myocardial Infarction. Tissue Eng Part A 2018; 25:145-158. [PMID: 30047313 DOI: 10.1089/ten.tea.2017.0445] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
IMPACT STATEMENT The M3RNA (microencapsulated modified messenger RNA) platform is an approach to deliver messenger RNA (mRNA) in vivo, achieving a nonintegrating and viral-free approach to gene therapy. This technology was, in this study, tested for its utility in the myocardium, providing a unique avenue for targeted gene delivery into the freshly infarcted myocardial tissue. This study provides the evidentiary basis for the use of M3RNA in the heart through depiction of its performance in cultured cells, healthy rodent myocardium, and acutely injured porcine hearts. By testing the technology in large animal models of infarction, compatibility of M3RNA with current coronary intervention procedures was verified.
Collapse
Affiliation(s)
- Raman Deep Singh
- 1 Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota.,2 VanCleve Cardiac Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Matthew L Hillestad
- 1 Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota.,2 VanCleve Cardiac Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Christopher Livia
- 1 Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota.,2 VanCleve Cardiac Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota.,3 Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Mark Li
- 1 Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota.,2 VanCleve Cardiac Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota.,3 Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Alexey E Alekseev
- 1 Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota.,2 VanCleve Cardiac Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota.,4 Institute of Theoretical and Experimental Biophysics, Russian Academy of Science, Moscow, Russia
| | - Tyra A Witt
- 1 Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota.,2 VanCleve Cardiac Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Paul G Stalboerger
- 1 Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota.,2 VanCleve Cardiac Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Satsuki Yamada
- 1 Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota.,2 VanCleve Cardiac Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Andre Terzic
- 1 Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota.,2 VanCleve Cardiac Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota.,3 Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Atta Behfar
- 1 Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota.,2 VanCleve Cardiac Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota.,3 Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
12
|
Ghaderi S, Alidadiani N, Soleimani Rad J, Heidari HR, Dilaver N, Mansoori B, Rhabarghazi R, Parvizi R, Khaze Shahgoli V, Baradaran B. Construction and Development of a Cardiac Tissue-Specific and Hypoxia-Inducible Expression Vector. Adv Pharm Bull 2018; 8:29-38. [PMID: 29670836 PMCID: PMC5896393 DOI: 10.15171/apb.2018.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 01/30/2018] [Accepted: 02/06/2018] [Indexed: 01/23/2023] Open
Abstract
Purpose: Cardiovascular gene therapy is a sophisticated approach, thanks to the safety of vectors, stable transgene expression, delivery method, and different layers of the heart. To date, numerous expression vectors have been introduced in biotechnology and biopharmacy industries in relation to genetic manipulation. Despite the rapid growth of these modalities, they must be intelligently designed, addressing the cardiac-specific transgene expression and less side effects. Herein, we conducted a pilot project aiming to design a cardiac-specific hypoxia-inducible expression cassette. Methods: We explored a new approach to design an expression cassette containing cardiac specific enhancer, hypoxia response elements (HRE), cardiac specific promoter, internal ribosome entry site (IRES), and beta globin poly A sequence to elicit specific and inducible expression of the gene of interest. Enhanced green fluorescent protein (eGFP) was sub-cloned by BglII and NotI into the cassette. The specificity and inducible expression of the cassette was determined in both mouse myoblast C2C12 and mammary glandular tumor 4T1 as 'twin' cells. eGFP expression was evaluated by immunofluorescence microscope and flow cytometry at 520 nm emission peak. Results: Our data revealed that the designed expression cassette provided tissue specific and hypoxia inducible (O2<1%) transgene expression. Conclusion: It is suggested that cardiac-specific enhancer combined with cardiac-specific promoter are efficient for myoblast specific gene expression. As well, this is for the first time that HRE are derived from three well known hypoxia-regulated promoters. Therefore, there is no longer need to overlap PCR process for one repeated sequence just in one promoter.
Collapse
Affiliation(s)
- Shahrooz Ghaderi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Student research committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Alidadiani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleimani Rad
- Department of Anatomy, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Reza Heidari
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nafi Dilaver
- Swansea University Medical School, Swansea University, Swansea, UK
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rhabarghazi
- Stem cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rezayat Parvizi
- Department of Cardiothoracic Surgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Svystonyuk DA, Mewhort HEM, Fedak PWM. Using Acellular Bioactive Extracellular Matrix Scaffolds to Enhance Endogenous Cardiac Repair. Front Cardiovasc Med 2018; 5:35. [PMID: 29696148 PMCID: PMC5904207 DOI: 10.3389/fcvm.2018.00035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/22/2018] [Indexed: 01/16/2023] Open
Abstract
An inability to recover lost cardiac muscle following acute ischemic injury remains the biggest shortcoming of current therapies to prevent heart failure. As compared to standard medical and surgical treatments, tissue engineering strategies offer the promise of improved heart function by inducing regeneration of functional heart muscle. Tissue engineering approaches that use stem cells and genetic manipulation have shown promise in preclinical studies but have also been challenged by numerous critical barriers preventing effective clinical translational. We believe that surgical intervention using acellular bioactive ECM scaffolds may yield similar therapeutic benefits with minimal translational hurdles. In this review, we outline the limitations of cellular-based tissue engineering strategies and the advantages of using acellular biomaterials with bioinductive properties. We highlight key anatomic targets enriched with cellular niches that can be uniquely activated using bioactive scaffold therapy. Finally, we review the evolving cardiovascular tissue engineering landscape and provide critical insights into the potential therapeutic benefits of acellular scaffold therapy.
Collapse
Affiliation(s)
- Daniyil A Svystonyuk
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| | - Holly E M Mewhort
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| | - Paul W M Fedak
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
14
|
McDonald MA, Ashley EA, Fedak PW, Hawkins N, Januzzi JL, McMurray JJ, Parikh VN, Rao V, Svystonyuk D, Teerlink JR, Virani S. Mind the Gap: Current Challenges and Future State of Heart Failure Care. Can J Cardiol 2017; 33:1434-1449. [DOI: 10.1016/j.cjca.2017.08.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 11/24/2022] Open
|
15
|
Hardee CL, Arévalo-Soliz LM, Hornstein BD, Zechiedrich L. Advances in Non-Viral DNA Vectors for Gene Therapy. Genes (Basel) 2017; 8:E65. [PMID: 28208635 PMCID: PMC5333054 DOI: 10.3390/genes8020065] [Citation(s) in RCA: 223] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/01/2017] [Indexed: 01/08/2023] Open
Abstract
Uses of viral vectors have thus far eclipsed uses of non-viral vectors for gene therapy delivery in the clinic. Viral vectors, however, have certain issues involving genome integration, the inability to be delivered repeatedly, and possible host rejection. Fortunately, development of non-viral DNA vectors has progressed steadily, especially in plasmid vector length reduction, now allowing these tools to fill in specifically where viral or other non-viral vectors may not be the best options. In this review, we examine the improvements made to non-viral DNA gene therapy vectors, highlight opportunities for their further development, address therapeutic needs for which their use is the logical choice, and discuss their future expansion into the clinic.
Collapse
Affiliation(s)
- Cinnamon L. Hardee
- Interdepartmental Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (L.M.A.-S.); (B.D.H.)
| | - Lirio Milenka Arévalo-Soliz
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (L.M.A.-S.); (B.D.H.)
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Benjamin D. Hornstein
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (L.M.A.-S.); (B.D.H.)
| | - Lynn Zechiedrich
- Interdepartmental Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (L.M.A.-S.); (B.D.H.)
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
16
|
Dzau VJ, Balatbat CA. Cardiovascular Research and the National Academy of Medicine: Advancing Progress in Science and Medicine. Circ Res 2017; 120:23-26. [DOI: 10.1161/circresaha.116.310358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Wang F, Gao L, Meng LY, Xie JM, Xiong JW, Luo Y. A Neutralized Noncharged Polyethylenimine-Based System for Efficient Delivery of siRNA into Heart without Toxicity. ACS APPLIED MATERIALS & INTERFACES 2016; 8:33529-33538. [PMID: 27960377 DOI: 10.1021/acsami.6b13295] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cationic polymers constitute an important class of materials in development of delivery vehicles for nucleic acid-based therapeutics. Among them, polyethylenimine (PEI) has been a classical cationic carrier intensively studied for therapeutic delivery of DNA, RNA, and short RNA molecules to treat diseases. However, the development of PEI for in vivo applications has been hampered by the inherent problems associated with the material, particularly its cytotoxicity and the instability of the nucleic acid complexation systems formed via electrostatic interactions. Here, we demonstrate a strategy to modify PEI polymers via hydrazidation to create neutralized, stable, and multifunctional system for delivering siRNA molecules. Through substitution of the primary amino groups of PEI with neutral hydrazide groups, cross-linked nanoparticles with surface decorated with a model targeting ligands were generated. The neutral cross-linked siRNA nanoparticles not only showed favorable biocompatibility and cell internalization efficiency in vitro but also allowed for significant tissue uptake and gene silencing efficiency in zebrafish heart in vivo. Our study suggests transformation of conventional branched PEI into a neutral polymer that can lead to a new category of nonviral carriers, and the resulting functional delivery systems may be further explored for development of siRNA therapeutics for treating cardiovascular disease/injury.
Collapse
Affiliation(s)
- Fang Wang
- Department of Biomedical Engineering, College of Engineering, ‡Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, and §School of Life Sciences, Peking University , Beijing, China 100871
| | - Lu Gao
- Department of Biomedical Engineering, College of Engineering, ‡Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, and §School of Life Sciences, Peking University , Beijing, China 100871
| | - Liu-Yi Meng
- Department of Biomedical Engineering, College of Engineering, ‡Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, and §School of Life Sciences, Peking University , Beijing, China 100871
| | - Jing-Ming Xie
- Department of Biomedical Engineering, College of Engineering, ‡Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, and §School of Life Sciences, Peking University , Beijing, China 100871
| | - Jing-Wei Xiong
- Department of Biomedical Engineering, College of Engineering, ‡Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, and §School of Life Sciences, Peking University , Beijing, China 100871
| | - Ying Luo
- Department of Biomedical Engineering, College of Engineering, ‡Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, and §School of Life Sciences, Peking University , Beijing, China 100871
| |
Collapse
|
18
|
Sorriento D, Ciccarelli M, Cipolletta E, Trimarco B, Iaccarino G. "Freeze, Don't Move": How to Arrest a Suspect in Heart Failure - A Review on Available GRK2 Inhibitors. Front Cardiovasc Med 2016; 3:48. [PMID: 27999776 PMCID: PMC5138235 DOI: 10.3389/fcvm.2016.00048] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/21/2016] [Indexed: 12/26/2022] Open
Abstract
Cardiovascular disease and heart failure (HF) still collect the largest toll of death in western societies and all over the world. A growing number of molecular mechanisms represent possible targets for new therapeutic strategies, which can counteract the metabolic and structural changes observed in the failing heart. G protein-coupled receptor kinase 2 (GRK2) is one of such targets for which experimental and clinical evidence are established. Indeed, several strategies have been carried out in place to interface with the known GRK2 mechanisms of action in the failing heart. This review deals with results from basic and preclinical studies. It shows different strategies to inhibit GRK2 in HF in vivo (βARK-ct gene therapy, treatment with gallein, and treatment with paroxetine) and in vitro (RNA aptamer, RKIP, and peptide-based inhibitors). These strategies are based either on the inhibition of the catalytic activity of the kinase (“Freeze!”) or the prevention of its shuttling within the cell (“Don’t Move!”). Here, we review the peculiarity of each strategy with regard to the ability to interact with the multiple tasks of GRK2 and the perspective development of eventual clinical use.
Collapse
Affiliation(s)
- Daniela Sorriento
- Department of Advanced Biomedical Sciences, University of Naples Federico II , Naples , Italy
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno , Baronissi, SA , Italy
| | - Ersilia Cipolletta
- Department of Advanced Biomedical Sciences, University of Naples Federico II , Naples , Italy
| | - Bruno Trimarco
- Department of Advanced Biomedical Sciences, University of Naples Federico II , Naples , Italy
| | - Guido Iaccarino
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno , Baronissi, SA , Italy
| |
Collapse
|
19
|
Li Y, Wang F, Cui H. Peptide-Based Supramolecular Hydrogels for Delivery of Biologics. Bioeng Transl Med 2016; 1:306-322. [PMID: 28989975 PMCID: PMC5629974 DOI: 10.1002/btm2.10041] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/06/2016] [Accepted: 10/10/2016] [Indexed: 12/21/2022] Open
Abstract
The demand for therapeutic biologics has rapidly grown over recent decades, creating a dramatic shift in the pharmaceutical industry from small molecule drugs to biological macromolecular therapeutics. As a result of their large size and innate instability, the systemic, topical, and local delivery of biologic drugs remains a highly challenging task. Although there exist many types of delivery vehicles, peptides and peptide conjugates have received continuously increasing interest as molecular blocks to create a great diversity of supramolecular nanostructures and hydrogels for the effective delivery of biologics, due to their inherent biocompatibility, tunable biodegradability, and responsiveness to various biological stimuli. In this context, we discuss the design principles of supramolecular hydrogels using small molecule peptides and peptide conjugates as molecular building units, and review the recent effort in using these materials for protein delivery and gene delivery.
Collapse
Affiliation(s)
- Yi Li
- Dept. of Chemical and Biomolecular EngineeringThe Johns Hopkins University3400 N Charles StreetBaltimoreMD21218
- Institute for NanoBioTechnology, The Johns Hopkins University3400 N Charles StreetBaltimoreMD21218
| | - Feihu Wang
- Dept. of Chemical and Biomolecular EngineeringThe Johns Hopkins University3400 N Charles StreetBaltimoreMD21218
- Institute for NanoBioTechnology, The Johns Hopkins University3400 N Charles StreetBaltimoreMD21218
| | - Honggang Cui
- Dept. of Chemical and Biomolecular EngineeringThe Johns Hopkins University3400 N Charles StreetBaltimoreMD21218
- Institute for NanoBioTechnology, The Johns Hopkins University3400 N Charles StreetBaltimoreMD21218
- Dept. of Oncology and Sidney Kimmel Comprehensive Cancer CenterThe Johns Hopkins University School of MedicineBaltimoreMD21205
- Center for NanomedicineThe Wilmer Eye Institute, The Johns Hopkins University School of Medicine400 North BroadwayBaltimoreMD21231
| |
Collapse
|