1
|
Raghuraman A, Lawrence R, Shetty R, Avanthika C, Jhaveri S, Pichardo BV, Mujakari A. Role of gene therapy in sickle cell disease. Dis Mon 2024; 70:101689. [PMID: 38326171 DOI: 10.1016/j.disamonth.2024.101689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
BACKGROUND Gene therapy is an emerging treatment for sickle cell disease that works by replacing a defective gene with a healthy gene, allowing the body to produce normal red blood cells. This form of treatment has shown promising results in clinical trials, and is a promising alternative to traditional treatments. Gene therapy involves introducing a healthy gene into the body to replace a defective gene. The new gene can be delivered using a viral vector, which is a modified virus that carries the gene. The vector, carrying the healthy gene, is injected into the bloodstream. The healthy gene then enters the patient's cells and begins to produce normal hemoglobin, the protein in red blood cells that carries oxygen throughout the body. METHODOLOGY We conducted an all-language literature search on Medline, Cochrane, Embase, and Google Scholar until December 2022. The following search strings and Medical Subject Heading (MeSH) terms were used: "Sickle Cell," "Gene Therapy" and "Stem Cell Transplantation". We explored the literature on Sickle Cell Disease for its epidemiology, etiopathogenesis, the role of various treatment modalities and the risk-benefit ratio of gene therapy over conventional stem cell transplant. RESULTS Gene therapy can reduce or eliminate painful episodes, prevent organ damage, and raise the quality of life for those living with the disease. Additionally, gene therapy may reduce the need for blood transfusions and other traditional treatments. Gene therapy has the potential to improve the lives of those living with sickle cell disease, as well as reduce the burden of the disease on society.
Collapse
Affiliation(s)
| | - Rebecca Lawrence
- Richmond Gabriel University, College of Medicine, Saint Vincent and the Grenadines, United States
| | | | | | | | | | | |
Collapse
|
2
|
Tricoli L, Sase S, Hacker J, Pham V, Smith S, Chappell M, Breda L, Hurwitz S, Tanaka N, Castracani CC, Guerra A, Hou Z, Schlotawa L, Radhakrishnan K, Kurre P, Ahrens-Nicklas R, Adang L, Vanderver A, Rivella S. Effective Gene Therapy for Metachromatic Leukodystrophy Achieved with Minimal Lentiviral Genomic Integrations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.584404. [PMID: 38559013 PMCID: PMC10979988 DOI: 10.1101/2024.03.14.584404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Metachromatic leukodystrophy (MLD) is a fatal lysosomal storage disease (LSD) characterized by the deficient enzymatic activity of arylsulfatase A (ARSA). Combined autologous hematopoietic stem cell transplant (HSCT) with lentiviral (LV) based gene therapy has great potential to treat MLD. However, if enzyme production is inadequate, this could result in continued loss of motor function, implying a high vector copy number (VCN) requirement for optimal enzymatic output. This may place children at increased risk for genomic toxicity due to higher VCN. We increased the expression of ARSA cDNA at single integration by generating novel LVs, optimizing ARSA expression, and enhancing safety. In addition, our vectors achieved optimal transduction in mouse and human HSC with minimal multiplicity of infection (MOI). Our top-performing vector (EA1) showed at least 4X more ARSA activity than the currently EU-approved vector and a superior ability to secrete vesicle-associated ARSA, a critical modality to transfer functional enzymes from microglia to oligodendrocytes. Three-month-old Arsa -KO MLD mice transplanted with Arsa -KO BM cells transduced with 0.6 VCN of EA1 demonstrated behavior and CNS histology matching WT mice. Our novel vector boosts efficacy while improving safety as a robust approach for treating early symptomatic MLD patients.
Collapse
|
3
|
Pellaers E, Bhat A, Christ F, Debyser Z. Determinants of Retroviral Integration and Implications for Gene Therapeutic MLV-Based Vectors and for a Cure for HIV-1 Infection. Viruses 2022; 15:32. [PMID: 36680071 PMCID: PMC9861059 DOI: 10.3390/v15010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
To complete their replication cycle, retroviruses need to integrate a DNA copy of their RNA genome into a host chromosome. Integration site selection is not random and is driven by multiple viral and cellular host factors specific to different classes of retroviruses. Today, overwhelming evidence from cell culture, animal experiments and clinical data suggests that integration sites are important for retroviral replication, oncogenesis and/or latency. In this review, we will summarize the increasing knowledge of the mechanisms underlying the integration site selection of the gammaretrovirus MLV and the lentivirus HIV-1. We will discuss how host factors of the integration site selection of retroviruses may steer the development of safer viral vectors for gene therapy. Next, we will discuss how altering the integration site preference of HIV-1 using small molecules could lead to a cure for HIV-1 infection.
Collapse
Affiliation(s)
| | | | | | - Zeger Debyser
- Molecular Virology and Gene Therapy, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
4
|
Cortijo-Gutiérrez M, Sánchez-Hernández S, Tristán-Manzano M, Maldonado-Pérez N, Lopez-Onieva L, Real PJ, Herrera C, Marchal JA, Martin F, Benabdellah K. Improved Functionality of Integration-Deficient Lentiviral Vectors (IDLVs) by the Inclusion of IS 2 Protein Docks. Pharmaceutics 2021; 13:pharmaceutics13081217. [PMID: 34452178 PMCID: PMC8401568 DOI: 10.3390/pharmaceutics13081217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
Integration-deficient lentiviral vectors (IDLVs) have recently generated increasing interest, not only as a tool for transient gene delivery, but also as a technique for detecting off-target cleavage in gene-editing methodologies which rely on customized endonucleases (ENs). Despite their broad potential applications, the efficacy of IDLVs has historically been limited by low transgene expression and by the reduced sensitivity to detect low-frequency off-target events. We have previously reported that the incorporation of the chimeric sequence element IS2 into the long terminal repeat (LTR) of IDLVs increases gene expression levels, while also reducing the episome yield inside transduced cells. Our study demonstrates that the effectiveness of IDLVs relies on the balance between two parameters which can be modulated by the inclusion of IS2 sequences. In the present study, we explore new IDLV configurations harboring several elements based on IS2 modifications engineered to mediate more efficient transgene expression without affecting the targeted cell load. Of all the insulators and configurations analysed, the insertion of the IS2 into the 3′LTR produced the best results. After demonstrating a DAPI-low nuclear gene repositioning of IS2-containing episomes, we determined whether, in addition to a positive effect on transcription, the IS2 could improve the capture of IDLVs on double strand breaks (DSBs). Thus, DSBs were randomly generated, using the etoposide or locus-specific CRISPR-Cas9. Our results show that the IS2 element improved the efficacy of IDLV DSB detection. Altogether, our data indicate that the insertion of IS2 into the LTR of IDLVs improved, not only their transgene expression levels, but also their ability to be inserted into existing DSBs. This could have significant implications for the development of an unbiased detection tool for off-target cleavage sites from different specific nucleases.
Collapse
Affiliation(s)
- Marina Cortijo-Gutiérrez
- GENYO, Centre for Genomics and Oncological Research, Genomic Medicine Department, Pfizer-University of Granada-Andalusian Regional Government, Health Sciences Technology Park, Av. de la Illustration 114, 18016 Granada, Spain; (M.C.-G.); (S.S.-H.); (M.T.-M.); (N.M.-P.); (F.M.)
| | - Sabina Sánchez-Hernández
- GENYO, Centre for Genomics and Oncological Research, Genomic Medicine Department, Pfizer-University of Granada-Andalusian Regional Government, Health Sciences Technology Park, Av. de la Illustration 114, 18016 Granada, Spain; (M.C.-G.); (S.S.-H.); (M.T.-M.); (N.M.-P.); (F.M.)
| | - María Tristán-Manzano
- GENYO, Centre for Genomics and Oncological Research, Genomic Medicine Department, Pfizer-University of Granada-Andalusian Regional Government, Health Sciences Technology Park, Av. de la Illustration 114, 18016 Granada, Spain; (M.C.-G.); (S.S.-H.); (M.T.-M.); (N.M.-P.); (F.M.)
| | - Noelia Maldonado-Pérez
- GENYO, Centre for Genomics and Oncological Research, Genomic Medicine Department, Pfizer-University of Granada-Andalusian Regional Government, Health Sciences Technology Park, Av. de la Illustration 114, 18016 Granada, Spain; (M.C.-G.); (S.S.-H.); (M.T.-M.); (N.M.-P.); (F.M.)
| | - Lourdes Lopez-Onieva
- GENYO, Centre for Genomics and Oncological Research, Molecular Oncology Department, Pfizer-University of Granada-Andalusian Regional Government, Health Sciences Technology Park, Av. de la Illustration 114, 18016 Granada, Spain; (L.L.-O.); (P.J.R.)
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Avenida Fuentenueva s/n, 18071 Granada, Spain
| | - Pedro J. Real
- GENYO, Centre for Genomics and Oncological Research, Molecular Oncology Department, Pfizer-University of Granada-Andalusian Regional Government, Health Sciences Technology Park, Av. de la Illustration 114, 18016 Granada, Spain; (L.L.-O.); (P.J.R.)
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Avenida Fuentenueva s/n, 18071 Granada, Spain
- Personalized Oncology Group, Bio-Health Research Institute (ibs Granada), 18016 Granada, Spain
| | - Concha Herrera
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), 14004 Cordoba, Spain;
- Department of Haematology, Reina Sofía University Hospital, 14004 Cordoba, Spain
| | - Juan Antonio Marchal
- Biomedical Research Institute (ibs. Granada), 18012 Granada, Spain;
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
- Excellence Research Unit: Modeling Nature (MNat), University of Granada, 18016 Granada, Spain
| | - Francisco Martin
- GENYO, Centre for Genomics and Oncological Research, Genomic Medicine Department, Pfizer-University of Granada-Andalusian Regional Government, Health Sciences Technology Park, Av. de la Illustration 114, 18016 Granada, Spain; (M.C.-G.); (S.S.-H.); (M.T.-M.); (N.M.-P.); (F.M.)
| | - Karim Benabdellah
- GENYO, Centre for Genomics and Oncological Research, Genomic Medicine Department, Pfizer-University of Granada-Andalusian Regional Government, Health Sciences Technology Park, Av. de la Illustration 114, 18016 Granada, Spain; (M.C.-G.); (S.S.-H.); (M.T.-M.); (N.M.-P.); (F.M.)
- Correspondence: ; Tel.: +34-958-715-500
| |
Collapse
|
5
|
Everson EM, Hocum JD, Trobridge GD. Efficacy and safety of a clinically relevant foamy vector design in human hematopoietic repopulating cells. J Gene Med 2018; 20:e3028. [PMID: 29935087 DOI: 10.1002/jgm.3028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/29/2018] [Accepted: 05/29/2018] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Previous studies have shown that foamy viral (FV) vectors are a promising alternative to gammaretroviral and lentiviral vectors and also that insulators can improve FV vector safety. However, in a previous analysis of insulator effects on FV vector safety, strong viral promoters were used to elicit genotoxic events. In the present study, we developed and analyzed the efficacy and safety of a high-titer, clinically relevant FV vector driven by the housekeeping promoter elongation factor-1α and insulated with an enhancer blocking A1 insulator (FV-EGW-A1). METHODS Human CD34+ cord blood cells were exposed to an enhanced green fluorescent protein expressing vector, FV-EGW-A1, at a multiplicity of infection of 10 and then maintained in vitro or transplanted into immunodeficient mice. Flow cytometry was used to measure engraftment and marking in vivo. FV vector integration sites were analyzed to assess safety. RESULTS FV-EGW-A1 resulted in high-marking, multilineage engraftment of human repopulating cells with no evidence of silencing. Engraftment was highly polyclonal with no clonal dominance and a promising safety profile based on integration site analysis. CONCLUSIONS An FV vector with an elongation factor-1α promoter and an A1 insulator is a promising vector design for use in the clinic.
Collapse
Affiliation(s)
- Elizabeth M Everson
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, WSU Spokane, Spokane, WA, USA
| | - Jonah D Hocum
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, WSU Spokane, Spokane, WA, USA
| | - Grant D Trobridge
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, WSU Spokane, Spokane, WA, USA.,School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
6
|
Demirci S, Uchida N, Tisdale JF. Gene therapy for sickle cell disease: An update. Cytotherapy 2018; 20:899-910. [PMID: 29859773 PMCID: PMC6123269 DOI: 10.1016/j.jcyt.2018.04.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/03/2018] [Accepted: 04/07/2018] [Indexed: 01/14/2023]
Abstract
Sickle cell disease (SCD) is one of the most common life-threatening monogenic diseases affecting millions of people worldwide. Allogenic hematopietic stem cell transplantation is the only known cure for the disease with high success rates, but the limited availability of matched sibling donors and the high risk of transplantation-related side effects force the scientific community to envision additional therapies. Ex vivo gene therapy through globin gene addition has been investigated extensively and is currently being tested in clinical trials that have begun reporting encouraging data. Recent improvements in our understanding of the molecular pathways controlling mammalian erythropoiesis and globin switching offer new and exciting therapeutic options. Rapid and substantial advances in genome engineering tools, particularly CRISPR/Cas9, have raised the possibility of genetic correction in induced pluripotent stem cells as well as patient-derived hematopoietic stem and progenitor cells. However, these techniques are still in their infancy, and safety/efficacy issues remain that must be addressed before translating these promising techniques into clinical practice.
Collapse
Affiliation(s)
- Selami Demirci
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Naoya Uchida
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - John F Tisdale
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA.
| |
Collapse
|
7
|
Foamy Virus Vector Carries a Strong Insulator in Its Long Terminal Repeat Which Reduces Its Genotoxic Potential. J Virol 2017; 92:JVI.01639-17. [PMID: 29046446 DOI: 10.1128/jvi.01639-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 09/29/2017] [Indexed: 12/11/2022] Open
Abstract
Strong viral enhancers in gammaretrovirus vectors have caused cellular proto-oncogene activation and leukemia, necessitating the use of cellular promoters in "enhancerless" self-inactivating integrating vectors. However, cellular promoters result in relatively low transgene expression, often leading to inadequate disease phenotype correction. Vectors derived from foamy virus, a nonpathogenic retrovirus, show higher preference for nongenic integrations than gammaretroviruses/lentiviruses and preferential integration near transcriptional start sites, like gammaretroviruses. We found that strong viral enhancers/promoters placed in foamy viral vectors caused extremely low immortalization of primary mouse hematopoietic stem/progenitor cells compared to analogous gammaretrovirus/lentivirus vectors carrying the same enhancers/promoters, an effect not explained solely by foamy virus' modest insertional site preference for nongenic regions compared to gammaretrovirus/lentivirus vectors. Using CRISPR/Cas9-mediated targeted insertion of analogous proviral sequences into the LMO2 gene and then measuring LMO2 expression, we demonstrate a sequence-specific effect of foamy virus, independent of insertional bias, contributing to reduced genotoxicity. We show that this effect is mediated by a 36-bp insulator located in the foamy virus long terminal repeat (LTR) that has high-affinity binding to the CCCTC-binding factor. Using our LMO2 activation assay, LMO2 expression was significantly increased when this insulator was removed from foamy virus and significantly reduced when the insulator was inserted into the lentiviral LTR. Our results elucidate a mechanism underlying the low genotoxicity of foamy virus, identify a novel insulator, and support the use of foamy virus as a vector for gene therapy, especially when strong enhancers/promoters are required.IMPORTANCE Understanding the genotoxic potential of viral vectors is important in designing safe and efficacious vectors for gene therapy. Self-inactivating vectors devoid of viral long-terminal-repeat enhancers have proven safe; however, transgene expression from cellular promoters is often insufficient for full phenotypic correction. Foamy virus is an attractive vector for gene therapy. We found foamy virus vectors to be remarkably less genotoxic, well below what was expected from their integration site preferences. We demonstrate that the foamy virus long terminal repeats contain an insulator element that binds CCCTC-binding factor and reduces its insertional genotoxicity. Our study elucidates a mechanism behind the low genotoxic potential of foamy virus, identifies a unique insulator, and supports the use of foamy virus as a vector for gene therapy.
Collapse
|
8
|
Kohlscheen S, Bonig H, Modlich U. Promises and Challenges in Hematopoietic Stem Cell Gene Therapy. Hum Gene Ther 2017; 28:782-799. [DOI: 10.1089/hum.2017.141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Saskia Kohlscheen
- Research Group for Gene Modification in Stem Cells, Center for Cell and Gene Therapy Frankfurt, Paul-Ehrlich-Institute, Langen, Germany
| | - Halvard Bonig
- Institute for Transfusion Medicine and Immunohematology, Goethe University, Frankfurt, Germany
- German Red Cross Blood Service Baden-Württemberg-Hessen, Institute Frankfurt, Germany
- Department of Medicine/Division of Hematology, University of Washington, Seattle, Washington
| | - Ute Modlich
- Research Group for Gene Modification in Stem Cells, Center for Cell and Gene Therapy Frankfurt, Paul-Ehrlich-Institute, Langen, Germany
| |
Collapse
|
9
|
El Ashkar S, Van Looveren D, Schenk F, Vranckx LS, Demeulemeester J, De Rijck J, Debyser Z, Modlich U, Gijsbers R. Engineering Next-Generation BET-Independent MLV Vectors for Safer Gene Therapy. MOLECULAR THERAPY-NUCLEIC ACIDS 2017. [PMID: 28624199 PMCID: PMC5415309 DOI: 10.1016/j.omtn.2017.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Retroviral vectors have shown their curative potential in clinical trials correcting monogenetic disorders. However, therapeutic benefits were compromised due to vector-induced dysregulation of cellular genes and leukemia development in a subset of patients. Bromodomain and extraterminal domain (BET) proteins act as cellular cofactors that tether the murine leukemia virus (MLV) pre-integration complex to host chromatin via interaction with the MLV integrase (IN) and thereby define the typical gammaretroviral integration distribution. We engineered next-generation BET-independent (Bin) MLV vectors to retarget their integration to regions where they are less likely to dysregulate nearby genes. We mutated MLV IN to uncouple BET protein interaction and fused it with chromatin-binding peptides. The addition of the CBX1 chromodomain to MLV INW390A efficiently targeted integration away from gene regulatory elements. The retargeted vector produced at high titers and efficiently transduced CD34+ hematopoietic stem cells, while fewer colonies were detected in a serial colony-forming assay, a surrogate test for genotoxicity. Our findings underscore the potential of the engineered vectors to reduce the risk of insertional mutagenesis without compromising transduction efficiency. Ultimately, combined with other safety features in vector design, next-generation BinMLV vectors can improve the safety of gammaretroviral vectors for gene therapy.
Collapse
Affiliation(s)
- Sara El Ashkar
- Laboratory for Molecular Virology and Drug Discovery, Department of Pharmaceutical and Pharmacological Sciences, 3000 Leuven, KU Leuven, Belgium
| | - Dominique Van Looveren
- Laboratory for Viral Vector Technology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Franziska Schenk
- RG Gene Modification in Stem Cells, LOEWE Center for Cell and Gene Therapy Frankfurt, Paul-Ehrlich-Institute, 63225 Langen, Germany
| | - Lenard S Vranckx
- Laboratory for Molecular Virology and Drug Discovery, Department of Pharmaceutical and Pharmacological Sciences, 3000 Leuven, KU Leuven, Belgium
| | - Jonas Demeulemeester
- Laboratory for Molecular Virology and Drug Discovery, Department of Pharmaceutical and Pharmacological Sciences, 3000 Leuven, KU Leuven, Belgium
| | - Jan De Rijck
- Laboratory for Molecular Virology and Drug Discovery, Department of Pharmaceutical and Pharmacological Sciences, 3000 Leuven, KU Leuven, Belgium
| | - Zeger Debyser
- Laboratory for Molecular Virology and Drug Discovery, Department of Pharmaceutical and Pharmacological Sciences, 3000 Leuven, KU Leuven, Belgium
| | - Ute Modlich
- RG Gene Modification in Stem Cells, LOEWE Center for Cell and Gene Therapy Frankfurt, Paul-Ehrlich-Institute, 63225 Langen, Germany
| | - Rik Gijsbers
- Laboratory for Viral Vector Technology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium; Leuven Viral Vector Core, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|