1
|
Ma P, He M, Lian H, Li J, Gao Y, Wu J, Men K, Men Y, Li C. Systemic and Local Administration of a Dual-siRNA Complex Efficiently Inhibits Tumor Growth and Bone Invasion in Oral Squamous Cell Carcinoma. Mol Pharm 2024; 21:661-676. [PMID: 38175819 DOI: 10.1021/acs.molpharmaceut.3c00802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Oral squamous cell carcinoma (OSCC) accounts for nearly 90% of oral and oropharyngeal cancer cases and is characterized by high mortality and poor prognosis. RNA-based gene therapies have been developed as an emerging option for cancer treatment, but it has not been widely explored in OSCC. In this work, we developed an efficient siRNA cationic micelle DOTAP-mPEG-PCL (DMP) by self-assembling the cationic lipid DOTAP and monomethoxy poly(ethylene glycol)-poly(ε-caprolactone) (mPEG-PCL) polymer. We tested the characteristics and transformation efficiency of this micelle and combined DMP with siRNA targeting STAT3 and TGF-β to evaluate the antitumor effect and bone invasion interfering in vitro and in vivo. The average size of the DMP was 28.27 ± 1.62 nm with an average zeta potential of 54.60 ± 0.29 mV. The DMP/siRNA complex showed high delivery efficiency, with rates of 97.47 ± 0.42% for HSC-3. In vitro, the DMP/siSTAT3 complex exhibited an obvious cell growth inhibition effect detected by MTT assay (an average cell viability of 25.1%) and clonogenic assay (an average inhibition rate of 51.9%). Besides, the supernatant from HSC-3 transfected by DMP/siTGF-β complexes was found to interfere with osteoclast differentiation in vitro. Irrespective of local or systemic administration, DMP/siSTAT3+siTGF-β showed antitumor effects and bone invasion inhibition in the OSCC mice mandibular invasion model according to tumor volume assays and Micro-CT scanning. The complex constructed by DMP cationic micelles and siSTAT3+siTGF-β represents a potential RNA-based gene therapy delivery system for OSCC.
Collapse
Affiliation(s)
- Pingchuan Ma
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan China
| | - Mingxia He
- Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, 475004 Kaifeng, China
| | - Haosen Lian
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan China
| | - Jingmei Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province China
| | - Yan Gao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province China
| | - Jieping Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province China
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province China
| | - Yi Men
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan China
| | - Chunjie Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan China
| |
Collapse
|
2
|
Huang J, Dai M, He M, Bu W, Cao L, Jing J, Cao R, Zhang H, Men K. Treatment of Ulcerative Colitis by Cationic Liposome Delivered NLRP3 siRNA. Int J Nanomedicine 2023; 18:4647-4662. [PMID: 37605735 PMCID: PMC10440093 DOI: 10.2147/ijn.s413149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/09/2023] [Indexed: 08/23/2023] Open
Abstract
Purpose The abnormal activation of NLRP3 inflammasome is related to the occurrence and development of ulcerative colitis (UC). However, the ideal drug and delivery system remain important factors limiting the targeting of NLRP3 inflammasome in UC therapy. Gene therapy by delivering siRNA is effective in treating various diseases. Therefore, delivering siNLRP3 using an ideal vector for UC treatment is necessary. Materials and Methods Nanoparticles delivering siNLRP3 were developed based on cationic liposome (CLP/siNLRP3). Their ability to inhibit NLRP3 inflammasome activation was monitored using Western blot (WB) and Enzyme-linked Immunosorbent Assay (ELISA). The ASC oligomerization in LPS-primed peritoneal macrophages (PMs) was detected by WB and immunofluorescence. Moreover, we assessed the role of CLP/siNLRP3 on dextran sodium sulfate (DSS)-induced UC by examining NLRP3 levels, pro-inflammatory cytokines expression, and disease-associated index (DAI). Flow cytometry (FCM) was used to detect the contents of macrophages and T cells. Finally, we assessed the safety of CLP/siNLRP3. Results The prepared CLP was spherical, with a small particle size (94 nm) and low permeability. The CLP could efficiently protect siNLRP3 from degradation and then deliver siNLRP3 into PMs, inhibiting NLRP3 inflammasome activation. Also, the CLP/siNLRP3 could inhibit the secretion of mature IL-1β and IL-18 from PMs, thereby achieving a favorable anti-inflammation effect. In vivo, CLP/siNLRP3 could effectively alleviate intestinal injury in UC mice, which was attributed to down-regulating levels of IL-1β and IL-18, inhibiting infiltration of macrophages and other immune cells, and the polarization of M1 macrophages. Finally, pathological testing of tissue sections and blood biochemical tests showed no significant toxic effects of CLP/siNLRP3. Conclusion We introduced a prospective approach for the efficient delivery of siRNA in vitro and in vivo with high safety and stability, which was found to have great potential in treating NLRP3-driven diseases in an RNA-silencing manner.
Collapse
Affiliation(s)
- Jing Huang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, Henan University, Kaifeng, Henan Province, 475004, People’s Republic of China
| | - Mengmeng Dai
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, Henan University, Kaifeng, Henan Province, 475004, People’s Republic of China
| | - Mingxia He
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, Henan University, Kaifeng, Henan Province, 475004, People’s Republic of China
| | - Weicheng Bu
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, Henan University, Kaifeng, Henan Province, 475004, People’s Republic of China
| | - Liwen Cao
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, Henan University, Kaifeng, Henan Province, 475004, People’s Republic of China
| | - Jing Jing
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, Henan University, Kaifeng, Henan Province, 475004, People’s Republic of China
| | - Run Cao
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, Henan University, Kaifeng, Henan Province, 475004, People’s Republic of China
| | - Hailong Zhang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, Henan University, Kaifeng, Henan Province, 475004, People’s Republic of China
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610044, People’s Republic of China
| |
Collapse
|
3
|
Sachdeva V, Monga A, Vashisht R, Singh D, Singh A, Bedi N. Iron Oxide Nanoparticles: The precise strategy for targeted delivery of genes, oligonucleotides and peptides in cancer therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Kubczak M, Michlewska S, Karimov M, Ewe A, Noske S, Aigner A, Bryszewska M, Ionov M. Unmodified and tyrosine-modified polyethylenimines as potential carriers for siRNA: Biophysical characterization and toxicity. Int J Pharm 2022; 614:121468. [PMID: 35031413 DOI: 10.1016/j.ijpharm.2022.121468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/20/2021] [Accepted: 01/09/2022] [Indexed: 11/18/2022]
Abstract
Polyethylenimines (PEIs) are being explored as efficient non-viral nanocarriers for nucleic acid delivery in vitro and in vivo. To address limitations regarding PEI efficacy and biocompatibility, modifications of the chemical structure of linear and branched PEIs have been introduced, including grafting with tyrosine. The aim has been to compare linear and branched polyethylenimines of a wider range of different molecular mass with their tyrosine-modified derivatives. To do so, physico-chemical and biological properties of the polymers were investigated. Even in the absence of a negatively charged nucleic acid counterpart, PEIs form particle structures with defined size and surface potential. Tyrosine modification of PEI led to significantly reduced toxicity, while simultaneously increasing interaction with cellular membranes. All the effects were also dependent on the PEI molecular weight and structure (i.e., linear vs. branched). Especially in the case of linear PEIs, the improved membrane interaction also translated into slightly enhanced hemolysis, whereas their genotoxic potential was essentially abolished. Due to the improvement of properties critical for nano-vector efficacy and biocompatibility, our data demonstrate that tyrosine-modified PEIs are very promising and safe nanocarriers for the delivery of small RNAs, like siRNAs and miRNAs.
Collapse
Affiliation(s)
- Małgorzata Kubczak
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland.
| | - Sylwia Michlewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland; Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Poland
| | - Michael Karimov
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, Leipzig University, Germany
| | - Alexander Ewe
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, Leipzig University, Germany
| | - Sandra Noske
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, Leipzig University, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, Leipzig University, Germany
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland
| |
Collapse
|
5
|
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor, which usually occurs in children and adolescents. It is generally a high-grade malignancy presenting with extreme metastases to the lungs or other bones. The etiology of the disease is multifaceted and still remains obscure. A combination of surgery and chemotherapy has played a major role in the treatment of OS over the past three decades, and consequently, the overall survival rates for the disease have remained unchanged. Therefore, there is an urgent need to employ new comprehensive analyses and technologies to develop significantly more informative classification systems, with the aim of developing more effective and less toxic therapies for OS patients. This review discusses the existing knowledge of OS therapy and potential methods to develop novel therapeutic agents for the disease.
Collapse
Affiliation(s)
- Emel Rothzerg
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia
| | - Abigail L Pfaff
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| | - Sulev Koks
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| |
Collapse
|
6
|
Redox-Responsive and Electrically Neutral PLGA Nanoparticles for siRNA Delivery in Human Cervical Carcinoma Cells. J Pharm Innov 2022. [DOI: 10.1007/s12247-021-09592-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
7
|
An analytical study of lipid-oligonucleotide aggregation properties. J Pharm Biomed Anal 2021; 205:114327. [PMID: 34479172 DOI: 10.1016/j.jpba.2021.114327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/09/2021] [Accepted: 08/10/2021] [Indexed: 11/20/2022]
Abstract
Lipid-oligonucleotides (LON) attract great interest as supramolecular scaffolds to improve the intracellular delivery of nucleic acids. Analytical characterization of LON assemblies is critical to formulation development, understanding in-vivo performance, as well as quality control. For this study, we selected LONs featuring different modifications on both oligonucleotide (with or without a G4 prone sequence) and lipid (mono or bis-alkyl chain covalently attached to the oligonucleotide sequence). Size exclusion chromatography (SEC) and, for the first time, capillary electrophoresis (CE) were investigated to study LON supramolecular self-assemblies. Results were correlated to those obtained with conventional physico-chemical characterization techniques i.e. gel electrophoresis, dynamic light scattering, and circular dichroism. In SEC, a separation between LON monomers and micelles was achieved in 5min on a TSK-gel G3000PW column at 70°C with 100% water, as mobile phase. CE conditions were optimized using a fused-silica capillary length of 10.0cm effective length at 15°C. Different background electrolytes were tested by varying the nature and the concentration of salts added. A sodium tetraborate buffer with 75mM NaCl appeared suitable to promote LON assembly. CE offers benefits to LON micelle analysis in terms of speed of analysis, high resolution, and low quantity of sample injected. Moreover, CE provides an appropriate tool to assess the impact of media of biological relevance on LON self-assembly. In this work, the key role of lipophilic tails and the formation of tetramolecular G-quadruplexes on the stability of LON micelles was confirmed.
Collapse
|
8
|
Zhang X, Cai A, Gao Y, Zhang Y, Duan X, Men K. Treatment of Melanoma by Nano-conjugate-Delivered Wee1 siRNA. Mol Pharm 2021; 18:3387-3400. [PMID: 34375118 DOI: 10.1021/acs.molpharmaceut.1c00316] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Small interfering RNA (siRNA)-based drugs have shown tremendous potential to date in cancer gene therapy. Despite the considerable efforts in siRNA design and manufacturing, unsatisfactory delivery systems persist as a limitation for the application of siRNA-based drugs. In this work, the cholesterol, cell-penetrating peptide conjugate cRGD (R8-cRGD), and polyethylene glycol (PEG) were introduced into low-molecular-weight polyethyleneimine (LMW PEI) to form cRGD-R9-cholesterol-PEI-PEG (RRCPP) nanoparticles with specific targeting and highly penetrating abilities. The enhanced siRNA uptake efficiency of the RRCPP delivery system benefited from R8-cRGD modification. Wee1 is an oncogenic nuclear kinase that can regulate the cell cycle as a crucial G2/M checkpoint. Overexpression of Wee1 in melanoma may lead to a poor prognosis. In the present study, RRCPP nanoparticles were designed for Wee1 siRNA delivery to form an RRCPP/siWee1 complex, which significantly silenced the expression of the WEE1 gene (>60% inhibition) and induced B16 tumor cell apoptosis by abrogating the G2M checkpoint and DNA damage in vitro. Furthermore, the RRCPP/siWee1 complex suppressed B16 tumor growth in a subcutaneous xenograft model (nearly 85% inhibition rate) and lung metastasis (nearly 66% inhibition rate) with ideal in vivo safety. Briefly, our results support the validity of RRCPP as a potential Wee1 siRNA carrier for melanoma gene therapy.
Collapse
Affiliation(s)
- Xueyan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, People's Republic of China
| | - Anqi Cai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, People's Republic of China
| | - Yan Gao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, People's Republic of China
| | - Yuanfa Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, People's Republic of China
| | - Xingmei Duan
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, People's Republic of China
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|
9
|
Zelcak A, Unal YC, Mese G, Bulmus V. A diaminoethane motif bearing low molecular weight polymer as a new nucleic acid delivery agent. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Bozzer S, Bo MD, Toffoli G, Macor P, Capolla S. Nanoparticles-Based Oligonucleotides Delivery in Cancer: Role of Zebrafish as Animal Model. Pharmaceutics 2021; 13:1106. [PMID: 34452067 PMCID: PMC8400075 DOI: 10.3390/pharmaceutics13081106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/29/2022] Open
Abstract
Oligonucleotide (ON) therapeutics are molecular target agents composed of chemically synthesized DNA or RNA molecules capable of inhibiting gene expression or protein function. How ON therapeutics can efficiently reach the inside of target cells remains a problem still to be solved in the majority of potential clinical applications. The chemical structure of ON compounds could affect their capability to pass through the plasma membrane. Other key factors are nuclease degradation in the extracellular space, renal clearance, reticulo-endothelial system, and at the target cell level, the endolysosomal system and the possible export via exocytosis. Several delivery platforms have been proposed to overcome these limits including the use of lipidic, polymeric, and inorganic nanoparticles, or hybrids between them. The possibility of evaluating the efficacy of the proposed therapeutic strategies in useful in vivo models is still a pivotal need, and the employment of zebrafish (ZF) models could expand the range of possibilities. In this review, we briefly describe the main ON therapeutics proposed for anticancer treatment, and the different strategies employed for their delivery to cancer cells. The principal features of ZF models and the pros and cons of their employment in the development of ON-based therapeutic strategies are also discussed.
Collapse
Affiliation(s)
- Sara Bozzer
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (M.D.B.); (G.T.); (S.C.)
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (M.D.B.); (G.T.); (S.C.)
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Sara Capolla
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (M.D.B.); (G.T.); (S.C.)
| |
Collapse
|
11
|
Berger M, Lechanteur A, Evrard B, Piel G. Innovative lipoplexes formulations with enhanced siRNA efficacy for cancer treatment: Where are we now? Int J Pharm 2021; 605:120851. [PMID: 34217823 DOI: 10.1016/j.ijpharm.2021.120851] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022]
Abstract
Over the past two decades, RNA interference has become an extensively studied mechanism to silence gene and treat diseases including cancer. siRNA appears as a promising strategy that could avoid some side effects related to traditional chemotherapy. Considering the weak stability of naked siRNA in blood, vectors like cationic liposomes or Lipid Nanoparticles (LNPs) are widely used to carry and protect siRNA until it reaches the tumor targeted. Despite extensive research, only three RNAi drugs are currently approved by the Food and Drug Administration, including only one LNP formulation of siRNA to treat hereditary ATTR amyloidosis. This shows the difficulty of lipoplexes clinical translation, in particular in cancer therapy. To overcome the lipoplexes limitations, searches are made on innovative lipoplexes formulations with enhanced siRNA efficacy. The present review is focusing on the recent use of pH-sensitive lipids, peptides and cell-penetrating peptides or polymers. The incorporation of some of these components in the lipoplex formulation induces a fusogenic property or an enhanced endosomal escape, an enhanced cellular uptake, an enhanced tumor targeting, an improved stability in the blood stream …These innovations appear critical to obtain an efficient siRNA accumulation in tumor cells with effective antitumor effect considering the complex tumor environment.
Collapse
Affiliation(s)
- Manon Berger
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liege, Belgium.
| | - Anna Lechanteur
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liege, Belgium.
| | - Brigitte Evrard
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liege, Belgium.
| | - Géraldine Piel
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liege, Belgium.
| |
Collapse
|
12
|
Kim DY, Ju HJ, Kim JH, Choi S, Kim MS. Injectable in situ forming hydrogel gene depot to improve the therapeutic effect of STAT3 shRNA. Biomater Sci 2021; 9:4459-4472. [PMID: 33997877 DOI: 10.1039/d1bm00624j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Down-regulation of the signal transducer and activity of transcription 3 (Stat3) plays a crucial role in suppression of many solid tumors. Intratumoral injection of a gene carrier applying Stat3-small hairpin RNA (St3-shRNA) is a potential therapeutic strategy. To our knowledge, this is the first report of the intratumoral injection of St3-shRNA using a gene carrier. We herein designed biodegradable (methoxy)polyethylene glycol-b-(polycaprolactone-ran-polylactide) copolymer (MP) derivatized with a spermine group with cationic properties at the pendant position of the MP chain (MP-NH2). The designed MP-NH2 can act as a gene carrier of St3-shRNA by forming an electrostatic complex with cationic spermine. This can increase the stability of the complexes because of protection of PEG in biologic environments and can exhibit a sol-gel phase transition around body temperature for the formation of intratumorally injected MP-NH2 hydrogel depot for St3-shRNA. MP-NH2 was observed to completely condense with St3-shRNA to form St3-shRNA/MP-NH2 complexes. These complexes were protected for a relatively long time (≥72 h) from external biologic molecules of the serum, DNase, and heparin. St3-shRNA/MP-NH2 complexes in in vitro tumor cell experiments can enhance transfection of St3-shRNA, correspondingly enhance Stat3 knockdown efficiency, and inhibit tumor cell growth. St3-shRNA/MP-NH2 complexes and St3-shRNA/MP-NH2 complex-loaded hydrogel were intratumorally injected into the tumor as new efficient delivery carriers and depots of St3-shRNA. The intratumoral injection of St3-shRNA/MP-NH2 complexes and St3-shRNA/MP-NH2 complex-loaded hydrogel showed effective anti-tumor effect for an extended period of time due to the effect of Stat3 knockdown. Collectively, the development of MP-NH2 as a carrier and depot of St3-shRNA provides a new strategy for St3-shRNA therapy through intratumoral injection with high efficacy and minimal adverse effects.
Collapse
Affiliation(s)
- Da Yeon Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-759, Korea.
| | - Hyeon Jin Ju
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-759, Korea.
| | - Jae Ho Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-759, Korea.
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-759, Korea.
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-759, Korea.
| |
Collapse
|
13
|
Fisher RK, West PC, Mattern-Schain SI, Best MD, Kirkpatrick SS, Dieter RA, Arnold JD, Buckley MR, McNally MM, Freeman MB, Grandas OH, Mountain DJH. Advances in the Formulation and Assembly of Non-Cationic Lipid Nanoparticles for the Medical Application of Gene Therapeutics. NANOMATERIALS 2021; 11:nano11030825. [PMID: 33807086 PMCID: PMC8004789 DOI: 10.3390/nano11030825] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/11/2021] [Accepted: 03/18/2021] [Indexed: 12/29/2022]
Abstract
Lipid nanoparticles have become increasingly popular delivery platforms in the field of gene therapy, but bench-to-bedside success has been limited. Many liposomal gene vectors are comprised of synthetic cationic lipids, which are associated with lipid-induced cytotoxicity and immunogenicity. Natural, non-cationic PEGylated liposomes (PLPs) demonstrate favorable biocompatibility profiles but are not considered viable gene delivery vehicles due to inefficient nucleic acid loading and reduced cellular uptake. PLPs can be modified with cell-penetrating peptides (CPPs) to enhance the intracellular delivery of liposomal cargo but encapsulate leakage upon CPP-PLP assembly is problematic. Here, we aimed to identify parameters that overcome these performance barriers by incorporating nucleic acid condensers during CPP-PLP assembly and screening variable ethanol injection parameters for optimization. CPP-PLPs were formed with R8-amphiphiles via pre-insertion, post-insertion and post-conjugation techniques and liposomes were characterized for size, surface charge, homogeneity, siRNA encapsulation efficiency and retention and cell associative properties. Herein we demonstrate that pre-insertion of stearylated R8 into PLPs is an efficient method to produce non-cationic CPP-PLPs and we provide additional assembly parameter specifications for a modified ethanol injection technique that is optimized for siRNA encapsulation/retention and enhanced cell association. This assembly technique could provide improved clinical translation of liposomal based gene therapy applications.
Collapse
Affiliation(s)
- Richard K. Fisher
- Department of Surgery, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway Box U-11, Knoxville, TN 37920, USA; (R.K.F.III); (P.C.W.); (S.S.K.); (R.A.D.III); (J.D.A.); (M.R.B.); (M.M.M.); (M.B.F.); (O.H.G.)
| | - Phillip C. West
- Department of Surgery, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway Box U-11, Knoxville, TN 37920, USA; (R.K.F.III); (P.C.W.); (S.S.K.); (R.A.D.III); (J.D.A.); (M.R.B.); (M.M.M.); (M.B.F.); (O.H.G.)
| | - Samuel I. Mattern-Schain
- Department of Chemistry, University of Tennessee Knoxville, 1420 Circle Drive, Knoxville, TN 37996, USA; (S.I.M.-S.); (M.D.B.)
| | - Michael D. Best
- Department of Chemistry, University of Tennessee Knoxville, 1420 Circle Drive, Knoxville, TN 37996, USA; (S.I.M.-S.); (M.D.B.)
| | - Stacy S. Kirkpatrick
- Department of Surgery, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway Box U-11, Knoxville, TN 37920, USA; (R.K.F.III); (P.C.W.); (S.S.K.); (R.A.D.III); (J.D.A.); (M.R.B.); (M.M.M.); (M.B.F.); (O.H.G.)
| | - Raymond A. Dieter
- Department of Surgery, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway Box U-11, Knoxville, TN 37920, USA; (R.K.F.III); (P.C.W.); (S.S.K.); (R.A.D.III); (J.D.A.); (M.R.B.); (M.M.M.); (M.B.F.); (O.H.G.)
| | - Joshua D. Arnold
- Department of Surgery, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway Box U-11, Knoxville, TN 37920, USA; (R.K.F.III); (P.C.W.); (S.S.K.); (R.A.D.III); (J.D.A.); (M.R.B.); (M.M.M.); (M.B.F.); (O.H.G.)
| | - Michael R. Buckley
- Department of Surgery, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway Box U-11, Knoxville, TN 37920, USA; (R.K.F.III); (P.C.W.); (S.S.K.); (R.A.D.III); (J.D.A.); (M.R.B.); (M.M.M.); (M.B.F.); (O.H.G.)
| | - Michael M. McNally
- Department of Surgery, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway Box U-11, Knoxville, TN 37920, USA; (R.K.F.III); (P.C.W.); (S.S.K.); (R.A.D.III); (J.D.A.); (M.R.B.); (M.M.M.); (M.B.F.); (O.H.G.)
| | - Michael B. Freeman
- Department of Surgery, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway Box U-11, Knoxville, TN 37920, USA; (R.K.F.III); (P.C.W.); (S.S.K.); (R.A.D.III); (J.D.A.); (M.R.B.); (M.M.M.); (M.B.F.); (O.H.G.)
| | - Oscar H. Grandas
- Department of Surgery, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway Box U-11, Knoxville, TN 37920, USA; (R.K.F.III); (P.C.W.); (S.S.K.); (R.A.D.III); (J.D.A.); (M.R.B.); (M.M.M.); (M.B.F.); (O.H.G.)
| | - Deidra J. H. Mountain
- Department of Surgery, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway Box U-11, Knoxville, TN 37920, USA; (R.K.F.III); (P.C.W.); (S.S.K.); (R.A.D.III); (J.D.A.); (M.R.B.); (M.M.M.); (M.B.F.); (O.H.G.)
- Correspondence: ; Tel.: +1-865-305-9160
| |
Collapse
|
14
|
Huntemer-Silveira A, Patil N, Brickner MA, Parr AM. Strategies for Oligodendrocyte and Myelin Repair in Traumatic CNS Injury. Front Cell Neurosci 2021; 14:619707. [PMID: 33505250 PMCID: PMC7829188 DOI: 10.3389/fncel.2020.619707] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022] Open
Abstract
A major consequence of traumatic brain and spinal cord injury is the loss of the myelin sheath, a cholesterol-rich layer of insulation that wraps around axons of the nervous system. In the central nervous system (CNS), myelin is produced and maintained by oligodendrocytes. Damage to the CNS may result in oligodendrocyte cell death and subsequent loss of myelin, which can have serious consequences for functional recovery. Demyelination impairs neuronal function by decelerating signal transmission along the axon and has been implicated in many neurodegenerative diseases. After a traumatic injury, mechanisms of endogenous remyelination in the CNS are limited and often fail, for reasons that remain poorly understood. One area of research focuses on enhancing this endogenous response. Existing techniques include the use of small molecules, RNA interference (RNAi), and monoclonal antibodies that target specific signaling components of myelination for recovery. Cell-based replacement strategies geared towards replenishing oligodendrocytes and their progenitors have been utilized by several groups in the last decade as well. In this review article, we discuss the effects of traumatic injury on oligodendrocytes in the CNS, the lack of endogenous remyelination, translational studies in rodent models promoting remyelination, and finally human clinical studies on remyelination in the CNS after injury.
Collapse
Affiliation(s)
| | - Nandadevi Patil
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Megan A. Brickner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Ann M. Parr
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
15
|
Shiralizadeh Dezfuli A, Kohan E, Tehrani Fateh S, Alimirzaei N, Arzaghi H, Hamblin MR. Organic dots (O-dots) for theranostic applications: preparation and surface engineering. RSC Adv 2021; 11:2253-2291. [PMID: 35424170 PMCID: PMC8693874 DOI: 10.1039/d0ra08041a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/08/2020] [Indexed: 12/17/2022] Open
Abstract
Organic dots is a term used to represent materials including graphene quantum dots and carbon quantum dots because they rely on the presence of other atoms (O, H, and N) for their photoluminescence or fluorescence properties. They generally have a small size (as low as 2.5 nm), and show good photostability under prolonged irradiation. The excitation and emission wavelengths of O-dots can be tailored according to their synthetic procedure, where although their quantum yield is quite low compared with organic dyes, this is partly compensated by their large absorption coefficients. A wide range of strategies have been used to modify the surface of O-dots for passivation, improving their solubility and biocompatibility, and allowing the attachment of targeting moieties and therapeutic cargos. Hybrid nanostructures based on O-dots have been used for theranostic applications, particularly for cancer imaging and therapy. This review covers the synthesis, physics, chemistry, and characterization of O-dots. Their applications cover the prevention of protein fibril formation, and both controlled and targeted drug and gene delivery. Multifunctional therapeutic and imaging platforms have been reported, which combine four or more separate modalities, frequently including photothermal or photodynamic therapy and imaging and drug release.
Collapse
Affiliation(s)
- Amin Shiralizadeh Dezfuli
- Physiology Research Center, Iran University of Medical Sciences Tehran Iran
- Ronash Technology Pars Company Tehran Iran
| | - Elmira Kohan
- Department of Science, University of Kurdistan Kurdistan Sanandaj Iran
| | - Sepand Tehrani Fateh
- School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU) Tehran Iran
| | - Neda Alimirzaei
- Institute of Nanoscience and Nanotechnology, University of Kashan Kashan Iran
| | - Hamidreza Arzaghi
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences (IUMS) Tehran Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School Boston MA 02114 USA
- Laser Research Centre, Faculty of Health Science, University of Johannesburg Doornfontein 2028 South Africa
| |
Collapse
|
16
|
Zhang H, Men K, Pan C, Gao Y, Li J, Lei S, Zhu G, Li R, Wei Y, Duan X. Treatment of Colon Cancer by Degradable rrPPC Nano-Conjugates Delivered STAT3 siRNA. Int J Nanomedicine 2020; 15:9875-9890. [PMID: 33324056 PMCID: PMC7732178 DOI: 10.2147/ijn.s277845] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/10/2020] [Indexed: 02/05/2023] Open
Abstract
Background Drugs that work based on the mechanism of RNA interference have shown strong potential in cancer gene therapy. Although significant progress has been made in small interfering RNA (siRNA) design and manufacturing, ideal delivery system remains a limitation for the development of siRNA-based drugs. Particularly, it is necessary to focus on parameters including delivery efficiency, stability, and safety when developing siRNA formulations for cancer therapy. Methods In this work, a novel degradable siRNA delivery system cRGD-R9-PEG-PEI-Cholesterol (rrPPC) was synthesized based on low molecular weight polyethyleneimine (PEI). Functional groups including cholesterol, cell penetrating peptides (CPPs), and poly(ethylene oxide) were introduced to PEI backbone to attain enhanced transfection efficiency and biocompatibility. Results The synthesized rrPPC was dispersed as nanoparticles in water with an average size of 195 nm and 41.9 mV in potential. rrPPC nanoparticles could efficiently deliver siRNA into C26 clone cancer cells and trigger caveolae-mediated pathway during transmembrane transportation. By loading the signal transducer and activator of transcription 3 (STAT3) targeting siRNA, rrPPC/STAT3 siRNA (rrPPC/siSTAT3) complex demonstrated strong anti-cancer effects in multiple colon cancer models following local delivery. In addition, intravenous (IV) injection of rrPPC/siSTAT3 complex efficiently suppressed lung metastasis tumor progression with ideal in vivo safety. Conclusion Our results provide evidence that rrPPC nanoparticles constitute a potential candidate vector for siRNA-based colon cancer gene therapy.
Collapse
Affiliation(s)
- Hongjia Zhang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Congbin Pan
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Yan Gao
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Jingmei Li
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Sibei Lei
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Guonian Zhu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Rui Li
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Xingmei Duan
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, People's Republic of China
| |
Collapse
|
17
|
Carmona-Ribeiro AM, Pérez-Betancourt Y. Cationic Nanostructures for Vaccines Design. Biomimetics (Basel) 2020; 5:biomimetics5030032. [PMID: 32645946 PMCID: PMC7560170 DOI: 10.3390/biomimetics5030032] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/20/2022] Open
Abstract
Subunit vaccines rely on adjuvants carrying one or a few molecular antigens from the pathogen in order to guarantee an improved immune response. However, to be effective, the vaccine formulation usually consists of several components: an antigen carrier, the antigen, a stimulator of cellular immunity such as a Toll-like Receptors (TLRs) ligand, and a stimulator of humoral response such as an inflammasome activator. Most antigens are negatively charged and combine well with oppositely charged adjuvants. This explains the paramount importance of studying a variety of cationic supramolecular assemblies aiming at the optimal activity in vivo associated with adjuvant simplicity, positive charge, nanometric size, and colloidal stability. In this review, we discuss the use of several antigen/adjuvant cationic combinations. The discussion involves antigen assembled to 1) cationic lipids, 2) cationic polymers, 3) cationic lipid/polymer nanostructures, and 4) cationic polymer/biocompatible polymer nanostructures. Some of these cationic assemblies revealed good yet poorly explored perspectives as general adjuvants for vaccine design.
Collapse
|
18
|
Pantatosaki E, Papadopoulos GK. Binding Dynamics of siRNA with Selected Lipopeptides: A Computer-Aided Study of the Effect of Lipopeptides' Functional Groups and Stereoisomerism. J Chem Theory Comput 2020; 16:3842-3855. [PMID: 32324997 DOI: 10.1021/acs.jctc.9b01261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The engineering issues pertaining to nanoparticle systems toward targeted gene therapies have not been fully probed. Recent experiments have identified specific structural characteristics of a novel class of lipopeptides (LP) that may lead to potent nanocarriers intended as RNAi therapeutics, albeit the molecular mechanism that underlies their performance remains unexplored. We conducted molecular dynamics simulations in atomistic detail coupled with free energy computations to study the dynamics and thermodynamics of an acrylate- and an epoxide-derived LP, members of the aforesaid class, upon their binding to siRNA in aqueous solution aiming at examining structure-potency relations. We found that the entropic part of the free energy of binding predominates; moreover, the first LP class tends to disrupt the Watson-Crick base pairing of siRNA, whereas the latter leaves the double helix intact. Moreover, the identified tug-of-war effect between LP-water and LP-siRNA hydrogen bonding in the supramolecular complex can underpin synthesis routes toward tuning the association dynamics. Our simulations on two diastereomers of the epoxide-derived LP showed significant structural and energetics differences upon binding, as a result of steric effects imposed by the different absolute configurations at their chiral centers. These findings may serve as crucial design parameters toward modulating the interplay between complex stability and ease of releasing the nucleic acid drug into the cell.
Collapse
Affiliation(s)
- Evangelia Pantatosaki
- School of Chemical Engineering, National Technical University of Athens, 15780 Athens, Greece
| | - George K Papadopoulos
- School of Chemical Engineering, National Technical University of Athens, 15780 Athens, Greece.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
19
|
Barakat F, Gaudin K, Vialet B, Bathany K, Benizri S, Barthélémy P, Ferey L. Analysis of lipid-oligonucleotide conjugates by cyclodextrin-modified capillary zone electrophoresis. Talanta 2020; 219:121204. [PMID: 32887111 DOI: 10.1016/j.talanta.2020.121204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 01/28/2023]
Abstract
Lipid-oligonucleotide (LONs) based bioconjugates represent an emerging class of therapeutic agents, allowing the delivery of therapeutic oligonucleotide sequences. The LON development requests accurate and efficient analytical methods. In this contribution, LON analysis methods were developed in cyclodextrin-modified capillary zone electrophoresis (CD-CZE). The LONs selected in this study feature different structures, including i) the oligonucleotide length (from 10 to 20 nucleotides), ii) the inter-nucleotide linkage chemistry (phosphodiester PDE or phosphorothioate PTO), and iii) the lipidic part: single- (LONsc) or double-chain (LONdc) lipids. In CD-CZE, the effect of several parameters on the electrophoretic peaks was investigated (buffer, CD, and capillary temperature). The binding interaction between LON and Me-β-CD was studied in affinity capillary electrophoresis and revealed a 1:1 LON:CD complex. Non-linear regression and three usual linearization methods (y-reciprocal, x-reciprocal, and double-reciprocal) were used to determine the binding constants (K values of 2.5.104 M-1 and 2.0.104 M-1 for LON PDE and LON PTO, respectively). Quantitative methods with good performances and analysis time lower than 5 min were achieved. Importantly, the developed analysis allows a separation between the i) full-length sequence LONs and their truncated sequences, (n-1), (n-2), and (n-4)-mers and ii) LONsc, LONdc and their corresponding unconjugated oligonucleotides. This work highlights the interest of CD-CZE methods for LON analysis.
Collapse
Affiliation(s)
- Fatima Barakat
- ARNA INSERM U1212, CNRS 5320, University of Bordeaux, Bordeaux, 33076, France
| | - Karen Gaudin
- ARNA INSERM U1212, CNRS 5320, University of Bordeaux, Bordeaux, 33076, France.
| | - Brune Vialet
- ARNA INSERM U1212, CNRS 5320, University of Bordeaux, Bordeaux, 33076, France
| | - Katell Bathany
- Chimie et Biologie des Membranes et Nanoobjets (CBMN) UMR 5248 CNRS, Université de Bordeaux, 33600, Pessac, France
| | - Sebastien Benizri
- ARNA INSERM U1212, CNRS 5320, University of Bordeaux, Bordeaux, 33076, France
| | - Philippe Barthélémy
- ARNA INSERM U1212, CNRS 5320, University of Bordeaux, Bordeaux, 33076, France.
| | - Ludivine Ferey
- ARNA INSERM U1212, CNRS 5320, University of Bordeaux, Bordeaux, 33076, France.
| |
Collapse
|
20
|
Veiga N, Diesendruck Y, Peer D. Targeted lipid nanoparticles for RNA therapeutics and immunomodulation in leukocytes. Adv Drug Deliv Rev 2020; 159:364-376. [PMID: 32298783 DOI: 10.1016/j.addr.2020.04.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/27/2020] [Accepted: 04/10/2020] [Indexed: 12/25/2022]
Abstract
Abnormalities in leukocytes' function are associated with many immune related disorders, such as cancer, autoimmunity and susceptibility to infectious diseases. Recent developments in Genome-wide-association-studies give rise to new opportunities for novel therapeutics. RNA-based modalities, that allow a selective genetic manipulation in vivo, are powerful tools for personalized medicine, enabling downregulation or expression of relevant proteins. Yet, RNA-based therapeutics requires a delivery modality to facilitate the stability, uptake and intracellular release of the RNA molecules. The use of lipid nanoparticles as a drug delivery approach improves the payloads' stability, pharmacokinetics, bio-distribution and therapeutic benefit while reducing side effects. Moreover, a wide variety of targeting moieties allow a precise and modular manipulation of gene expression, together with the ability to identify and selectively affect disease-relevant leukocytes-subsets. Altogether, RNA-based therapeutics, targeting leukocytes subsets, is believed to be one of the most promising therapeutic concepts of the near future, addressing pressing issues in cancer and inflammation heterogeneity.
Collapse
|
21
|
Nikkhoo A, Rostami N, Farhadi S, Esmaily M, Moghadaszadeh Ardebili S, Atyabi F, Baghaei M, Haghnavaz N, Yousefi M, Aliparasti MR, Ghalamfarsa G, Mohammadi H, Sojoodi M, Jadidi-Niaragh F. Codelivery of STAT3 siRNA and BV6 by carboxymethyl dextran trimethyl chitosan nanoparticles suppresses cancer cell progression. Int J Pharm 2020; 581:119236. [PMID: 32240809 DOI: 10.1016/j.ijpharm.2020.119236] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 12/24/2022]
Abstract
High expression of inhibitor of apoptosis (IAP) molecules in cancer cells promotes cancer cell chemoresistance. Use of BV6, a well-known IAP inhibitor, along with inhibition of signal transducer and activator of transcription 3 (STAT3), which is an important factor in the survival of tumor cells, and NIK as a mediator of BV6 unpredicted side effects, can induce effective apoptosis in tumor cells. The present study has investigated the combination therapy of cancer cells using Carboxymethyl Dextran-conjugated trimethyl chitosan (TMC-CMD) nanoparticles (NPs) loaded with NIK/STAT3-specific siRNA and BV6 to synergistically induce apoptosis in the breast, colorectal and melanoma cancer cell lines. Our results showed that in addition to enhanced pro-apoptotic effects, this combination therapy reduced proliferation, cell migration, colony formation, and angiogenesis, along with expression of factors including IL-10 and HIF in tumor cells. The results indicate the potential of this combination therapy for further investigation in animal models of cancer.
Collapse
Affiliation(s)
- Afshin Nikkhoo
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Rostami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shohreh Farhadi
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Esmaily
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Atyabi
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Baghaei
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Navideh Haghnavaz
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ghasem Ghalamfarsa
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mozhdeh Sojoodi
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, USA.
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
22
|
Paganin-Gioanni A, Rols MP, Teissié J, Golzio M. Cyclin B1 knockdown mediated by clinically approved pulsed electric fields siRNA delivery induces tumor regression in murine melanoma. Int J Pharm 2020; 573:118732. [DOI: 10.1016/j.ijpharm.2019.118732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/18/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023]
|
23
|
Takakura K, Kawamura A, Torisu Y, Koido S, Yahagi N, Saruta M. The Clinical Potential of Oligonucleotide Therapeutics against Pancreatic Cancer. Int J Mol Sci 2019; 20:ijms20133331. [PMID: 31284594 PMCID: PMC6651255 DOI: 10.3390/ijms20133331] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023] Open
Abstract
Although many diagnostic and therapeutic modalities for pancreatic cancer have been proposed, an urgent need for improved therapeutic strategies remains. Oligonucleotide therapeutics, such as those based on antisense RNAs, small interfering RNA (siRNA), microRNA (miRNA), aptamers, and decoys, are promising agents against pancreatic cancer, because they can identify a specific mRNA fragment of a given sequence or protein, and interfere with gene expression as molecular-targeted agents. Within the past 25 years, the diversity and feasibility of these drugs as diagnostic or therapeutic tools have dramatically increased. Several clinical and preclinical studies of oligonucleotides have been conducted for patients with pancreatic cancer. To support the discovery of effective diagnostic or therapeutic options using oligonucleotide-based strategies, in the absence of satisfactory therapies for long-term survival and the increasing trend of diseases, we summarize the current clinical trials of oligonucleotide therapeutics for pancreatic cancer patients, with underlying preclinical and scientific data, and focus on the possibility of oligonucleotides for targeting pancreatic cancer in clinical implications.
Collapse
Affiliation(s)
- Kazuki Takakura
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan.
| | - Atsushi Kawamura
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Yuichi Torisu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Shigeo Koido
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Naohisa Yahagi
- Division of Research and Development for Minimally Invasive Treatment, Cancer Center, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masayuki Saruta
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| |
Collapse
|
24
|
Romero-Nava R, Aguayo-Cerón KA, Ruiz-Hernández A, Huang F, Hong E, Aguilera-Mendez A, Villafaña Rauda S. Silencing of GPR82 with Interference RNA Improved Metabolic Profiles in Rats with High Fructose Intake. J Vasc Res 2019; 57:1-7. [PMID: 31266033 DOI: 10.1159/000500781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 05/06/2019] [Indexed: 11/19/2022] Open
Abstract
Metabolic syndrome (MS) is a clinical condition, constituted by alterations that lead to the onset of type II diabetes and cardiovascular disease. It has been reported that orphan G-protein-coupled receptor 82 (GPR82) participates in metabolic processes. The aim of this study was to evaluate the function of GPR82 in MS using a small interfering RNA (siRNA) against this receptor. We used Wistar rats of 10-12 weeks of age fed with a high-fructose solution (70%) for 9 weeks to induce MS. Subsequently, the rats were treated with an intrajugular dose of an siRNA against GPR82 and the effects were evaluated on day 3 and 7 after administration. On day 3 the siRNA had a transient effect on decreasing blood pressure and triglycerides and increasing high-density lipoprotein cholesterol, which recovered to the MS control on day 7. Decreased gene expressions of GPR82 mRNA in the aorta and heart were observed on day 3; moreover, decreased gene expression was maintained in the aorta on day 7. Therefore, we conclude that the orphan receptor GPR82 participates in the development of MS induced by fructose and the silencing of this receptor could ameliorate metabolic components.
Collapse
Affiliation(s)
- Rodrigo Romero-Nava
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado, Escuela Superior de Medicina del Instituto Politécnico Nacional, Mexico City, Mexico.,Laboratorio de Investigación en Farmacología, Hospital Infantil de México Federico Gómez (HIMFG), Mexico City, Mexico.,Laboratorio de Farmacología, Departamento Ciencias de la Salud, Div. C.B.S., Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | - Karla Aidee Aguayo-Cerón
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado, Escuela Superior de Medicina del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Armando Ruiz-Hernández
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado, Escuela Superior de Medicina del Instituto Politécnico Nacional, Mexico City, Mexico.,Department of Pharmacology, School of Medicine, Autonomous University of Baja California, Mexicali, Mexico
| | - Fengyang Huang
- Laboratorio de Investigación en Farmacología, Hospital Infantil de México Federico Gómez (HIMFG), Mexico City, Mexico
| | - Enrique Hong
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados, Mexico City, Mexico
| | - Asdrubal Aguilera-Mendez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás Hidalgo, Morelia, Mexico
| | - Santiago Villafaña Rauda
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado, Escuela Superior de Medicina del Instituto Politécnico Nacional, Mexico City, Mexico,
| |
Collapse
|
25
|
Biscans A, Coles A, Echeverria D, Khvorova A. The valency of fatty acid conjugates impacts siRNA pharmacokinetics, distribution, and efficacy in vivo. J Control Release 2019; 302:116-125. [PMID: 30940496 PMCID: PMC6546539 DOI: 10.1016/j.jconrel.2019.03.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/02/2019] [Accepted: 03/29/2019] [Indexed: 12/17/2022]
Abstract
Lipid-conjugated small-interfering RNAs (siRNAs) exhibit accumulation and gene silencing in extrahepatic tissues, providing an opportunity to expand therapeutic siRNA utility beyond the liver. Chemically engineering lipids may further improve siRNA delivery and efficacy, but the relationship between lipid structure/configuration and siRNA pharmacodynamics is unclear. Here, we synthesized a panel of mono-, di-, and tri-meric fatty acid-conjugated siRNAs to systematically evaluate the impact of fatty acid structure and valency on siRNA clearance, distribution, and efficacy. Fatty acid valency significantly altered the physicochemical properties of conjugated siRNAs, including hydrophobicity and micelle formation, which affected distribution. Trivalent lipid-conjugated siRNAs were predominantly retained at the site of injection with minimal systemic exposure, whereas monovalent lipid-conjugated siRNAs were quickly released into the circulation and accumulated primarily in kidney. Divalent lipid-conjugated siRNAs showed intermediate behavior, and preferentially accumulated in liver with functional distribution to lung, heart, and fat. The chemical structure of the conjugate, rather than overall physicochemical properties (i.e. hydrophobicity), predicted the degree of extrahepatic tissue accumulation necessary for productive gene silencing. Our findings will inform chemical engineering strategies for enhancing the extrahepatic delivery of lipophilic siRNAs.
Collapse
Affiliation(s)
- Annabelle Biscans
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Andrew Coles
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01604, USA.
| |
Collapse
|
26
|
Mun B, Jang E, Han S, Son HY, Choi Y, Huh YM, Haam S. Efficient Self-Assembled MicroRNA Delivery System Consisting of Cholesterol-Conjugated MicroRNA and PEGylated Polycationic Polymer for Tumor Treatment. ACS APPLIED BIO MATERIALS 2019; 2:2219-2228. [PMID: 35030660 DOI: 10.1021/acsabm.9b00186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
MicroRNA (miR), a key molecule involved in endogenous RNA interference, is a promising therapeutic agent. In vivo delivery of miR, however, is a major factor limiting its application because its polyanionic nature and vulnerability to breakdown make delivery of miR to targeted lesions difficult. To overcome these challenges, we developed a self-assembled miR delivery system consisting of cholesterol-conjugated miR and polyethylene glycol-grafted polyethylene imine. Nanosized complexes of miR with polyethylene imine, which protected miR and its delivery into targeted lesions in vivo, were successfully synthesized by polyethylene glycol grafting. The hydrophobicity of cholesterol improved the structural stability of the complex, preventing the loss of miR. Here, we report the preparation of this self-assembled complex. We examined the delivery efficiency and validated the therapeutic efficacy of the complex. In conclusion, our miR delivery system shows considerable potential for effective in vivo delivery of miR.
Collapse
Affiliation(s)
- Byeonggeol Mun
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul 120-749, Republic of Korea
| | - Eunji Jang
- MediBio-Informatics Research Center, Novomics Co. Ltd., Seoul 07217, Korea
| | - Seungmin Han
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul 120-749, Republic of Korea
| | - Hye Young Son
- Department of Radiology, College of Medicine, Yonsei University, Seoul 120-752, Republic of Korea.,YUHS-KRIBB Medical Convergence Research Institute, Seoul 120-752, Republic of Korea
| | - Yuna Choi
- Department of Radiology, College of Medicine, Yonsei University, Seoul 120-752, Republic of Korea
| | - Yong-Min Huh
- Department of Radiology, College of Medicine, Yonsei University, Seoul 120-752, Republic of Korea.,YUHS-KRIBB Medical Convergence Research Institute, Seoul 120-752, Republic of Korea.,Severance Biomedical Science Institute(SBSI), Seoul 120-752, Republic of Korea.,Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul 120-749, Republic of Korea
| |
Collapse
|
27
|
Kim B, Sailor MJ. Synthesis, Functionalization, and Characterization of Fusogenic Porous Silicon Nanoparticles for Oligonucleotide Delivery. J Vis Exp 2019. [PMID: 31058889 DOI: 10.3791/59440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
With the advent of gene therapy, the development of an effective in vivo nucleotide-payload delivery system has become of parallel import. Fusogenic porous silicon nanoparticles (F-pSiNPs) have recently demonstrated high in vivo gene silencing efficacy due to its high oligonucleotide loading capacity and unique cellular uptake pathway that avoids endocytosis. The synthesis of F-pSiNPs is a multi-step process that includes: (1) loading and sealing of oligonucleotide payloads in the silicon pores; (2) simultaneous coating and sizing of fusogenic lipids around the porous silicon cores; and (3) conjugation of targeting peptides and washing to remove excess oligonucleotide, silicon debris, and peptide. The particle's size uniformity is characterized by dynamic light scattering, and its core-shell structure may be verified by transmission electron microscopy. The fusogenic uptake is validated by loading a lipophilic dye, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI), into the fusogenic lipid bilayer and treating it to cells in vitro to observe for plasma membrane staining versus endocytic localizations. The targeting and in vivo gene silencing efficacies were previously quantified in a mouse model of Staphylococcus aureus pneumonia, in which the targeting peptide is expected to help the F-pSiNPs to home to the site of infection. Beyond its application in S. aureus infection, the F-pSiNP system may be used to deliver any oligonucleotide for gene therapy of a wide range of diseases, including viral infections, cancer, and autoimmune diseases.
Collapse
Affiliation(s)
- Byungji Kim
- Materials Science and Engineering Program, University of California, San Diego;
| | - Michael J Sailor
- Materials Science and Engineering Program, University of California, San Diego; Department of Chemistry and Biochemistry, University of California, San Diego
| |
Collapse
|
28
|
Angart PA, Adu-Berchie K, Carlson RJ, Vocelle DB, Chan C, Walton SP. Relative Quantification of siRNA Strand Loading into Ago2 for Design of Highly Active siRNAs. Methods Mol Biol 2019; 1974:41-56. [PMID: 31098994 DOI: 10.1007/978-1-4939-9220-1_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In RNA interference (RNAi), silencing is achieved through the interaction of double-stranded small interfering RNAs (siRNAs) with essential RNAi pathway proteins, including Argonaute 2 (Ago2). Based on these interactions, one strand of the siRNA is loaded into Ago2 forming the active RNA-induced silencing complex (RISC). Optimal siRNAs maximize RISC activity against the intended target and minimize off-target silencing. To achieve the desired activity and specificity, selection of the appropriate siRNA strand for loading into Ago2 is essential. Here, we provide a protocol to quantify the relative loading of individual siRNA strands into Ago2, one factor in determining the capacity of a siRNA to achieve silencing activity and target specificity.
Collapse
Affiliation(s)
- Phillip A Angart
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
- Office of Biotechnology Products, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Kwasi Adu-Berchie
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Rebecca J Carlson
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, USA
| | - Daniel B Vocelle
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Christina Chan
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - S Patrick Walton
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
29
|
Kulhari H, Jangid AK, Adams DJ. Monoclonal Antibody-Conjugated Dendritic Nanostructures for siRNA Delivery. Methods Mol Biol 2019; 1974:195-201. [PMID: 31099004 DOI: 10.1007/978-1-4939-9220-1_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Small interfering RNA (siRNA) is a promising tool for gene therapy-based disease treatments. However, delivery of siRNA to the target cells requires a specific and reliable carrier system. Herein we describe a targeted carrier system that can deliver siRNA to cancer cells overexpressing the human epidermal growth factor 2 (HER2) receptor. Trastuzumab-conjugated poly(amido)amine dendrimers can be synthesized using the protocols described here.
Collapse
Affiliation(s)
- Hitesh Kulhari
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, India.
| | - Ashok K Jangid
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, India
| | - David J Adams
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
30
|
Du M, Chen Z, Chen Y, Li Y. Ultrasound-Targeted Delivery Technology: A Novel Strategy for Tumor- Targeted Therapy. Curr Drug Targets 2018; 20:220-231. [PMID: 30062966 DOI: 10.2174/1389450119666180731095441] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 06/03/2018] [Accepted: 07/19/2018] [Indexed: 12/20/2022]
Abstract
Background:
Ultrasound has been widely used in clinical diagnosis because it is noninvasive,
inexpensive, simple, and reproducible. With the development of molecular imaging, material
science, and ultrasound contrast agents, ultrasound-targeted delivery technology has emerged. The interaction
of ultrasound and molecular probes can be exploited to change the structures of cells and tissues
in order to promote the targeted release of therapeutic substances to local tumors. The targeted
delivery of drugs, genes, and gases would not only improve the efficacy of tumor treatment but also
avoid the systemic toxicity and side effects caused by antitumor treatments. This technology was recently
applied in clinical trials and showed enormous potential for clinical application.
Objective:
This article briefly introduces the characteristics of the tumor microenvironment and the
principle of ultrasound-targeted delivery technology. To present recent progress in this field, this review
focuses on the application of ultrasound-targeted delivery technology in tumor-targeted therapy,
including drug delivery, gene transfection, and gas treatment.
Results:
The results of this study show that ultrasound-targeted delivery technology is a promising
therapeutic strategy for tumor treatment.
Conclusion:
Ultrasound-targeted delivery technology shows promise with regard to cancer treatment.
Collapse
Affiliation(s)
- Meng Du
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, The Liwan Hospital of the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, China
| | - Zhiyi Chen
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, The Liwan Hospital of the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, China
| | - Yuhao Chen
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, The Liwan Hospital of the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, China
| | - Yue Li
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, The Liwan Hospital of the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, China
| |
Collapse
|
31
|
Khalil IA, Yamada Y, Harashima H. Optimization of siRNA delivery to target sites: issues and future directions. Expert Opin Drug Deliv 2018; 15:1053-1065. [DOI: 10.1080/17425247.2018.1520836] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ikramy A. Khalil
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
32
|
Shin H, Park SJ, Yim Y, Kim J, Choi C, Won C, Min DH. Recent Advances in RNA Therapeutics and RNA Delivery Systems Based on Nanoparticles. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800065] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hojeong Shin
- Center for RNA Research; Institute for Basic Science; Seoul National University; Seoul 08826 Republic of Korea
- Department of Chemistry; Seoul National University; Seoul 08826 Republic of Korea
| | - Se-Jin Park
- Center for RNA Research; Institute for Basic Science; Seoul National University; Seoul 08826 Republic of Korea
- Department of Chemistry; Seoul National University; Seoul 08826 Republic of Korea
| | - Yeajee Yim
- Center for RNA Research; Institute for Basic Science; Seoul National University; Seoul 08826 Republic of Korea
- Department of Chemistry; Seoul National University; Seoul 08826 Republic of Korea
| | - Jungho Kim
- Department of Chemistry; Seoul National University; Seoul 08826 Republic of Korea
- Institute of Biotherapeutics Convergence Technology; Lemonex Inc.; Seoul 08826 Republic of Korea
| | - Chulwon Choi
- Center for RNA Research; Institute for Basic Science; Seoul National University; Seoul 08826 Republic of Korea
- Department of Chemistry; Seoul National University; Seoul 08826 Republic of Korea
| | - Cheolhee Won
- Institute of Biotherapeutics Convergence Technology; Lemonex Inc.; Seoul 08826 Republic of Korea
| | - Dal-Hee Min
- Center for RNA Research; Institute for Basic Science; Seoul National University; Seoul 08826 Republic of Korea
- Department of Chemistry; Seoul National University; Seoul 08826 Republic of Korea
- Institute of Biotherapeutics Convergence Technology; Lemonex Inc.; Seoul 08826 Republic of Korea
| |
Collapse
|
33
|
In vitro and in vivo delivery of siRNA via VIPER polymer system to lung cells. J Control Release 2018; 276:50-58. [PMID: 29474962 DOI: 10.1016/j.jconrel.2018.02.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 02/11/2018] [Accepted: 02/12/2018] [Indexed: 12/17/2022]
Abstract
The block copolymer VIPER (virus-inspired polymer for endosomal release) has been reported to be a promising novel delivery system of DNA plasmids both in vitro and in vivo. VIPER is comprised of a polycation segment for condensation of nucleic acids as well as a pH-sensitive segment that exposes the membrane lytic peptide melittin in acidic environments to facilitate endosomal escape. The objective of this study was to investigate VIPER/siRNA polyplex characteristics, and compare their in vitro and in vivo performance with commercially available transfection reagents and a control version of VIPER lacking melittin. VIPER/siRNA polyplexes were formulated and characterized at various charge ratios and shown to be efficiently internalized in cultured cells. Target mRNA knockdown was confirmed by both flow cytometry and qRT-PCR and the kinetics of knockdown was monitored by live cell spinning disk microscopy, revealing knockdown starting by 4 h post-delivery. Intratracheal instillation of VIPER particles formulated with sequence specific siRNA to the lung of mice resulted in a significantly more efficient knockdown of GAPDH compared to treatment with VIPER particles formulated with scrambled sequence siRNA. We also demonstrated using pH-sensitive labels that VIPER particles experience less acidic environments compared to control polyplexes. In summary, VIPER/siRNA polyplexes efficiently deliver siRNA in vivo resulting in robust gene silencing (>75% knockdown) within the lung.
Collapse
|
34
|
Chen C, Yang Z, Tang X. Chemical modifications of nucleic acid drugs and their delivery systems for gene-based therapy. Med Res Rev 2018; 38:829-869. [PMID: 29315675 DOI: 10.1002/med.21479] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 12/12/2022]
Abstract
Gene-based therapy is one of essential therapeutic strategies for precision medicine through targeting specific genes in specific cells of target tissues. However, there still exist many problems that need to be solved, such as safety, stability, selectivity, delivery, as well as immunity. Currently, the key challenges of gene-based therapy for clinical potential applications are the safe and effective nucleic acid drugs as well as their safe and efficient gene delivery systems. In this review, we first focus on current nucleic acid drugs and their formulation in clinical trials and on the market, including antisense oligonucleotide, siRNA, aptamer, and plasmid nucleic acid drugs. Subsequently, we summarize different chemical modifications of nucleic acid drugs as well as their delivery systems for gene-based therapeutics in vivo based on nucleic acid chemistry and nanotechnology methods.
Collapse
Affiliation(s)
- Changmai Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhenjun Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
35
|
Ong MS, Cai W, Yuan Y, Leong HC, Tan TZ, Mohammad A, You ML, Arfuso F, Goh BC, Warrier S, Sethi G, Tolwinski NS, Lobie PE, Yap CT, Hooi SC, Huang RY, Kumar AP. 'Lnc'-ing Wnt in female reproductive cancers: therapeutic potential of long non-coding RNAs in Wnt signalling. Br J Pharmacol 2017; 174:4684-4700. [PMID: 28736855 PMCID: PMC5727316 DOI: 10.1111/bph.13958] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/30/2017] [Accepted: 07/17/2017] [Indexed: 02/06/2023] Open
Abstract
Recent discoveries in the non-coding genome have challenged the original central dogma of molecular biology, as non-coding RNAs and related processes have been found to be important in regulating gene expression. MicroRNAs and long non-coding RNAs (lncRNAs) are among those that have gained attention recently in human diseases, including cancer, with the involvement of many more non-coding RNAs (ncRNAs) waiting to be discovered. ncRNAs are a group of ribonucleic acids transcribed from regions of the human genome, which do not become translated into proteins, despite having essential roles in cellular physiology. Deregulation of ncRNA expression and function has been observed in cancer pathogenesis. Recently, the roles of a group of ncRNA known as lncRNA have gained attention in cancer, with increasing reports of their oncogenic involvement. Female reproductive cancers remain a leading cause of death in the female population, accounting for almost a third of all female cancer deaths in 2016. The Wnt signalling pathway is one of the most important oncogenic signalling pathways which is hyperactivated in cancers, including female reproductive cancers. The extension of ncRNA research into their mechanistic roles in human cancers has also led to novel reported roles of ncRNAs in the Wnt pathway and Wnt-mediated oncogenesis. This review aims to provide a critical summary of the respective roles and cellular functions of Wnt-associated lncRNAs in female reproductive cancers and explores the potential of circulating cell-free lncRNAs as diagnostic markers and lncRNAs as therapeutic targets. LINKED ARTICLES This article is part of a themed section on WNT Signalling: Mechanisms and Therapeutic Opportunities. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.24/issuetoc.
Collapse
Affiliation(s)
- Mei S Ong
- Departments of Physiology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Wanpei Cai
- Departments of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Yi Yuan
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Hin C Leong
- Departments of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Tuan Z Tan
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Asad Mohammad
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Ming L You
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research InstituteCurtin UniversityPerthWAAustralia
| | - Boon C Goh
- Departments of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
- National University Cancer InstituteNational University Health SystemSingapore
- Department of Haematology‐OncologyNational University Health SystemSingapore
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative MedicineManipal UniversityBangaloreIndia
- School of Biomedical Sciences, Curtin Health Innovation Research InstituteCurtin UniversityPerthWAAustralia
| | - Gautam Sethi
- Departments of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- School of Biomedical Sciences, Curtin Health Innovation Research InstituteCurtin UniversityPerthWAAustralia
| | - Nicholas S Tolwinski
- Division of ScienceYale‐NUS CollegeSingapore
- Department of Biological ScienceNational University of SingaporeSingapore
| | - Peter E Lobie
- Departments of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Departments of Anatomy, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Tsinghua Berkeley Shenzhen Institute and Division of Life Science and HealthTsinghua University Graduate SchoolShenzhenChina
| | - Celestial T Yap
- Departments of Physiology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- National University Cancer InstituteNational University Health SystemSingapore
| | - Shing C Hooi
- Departments of Physiology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Ruby Y Huang
- Departments of Anatomy, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
- National University Cancer InstituteNational University Health SystemSingapore
- Department of Obstetrics and GynaecologyNational University HospitalSingapore
| | - Alan P Kumar
- Departments of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
- National University Cancer InstituteNational University Health SystemSingapore
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative MedicineManipal UniversityBangaloreIndia
- Curtin Medical School, Faculty of Health ScienceCurtin UniversityPerthWAAustralia
- Department of Biological SciencesUniversity of North TexasDentonTXUSA
| |
Collapse
|
36
|
Godinho BMDC, Gilbert JW, Haraszti RA, Coles AH, Biscans A, Roux L, Nikan M, Echeverria D, Hassler M, Khvorova A. Pharmacokinetic Profiling of Conjugated Therapeutic Oligonucleotides: A High-Throughput Method Based Upon Serial Blood Microsampling Coupled to Peptide Nucleic Acid Hybridization Assay. Nucleic Acid Ther 2017; 27:323-334. [PMID: 29022758 DOI: 10.1089/nat.2017.0690] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Therapeutic oligonucleotides, such as small interfering RNAs (siRNAs), hold great promise for the treatment of incurable genetically defined disorders by targeting cognate toxic gene products for degradation. To achieve meaningful tissue distribution and efficacy in vivo, siRNAs must be conjugated or formulated. Clear understanding of the pharmacokinetic (PK)/pharmacodynamic behavior of these compounds is necessary to optimize and characterize the performance of therapeutic oligonucleotides in vivo. In this study, we describe a simple and reproducible methodology for the evaluation of in vivo blood/plasma PK profiles and tissue distribution of oligonucleotides. The method is based on serial blood microsampling from the saphenous vein, coupled to peptide nucleic acid hybridization assay for quantification of guide strands. Performed with minimal number of animals, this method allowed unequivocal detection and sensitive quantification without the need for amplification, or further modification of the oligonucleotides. Using this methodology, we compared plasma clearances and tissue distribution profiles of two different hydrophobically modified siRNAs (hsiRNAs). Notably, cholesterol-hsiRNA presented slow plasma clearances and mainly accumulated in the liver, whereas, phosphocholine-docosahexaenoic acid-hsiRNA was rapidly cleared from the plasma and preferably accumulated in the kidney. These data suggest that the PK/biodistribution profiles of modified hsiRNAs are determined by the chemical nature of the conjugate. Importantly, the method described in this study constitutes a simple platform to conduct pilot assessments of the basic clearance and tissue distribution profiles, which can be broadly applied for evaluation of new chemical variants of siRNAs and micro-RNAs.
Collapse
Affiliation(s)
- Bruno M D C Godinho
- 1 RNA Therapeutics Institute, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Department of Molecular Medicine, University of Massachusetts Medical School , Worcester, Massachusetts
| | - James W Gilbert
- 1 RNA Therapeutics Institute, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Department of Molecular Medicine, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Reka A Haraszti
- 1 RNA Therapeutics Institute, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Department of Molecular Medicine, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Andrew H Coles
- 1 RNA Therapeutics Institute, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Department of Molecular Medicine, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Annabelle Biscans
- 1 RNA Therapeutics Institute, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Department of Molecular Medicine, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Loic Roux
- 1 RNA Therapeutics Institute, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Department of Molecular Medicine, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Mehran Nikan
- 1 RNA Therapeutics Institute, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Department of Molecular Medicine, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Dimas Echeverria
- 1 RNA Therapeutics Institute, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Department of Molecular Medicine, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Matthew Hassler
- 1 RNA Therapeutics Institute, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Department of Molecular Medicine, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Anastasia Khvorova
- 1 RNA Therapeutics Institute, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Department of Molecular Medicine, University of Massachusetts Medical School , Worcester, Massachusetts
| |
Collapse
|
37
|
|