1
|
Collignon RM, Siderhurst MS, Cha DH. Evidence of queen-rearing suppression by mature queens in the little fire ant, Wasmannia auropunctata. INSECTES SOCIAUX 2023; 70:259-263. [PMID: 37273892 PMCID: PMC10171142 DOI: 10.1007/s00040-023-00917-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023]
Abstract
The little fire ant (LFA), Wasmannia auropunctata, is a serious invasive pest first reported on Hawaii Island in 1999, and has since spread and established itself across the island. LFA is considered one of the worst 100 invasive species and has significant ecological, agricultural, and public health impacts in invaded areas, which include much of the tropical New World. Although localized eradication efforts have proven successful, they are intensive and difficult to implement. Furthermore, LFA's high invasive-ability resists these control efforts in areas where the species is established and can re-infest treated areas. This research set out to determine whether LFA queens have a suppressant effect on new queen production in nests, as a first step in identifying a potential queen pheromone for LFA. A queen pheromone could offer a means to shutdown LFA reproductive capability, potentially by suppressing the production of new queens or inducing the execution of queens or queen-destined larvae. When queenless experimental nests and polygyne experimental nests were compared, six out of eight queenless nests successfully reared both new alate queens (2.25 queens/nest) and drones (3.63 drones/nest) to adulthood, whereas only three of eight polygyne nests reared sexual larvae that failed to develop to adulthood or even the pupal stage. These results suggest that dealate mature LFA queens suppress the production of new alate queens in LFA nests, and is the first evidence that LFA may utilize a queen pheromone.
Collapse
Affiliation(s)
- R. M. Collignon
- USDA-ARS, Pacific Basin Agricultural Research Center, Hilo, HI USA
- Eastern Mennonite University, Harrisonburg, VA USA
| | | | - D. H. Cha
- USDA-ARS, Pacific Basin Agricultural Research Center, Hilo, HI USA
| |
Collapse
|
2
|
Valles SM, Zhao C, Rivers AR, Iwata RL, Oi DH, Cha DH, Collignon RM, Cox NA, Morton GJ, Calcaterra LA. RNA virus discoveries in the electric ant, Wasmannia auropunctata. Virus Genes 2023; 59:276-289. [PMID: 36729322 PMCID: PMC10025213 DOI: 10.1007/s11262-023-01969-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/13/2023] [Indexed: 02/03/2023]
Abstract
Despite being one of the most destructive invasive species of ants, only two natural enemies are known currently for Wasmannia auropunctata, commonly known as the electric ant or little fire ant. Because viruses can be effective biological control agents against many insect pests, including ants, a metagenomics/next-generation sequencing approach was used to facilitate discovery of virus sequences from the transcriptomes of W. auropunctata. Five new and complete positive sense, single-stranded RNA virus genomes, and one new negative sense, single-stranded RNA virus genome were identified, sequenced, and characterized from W. auropunctata collected in Argentina by this approach, including a dicistrovirus (Electric ant dicistrovirus), two polycipiviruses (Electric ant polycipivirus 1; Electric ant polycipivirus 2), a solinvivirus (Electric ant solinvivirus), a divergent genome with similarity to an unclassified group in the Picornavirales (Electric ant virus 1), and a rhabdovirus (Electric ant rhabdovirus). An additional virus genome was detected that is likely Solenopsis invicta virus 10 (MH727527). The virus genome sequences were absent from the transcriptomes of W. auropunctata collected in the USA (Hawaii and Florida). Additional limited field surveys corroborated the absence of these viruses in regions where the electric ant is invasive (the USA and Australia). The replicative genome strand of four of the viruses (Electric ant polycipivirus 2, Electric ant solinvivirus, Electric ant virus 1, and Solenopsis invicta virus 10 (in the electric ant) was detected in Argentinean-collected W. auropunctata indicating that the ant is a host for these viruses. These are the first virus discoveries to be made from W. auropunctata.
Collapse
Affiliation(s)
- Steven M Valles
- Center for Medical, Agricultural and Veterinary Entomology, USDA-ARS, 1600 SW 23rd Drive, Gainesville, FL, USA.
| | - Chaoyang Zhao
- Center for Medical, Agricultural and Veterinary Entomology, USDA-ARS, 1600 SW 23rd Drive, Gainesville, FL, USA
| | - Adam R Rivers
- Genomics and Bioinformatics Research Unit, USDA-ARS, 1600 SW 23rd Drive, Gainesville, FL, USA
| | - Ryo L Iwata
- Genomics and Bioinformatics Research Unit, USDA-ARS, 1600 SW 23rd Drive, Gainesville, FL, USA
| | - David H Oi
- Center for Medical, Agricultural and Veterinary Entomology, USDA-ARS, 1600 SW 23rd Drive, Gainesville, FL, USA
| | - Dong H Cha
- Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, USDA-ARS, 64 Nowelo St, Hilo, HI, USA
| | - R Max Collignon
- Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, USDA-ARS, 64 Nowelo St, Hilo, HI, USA
| | - Nastassja A Cox
- National Electric Ant Eradication Program, Department of Agriculture and Fisheries, Biosecurity Queensland, 21-23 Redden Street, Cairns, QLD, 4870, Australia
| | - Gary J Morton
- National Electric Ant Eradication Program, Department of Agriculture and Fisheries, Biosecurity Queensland, 21-23 Redden Street, Cairns, QLD, 4870, Australia
| | - Luis A Calcaterra
- Fundación para el Estudio de Especies Invasivas, Bolívar 1559, B1686EFA, Hurlingham, Buenos Aires, Argentina
| |
Collapse
|
3
|
Abstract
Eusociality represents an extreme form of social behavior characterized by a reproductive division of labor. Eusociality necessarily evolved through kin selection, which requires interactions among related individuals. However, many eusocial taxa also show cooperation between non-kin groups, challenging the idea that cooperative actions should only occur among relatives. This review explores the causes and consequences of non-kin cooperation in ants. Ants display a diversity of behaviors that lead to non-kin cooperation within and between species. These interactions occur among both reproductive and non-reproductive individuals. The proximate and ultimate mechanisms leading to non-kin cooperative interactions differ substantially depending on the biotic and abiotic environment. We end this review with directions for future research and suggest that the investigation of non-kin cooperative actions provides insight into processes leading to social evolution.
Collapse
|
4
|
Noh P, Oh S, Park S, Kwon T, Kim Y, Choe JC, Jeong G. Association between host wing morphology polymorphism and Wolbachia infection in Vollenhovia emeryi (Hymenoptera: Myrmicinae). Ecol Evol 2020; 10:8827-8837. [PMID: 32884660 PMCID: PMC7452775 DOI: 10.1002/ece3.6582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/14/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
Many eusocial insects, including ants, show complex colony structures, distributions, and reproductive strategies. In the ant Vollenhovia emeryi Wheeler (Hymenoptera: Myrmicinae), queens and males are produced clonally, while sterile workers arise sexually, unlike other ant species and Hymenopteran insects in general. Furthermore, there is a wing length polymorphism in the queen caste. Despite its evolutionary remarkable traits, little is known about the population structure of this ant species, which may provide insight into its unique reproductive mode and polymorphic traits. We performed in-depth analyses of ant populations from Korea, Japan, and North America using three mitochondrial genes (COI, COII, and Cytb). The long-winged (L) morph is predominant in Korean populations, and the short-winged (S) morph is very rare. Interestingly, all L morphs were infected with Wolbachia, while all Korean S morphs lacked Wolbachia, demonstrating a association between a symbiont and a phenotypic trait. A phylogenetic analysis revealed that the S morph is derived from the L morph. We propose that the S morph is associated with potential resistance to Wolbachia infection and that Wolbachia infection does not influence clonal reproduction (as is the case in other ant species).
Collapse
Affiliation(s)
- Pureum Noh
- Division of EcoScienceEwha Womans UniversitySeoulKorea
- National Institute of EcologySeochun‐gunKorea
- Present address:
Herbal Medicine Resources Research CenterKorea Institute of Oriental MedicineNajuKorea
| | - Seung‐Yoon Oh
- School of Biological SciencesSeoul National UniversitySeoulKorea
| | - Soyeon Park
- National Institute of EcologySeochun‐gunKorea
- Interdisciplinary Program of EcoCreativeThe Graduate SchoolEwha Womans UniversitySeoulKorea
| | - Taesung Kwon
- Division of Forest EcologyKorea Forest Research InstituteSeoulKorea
| | - Yonghwan Kim
- Department of PhysicsKonkuk UniversitySeoulKorea
| | - Jae Chun Choe
- Division of EcoScienceEwha Womans UniversitySeoulKorea
- National Institute of EcologySeochun‐gunKorea
| | - Gilsang Jeong
- Division of EcoScienceEwha Womans UniversitySeoulKorea
- National Institute of EcologySeochun‐gunKorea
| |
Collapse
|
5
|
Eyer PA, McDowell B, Johnson LNL, Calcaterra LA, Fernandez MB, Shoemaker D, Puckett RT, Vargo EL. Supercolonial structure of invasive populations of the tawny crazy ant Nylanderia fulva in the US. BMC Evol Biol 2018; 18:209. [PMID: 30594137 PMCID: PMC6310932 DOI: 10.1186/s12862-018-1336-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/17/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Social insects are among the most serious invasive pests in the world, particularly successful at monopolizing environmental resources to outcompete native species and achieve ecological dominance. The invasive success of some social insects is enhanced by their unicolonial structure, under which the presence of numerous queens and the lack of aggression against non-nestmates allow high worker densities, colony growth, and survival while eliminating intra-specific competition. In this study, we investigated the population genetics, colony structure and levels of aggression in the tawny crazy ant, Nylanderia fulva, which was recently introduced into the United States from South America. RESULTS We found that this species experienced a genetic bottleneck during its invasion lowering its genetic diversity by 60%. Our results show that the introduction of N. fulva is associated with a shift in colony structure. This species exhibits a multicolonial organization in its native range, with colonies clearly separated from one another, whereas it displays a unicolonial system with no clear boundaries among nests in its invasive range. We uncovered an absence of genetic differentiation among populations across the entire invasive range, and a lack of aggressive behaviors towards conspecifics from different nests, even ones separated by several hundreds of kilometers. CONCLUSIONS Overall, these results suggest that across its entire invasive range in the U.S.A., this species forms a single supercolony spreading more than 2000 km. In each invasive nest, we found several, up to hundreds, of reproductive queens, each being mated with a single male. The many reproductive queens per nests, together with the free movement of individuals between nests, leads to a relatedness coefficient among nestmate workers close to zero in introduced populations, calling into question the stability of this unicolonial system in which indirect fitness benefits to workers is apparently absent.
Collapse
Affiliation(s)
- Pierre-André Eyer
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, TX, 77843-2143, USA.
| | - Bryant McDowell
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, TX, 77843-2143, USA
| | - Laura N L Johnson
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, TX, 77843-2143, USA
| | - Luis A Calcaterra
- Fundación para el Estudio de Especies Invasivas (FuEDEI) and CONICET, Bolívar 1559, B1686EFA, Hurlingham, Buenos Aires, Argentina
| | - Maria Belen Fernandez
- Fundación para el Estudio de Especies Invasivas (FuEDEI) and CONICET, Bolívar 1559, B1686EFA, Hurlingham, Buenos Aires, Argentina
| | - DeWayne Shoemaker
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37996-4560, USA
| | - Robert T Puckett
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, TX, 77843-2143, USA
| | - Edward L Vargo
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, TX, 77843-2143, USA
| |
Collapse
|
6
|
Eyer PA, Matsuura K, Vargo EL, Kobayashi K, Yashiro T, Suehiro W, Himuro C, Yokoi T, Guénard B, Dunn RR, Tsuji K. Inbreeding tolerance as a pre-adapted trait for invasion success in the invasive ant Brachyponera chinensis. Mol Ecol 2018; 27:4711-4724. [PMID: 30368959 DOI: 10.1111/mec.14910] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 10/03/2018] [Accepted: 10/08/2018] [Indexed: 01/17/2023]
Abstract
Identifying traits that facilitate species introductions and successful invasions of ecosystems represents a key issue in ecology. Following their establishment into new environments, many non-native species exhibit phenotypic plasticity with post-introduction changes in behaviour, morphology or life history traits that allow them to overcome the presumed loss of genetic diversity resulting in inbreeding and reduced adaptive potential. Here, we present a unique strategy in the invasive ant Brachyponera chinensis (Emery), in which inbreeding tolerance is a pre-adapted trait for invasion success, allowing this ant to cope with genetic depletion following a genetic bottleneck. We report for the first time that inbreeding is not a consequence of the founder effect following introduction, but it is due to mating between sister queens and their brothers that pre-exists in native populations which may have helped it circumvent the cost of invasion. We show that a genetic bottleneck does not affect the genetic diversity or the level of heterozygosity within colonies and suggest that generations of sib-mating in native populations may have reduced inbreeding depression through purifying selection of deleterious alleles. This work highlights how a unique life history may pre-adapt some species for biological invasions.
Collapse
Affiliation(s)
- Pierre-André Eyer
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, Texas
| | - Kenji Matsuura
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Edward L Vargo
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, Texas
| | - Kazuya Kobayashi
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Toshihisa Yashiro
- Molecular Ecology, Evolution, and Phylogenetics (MEEP) laboratory School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Wataru Suehiro
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Chihiro Himuro
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Tomoyuki Yokoi
- Laboratory of Conservation Ecology, University of Tsukuba, Tsukuba, Japan
| | - Benoit Guénard
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Robert R Dunn
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina.,German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany.,Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Copenhagen Ø, Denmark
| | - Kazuki Tsuji
- Faculty of Agriculture, University of the Ryukyus, Nishihara, Okinawa, Japan
| |
Collapse
|
7
|
Fougeyrollas R, Křivánek J, Roy V, Dolejšová K, Frechault S, Roisin Y, Hanus R, Sillam-Dussès D. Asexual queen succession mediates an accelerated colony life cycle in the termite Silvestritermes minutus. Mol Ecol 2017; 26:3295-3308. [PMID: 28281327 DOI: 10.1111/mec.14095] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/16/2017] [Accepted: 02/28/2017] [Indexed: 11/28/2022]
Abstract
Mixed modes of reproduction, combining sexual processes with thelytokous parthenogenesis, occur in all major clades of social insects. In several species of termites, queens maximize their genetic input into nondispersing replacement queens through parthenogenesis, while maintaining genetically diverse sterile offspring and dispersing reproductives via sexual reproduction. This so-called asexual queen succession (AQS) has multiple independent origins and its presumed advantages are diverse as well, ranging from multiplication of colony reproductive potential to extension of its lifespan beyond that of the foundress. However, how AQS shapes colony life cycles under natural conditions remains poorly known. The neotropical termite Silvestritermes minutus inhabits small but conspicuous nests, offering a unique opportunity to investigate the impact of AQS on life history. We report on its breeding system, life cycle and sex allocation using social structure census in 137 nests and genotyping of 12 colonies at 12 microsatellite loci. We show that colonies are established by an outbred pair of primary reproductives. In less than 2 years, the foundress is replaced by multiple neotenic queens, arising mostly through automixis with central fusion. Sterile castes, male and most (93%) female dispersers are produced sexually. Colony reproduction is usually restricted to a single dispersal of alates with unbiased sex ratio, taking place after 3 years. We conclude that S. minutus benefits from AQS to maximize colony growth rate and alate production within a very short life cycle rather than to extend colony lifespan. This highlights the versatile role of AQS in different cases of its polyphyletic origin.
Collapse
Affiliation(s)
- R Fougeyrollas
- Université Paris-Est Créteil, Université Pierre et Marie Curie, CNRS, INRA, IRD, Université Paris-Diderot, iEES-Paris, 61 avenue du Général de Gaulle, 94010, Créteil, France
| | - J Křivánek
- Chemistry of Social Insects, The Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 166 10, Prague, Czech Republic.,Faculty of Science, Charles University in Prague, Albertov 6, 128 43, Prague, Czech Republic
| | - V Roy
- Université Paris-Est Créteil, Université Pierre et Marie Curie, CNRS, INRA, IRD, Université Paris-Diderot, iEES-Paris, 61 avenue du Général de Gaulle, 94010, Créteil, France
| | - K Dolejšová
- Chemistry of Social Insects, The Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 166 10, Prague, Czech Republic.,Faculty of Science, Charles University in Prague, Albertov 6, 128 43, Prague, Czech Republic
| | - S Frechault
- Université Paris-Est Créteil, Université Pierre et Marie Curie, CNRS, INRA, IRD, Université Paris-Diderot, iEES-Paris, 61 avenue du Général de Gaulle, 94010, Créteil, France
| | - Y Roisin
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Av. F. D. Roosevelt 50, 1050, Brussels, Belgium
| | - R Hanus
- Chemistry of Social Insects, The Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 166 10, Prague, Czech Republic
| | - D Sillam-Dussès
- IRD-Sorbonne Universités-UMR 242, Université Pierre et Marie Curie, Université Paris-Est Créteil, Université Paris-Diderot, CNRS, INRA, iEES-Paris, 32 avenue Henri Varagnat, 93143, Bondy, France.,LEEC, EA4443, Université Paris 13-Sorbonne Paris Cité, 99 Avenue J. B. Clément, 93430, Villetaneuse, France
| |
Collapse
|
8
|
Miyakawa MO, Mikheyev AS. Males are here to stay: fertilization enhances viable egg production by clonal queens of the little fire ant (Wasmannia auropunctata). Naturwissenschaften 2015; 102:15. [PMID: 25801787 DOI: 10.1007/s00114-015-1265-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/06/2015] [Accepted: 03/06/2015] [Indexed: 02/02/2023]
Abstract
Evolution of reproduction strategies is affected by both phylogenetic and physiological constraints. Although clonality may benefit females, it may not be selected if a male contribution is necessary to start egg laying and embryo development. In little fire ant, Wasmannia auropunctata, sexual populations employ a typical Hymenopteran system of reproduction. In clonal populations, however, queens and males are produced with only maternal and paternal genomes, respectively, whereas sterile workers are produced sexually. Although this system requires both sexes for worker production, previous work has shown that workers may also be produced clonally by the queens. If so, why are males maintained in this species? Our data suggest that fertilization is necessary to increase the hatching rate of eggs. Although clonal queens can indeed produce both workers and queens without mating, the hatching rate is far below the level necessary to maintain functional colonies. On the other hand, virgin queens from populations exhibiting the original Hymenopteran reproduction system also show low hatching rates, but produce only haploid male eggs. Reasons for the existence of W. auropunctata males have been disputed. However, our data suggest that physiological constraints, such as the requirement for insemination, must be considered in regard to evolution of reproduction systems, in addition to ecological data and theoretical considerations of fitness.
Collapse
Affiliation(s)
- Misato O Miyakawa
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan,
| | | |
Collapse
|
9
|
Darras H, Kuhn A, Aron S. Genetic determination of female castes in a hybridogenetic desert ant. J Evol Biol 2014; 27:2265-71. [PMID: 25186793 DOI: 10.1111/jeb.12470] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/19/2014] [Accepted: 08/06/2014] [Indexed: 11/29/2022]
Abstract
In most social insects, the brood is totipotent and environmental factors determine whether a female egg will develop into a reproductive queen or a functionally sterile worker. However, genetic factors have been shown to affect the female's caste fate in a few ant species. The desert ant Cataglyphis hispanica reproduces by social hybridogenesis. All populations are characterized by the coexistence of two distinct genetic lineages. Queens are almost always found mated with a male of the alternate lineage than their own. Workers develop from hybrid crosses between the genetic lineages, whereas daughter queens are produced asexually via parthenogenesis. Here, we show that the association between genotype and caste in this species is maintained by a 'hard-wired' genetic caste determination system, whereby nonhybrid genomes have lost the ability to develop as workers. Genetic analyses reveal that, in a rare population with multiple-queen colonies, a significant proportion of nestmate queens are mated with males of their own lineage. These queens fail to produce worker offspring; they produce only purebred daughter queens by sexual reproduction. We discuss how the production of reproductive queens through sexual, intralineage crosses may favour the stability of social hybridogenesis in this species.
Collapse
Affiliation(s)
- H Darras
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Brussels, Belgium
| | | | | |
Collapse
|
10
|
Darras H, Leniaud L, Aron S. Large-scale distribution of hybridogenetic lineages in a Spanish desert ant. Proc Biol Sci 2013; 281:20132396. [PMID: 24225458 DOI: 10.1098/rspb.2013.2396] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recently, a unique case of hybridogenesis at a social level was reported in local populations of the desert ants Cataglyphis. Queens mate with males originating from a different genetic lineage than their own to produce hybrid workers, but they use parthenogenesis for the production of reproductive offspring (males and females). As a result, non-reproductive workers are all inter-lineage hybrids, whereas the sexual line is purely maternal. Here, we show that this unorthodox reproductive system occurs in all populations of the ant Cataglyphis hispanica. Remarkably, workers are hybrids of the same two genetic lineages along a 400 km transect crossing the whole distribution range of the species. These results indicate that social hybridogenesis in C. hispanica allows their maintenance over time and across a large geographical scale of two highly divergent genetic lineages, despite their constant hybridization. The widespread distribution of social hybridogenesis in C. hispanica supports that this reproductive strategy has been evolutionarily conserved over a long period.
Collapse
Affiliation(s)
- Hugo Darras
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, , Avenue Franklin D. Roosevelt, 50, CP 160/12, Brussels 1050, Belgium, I.R.B.I. UMR CNRS 7261, Faculté des Sciences, Université François Rabelais Tours, 37200 Tours, France
| | | | | |
Collapse
|
11
|
Rey O, Facon B, Foucaud J, Loiseau A, Estoup A. Androgenesis is a maternal trait in the invasive ant Wasmannia auropunctata. Proc Biol Sci 2013; 280:20131181. [PMID: 23864597 DOI: 10.1098/rspb.2013.1181] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Androgenesis is the production of an offspring containing exclusively the nuclear genome of the fathering male via the maternal eggs. This unusual mating system is generally considered a male trait, giving to androgenetic males a substantial fitness advantage over their sexually reproducing relatives. We here provide the first empirical study of the evolutionary outcomes of androgenesis in a haplo-diploid organism: the invasive ant Wasmannia auropunctata. Some of the populations of this species have a classical haplo-diploid sexual mating system. In other populations, females and males are produced through parthenogenesis and androgenesis, respectively, whereas workers are produced sexually. We conducted laboratory reciprocal-cross experiments with reproductive individuals from both types of populations and analysed their progenies with genetic markers, to determine the respective contribution of males and females to the production of androgenetic males. We found that androgenesis was a parthenogenetic female trait. A population genetic study conducted in natura confirmed the parthenogenetic female origin of androgenesis, with the identification of introgression events of sexual male genotypes into androgenetic/parthenogenetic lineages. We argue that by producing males via androgenesis, parthenogenetic queen lineages may increase and/or maintain their adaptive potential, while maintaining the integrity of their own genome, by occasionally acquiring new male genetic material and avoiding inbreeding depression within the sexually produced worker cast.
Collapse
|
12
|
Berman M, Andersen AN, Hély C, Gaucherel C. Overview of the Distribution, Habitat Association and Impact of Exotic Ants on Native Ant Communities in New Caledonia. PLoS One 2013; 8:e67245. [PMID: 23840639 PMCID: PMC3693956 DOI: 10.1371/journal.pone.0067245] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 05/15/2013] [Indexed: 11/18/2022] Open
Abstract
Ants are among the most ubiquitous and harmful invaders worldwide, but there are few regional studies of their relationships with habitat and native ant communities. New Caledonia has a unique and diverse ant fauna that is threatened by exotic ants, but broad-scale patterns of exotic and native ant community composition in relation to habitat remain poorly documented. We conducted a systematic baiting survey of 56 sites representing the main New Caledonian habitat types: rainforest on ultramafic soils (15 sites), rainforest on volcano-sedimentary soils (13), maquis shrubland (15), Melaleuca-dominated savannas (11) and Acacia spirorbis thickets (2). We collected a total of 49 species, 13 of which were exotic. Only five sites were free of exotic species, and these were all rainforest. The five most abundant exotic species differed in their habitat association, with Pheidole megacephala associated with rainforests, Brachymyrmex cf. obscurior with savanna, and Wasmannia auropunctata and Nylanderia vaga present in most habitats. Anoplolepis gracilipes occurred primarily in maquis-shrubland, which contrasts with its rainforest affinity elsewhere. Multivariate analysis of overall ant species composition showed strong differentiation of sites according to the distribution of exotic species, and these patterns were maintained at the genus and functional group levels. Native ant composition differed at invaded versus uninvaded rainforest sites, in the absence of differences in habitat variables. Generalised Myrmicinae and Forest Opportunists were particularly affected by invasion. There was a strong negative relationship between the abundance of W. auropunctata and native ant abundance and richness. This emphasizes that, in addition to dominating many ant communities numerically, some exotic species, and in particular W. auropunctata, have a marked impact on native ant communities.
Collapse
Affiliation(s)
- Maïa Berman
- Ecosystem Sciences, Commonwealth Scientific and Industrial Research Organisation, Winnellie, Northern Territory, Australia
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Casuarina, Northern Territory, Australia
- Unité Mixte de Recherche 0931 (botAnique et bioinforMatique de l’Architecture des Plantes), Institut National de la Recherche Agronomique, Université de Montpellier II, Montpellier, France
- * E-mail:
| | - Alan N. Andersen
- Ecosystem Sciences, Commonwealth Scientific and Industrial Research Organisation, Winnellie, Northern Territory, Australia
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Casuarina, Northern Territory, Australia
| | - Christelle Hély
- Unité Mixte de Recherche 5059 (Centre de Bio-Archéologie et Ecologie), Ecole Pratique des Hautes Etudes, Laboratoire Paléoenvironnements et Chronoécologie, Montpellier, France
| | - Cédric Gaucherel
- Unités Mixtes des Instituts Français de Recherche à l'Etranger 21, Institut Français de Pondicherry, Pondicherry, India
| |
Collapse
|
13
|
Distribution of endosymbiotic reproductive manipulators reflects invasion process and not reproductive system polymorphism in the little fire ant Wasmannia auropunctata. PLoS One 2013; 8:e58467. [PMID: 23505512 PMCID: PMC3594316 DOI: 10.1371/journal.pone.0058467] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 02/04/2013] [Indexed: 11/19/2022] Open
Abstract
Endosymbiotic reproductive manipulators may have drastic effects on the ecological and evolutionary dynamics of their hosts. The prevalence of these endosymbionts reflects both their ability to manipulate their hosts and the history of the host populations. The little fire ant Wasmannia auropunctata displays a polymorphism in both its reproductive system (sexual versus clonal populations) and the invasive status of its populations (associated to a habitat shift). We first screened for the presence of a diverse array of reproductive parasites in sexual and clonal populations of W. auropunctata, as a means to investigate the role of endosymbionts in reproductive phenotypes. Wolbachia was the only symbiont found and we then focused on its worldwide distribution and diversity in natural populations of W. auropunctata. Using a multilocus scheme, we further characterized the Wolbachia strains present in these populations. We found that almost all the native sexual populations and only a few clonal populations are infected by Wolbachia. The presence of similar Wolbachia strains in both sexual and clonal populations indicates that they are probably not the cause of the reproductive system polymorphism. The observed pattern seems rather associated to the invasion process of W. auropunctata. In particular, the observed loss of Wolbachia in clonal populations, that recurrently emerged from sexual populations, likely resulted from natural heat treatment and/or relaxed selection during the shift in habitat associated to the invasion process.
Collapse
|
14
|
Kronauer DJ, Tsuji K, Pierce NE, Keller L. Non–nest mate discrimination and clonal colony structure in the parthenogenetic ant Cerapachys biroi. Behav Ecol 2013. [DOI: 10.1093/beheco/ars227] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
15
|
Eyer PA, Leniaud L, Darras H, Aron S. Hybridogenesis through thelytokous parthenogenesis in two Cataglyphis desert ants. Mol Ecol 2012; 22:947-55. [PMID: 23216892 DOI: 10.1111/mec.12141] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/22/2012] [Indexed: 11/28/2022]
Abstract
Hybridogenesis is a sexual reproductive system, whereby parents from different genetic origin hybridize. Both the maternal and paternal genomes are expressed in somatic tissues, but the paternal genome is systematically excluded from the germ line, which is therefore purely maternal. Recently, a unique case of hybridogenesis at a social level was reported in the desert ant Cataglyphis hispanica. All workers are sexually produced hybridogens, whereas sexual forms (new queens and males) are produced by queens through parthenogenesis. Thus, only maternal genes are perpetuated across generations. Here, we show that such an unusual reproductive strategy also evolved in two other species of Cataglyphis belonging to the same phylogenetic group, Cataglyphis velox and Cataglyphis mauritanica. In both species, queens mate exclusively with males originating from a different genetic lineage than their own to produce hybrid workers, while they use parthenogenesis to produce the male and female reproductive castes. In contrast to single-queen colonies of C. hispanica, colonies of C. velox and C. mauritanica are headed by several queens. Most queens within colonies share the same multilocus genotype and never transmit their mates' alleles to the reproductive castes. Social hybridogenesis in the desert ants has direct consequences on the genetic variability of populations and on caste determination. We also discuss the maintenance of this reproductive strategy within the genus Cataglyphis.
Collapse
Affiliation(s)
- P A Eyer
- Evolutionary Biology & Ecology, Université Libre de Bruxelles, 50, av. F.D. Roosevelt, CP 160/12, B-1050 Brussels, Belgium.
| | | | | | | |
Collapse
|
16
|
Rabeling C, Kronauer DJC. Thelytokous parthenogenesis in eusocial Hymenoptera. ANNUAL REVIEW OF ENTOMOLOGY 2012; 58:273-292. [PMID: 23072461 DOI: 10.1146/annurev-ento-120811-153710] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Female parthenogenesis, or thelytoky, is particularly common in solitary Hymenoptera. Only more recently has it become clear that many eusocial species also regularly reproduce thelytokously, and here we provide a comprehensive overview. Especially in ants, thelytoky underlies a variety of idiosyncratic life histories with unique evolutionary and ecological consequences. In all eusocial species studied, thelytoky probably has a nuclear genetic basis and the underlying cytological mechanism retains high levels of heterozygosity. This is in striking contrast to many solitary wasps, in which thelytoky is often induced by cytoplasmic bacteria and results in an immediate loss of heterozygosity. These differences are likely related to differences in haplodiploid sex determination mechanisms, which in eusocial species usually require heterozygosity for female development. At the same time, haplodiploidy might account for important preadaptations that can help explain the apparent ease with which Hymenoptera transition between sexual and asexual reproduction.
Collapse
Affiliation(s)
- Christian Rabeling
- Museum of Comparative Zoology Labs, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | |
Collapse
|
17
|
Epigenetics in social insects: a new direction for understanding the evolution of castes. GENETICS RESEARCH INTERNATIONAL 2012; 2012:609810. [PMID: 22567395 PMCID: PMC3335566 DOI: 10.1155/2012/609810] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 12/21/2011] [Indexed: 11/23/2022]
Abstract
Epigenetic modifications to DNA, such as DNA methylation, can expand a genome's
regulatory flexibility, and thus may contribute to the evolution of phenotypic plasticity. Recent work has demonstrated the importance of DNA methylation in alternative queen
and worker “castes” in social insects, particularly honeybees. Social insects are an excellent system for addressing questions about epigenetics and evolution because: (1)
they have dramatic caste polyphenisms that appear to be tied to differential methylation,
(2) DNA methylation is widespread in various groups of social insects, and (3) there are
intriguing connections between the social environment and DNA methylation in many
species, from insects to mammals. In this article, we review research on honeybees, and,
when available, other social insects, on DNA methylation and queen and worker caste
differences. We outline a conceptual framework for the effects of methylation on caste
determination in honeybees that may help guide studies of epigenetic regulation in other
polyphenic taxa. Finally, we suggest future paths of study for social insect epigenetic
research, including the importance of comparative studies of DNA methylation on a
broader range of species, and highlight some key unanswered mechanistic questions
about how DNA methylation affects gene regulation.
Collapse
|
18
|
Hufbauer RA, Facon B, Ravigné V, Turgeon J, Foucaud J, Lee CE, Rey O, Estoup A. Anthropogenically induced adaptation to invade (AIAI): contemporary adaptation to human-altered habitats within the native range can promote invasions. Evol Appl 2012; 5:89-101. [PMID: 25568032 PMCID: PMC3353334 DOI: 10.1111/j.1752-4571.2011.00211.x] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 07/27/2011] [Indexed: 11/29/2022] Open
Abstract
Adaptive evolution is currently accepted as playing a significant role in biological invasions. Adaptations relevant to invasions are typically thought to occur either recently within the introduced range, as an evolutionary response to novel selection regimes, or within the native range, because of long-term adaptation to the local environment. We propose that recent adaptation within the native range, in particular adaptations to human-altered habitat, could also contribute to the evolution of invasive populations. Populations adapted to human-altered habitats in the native range are likely to increase in abundance within areas frequented by humans and associated with human transport mechanisms, thus enhancing the likelihood of transport to a novel range. Given that habitats are altered by humans in similar ways worldwide, as evidenced by global environmental homogenization, propagules from populations adapted to human-altered habitats in the native range should perform well within similarly human-altered habitats in the novel range. We label this scenario 'Anthropogenically Induced Adaptation to Invade'. We illustrate how it differs from other evolutionary processes that may occur during invasions, and how it can help explain accelerating rates of invasions.
Collapse
Affiliation(s)
- Ruth A Hufbauer
- Department of Bioagricultural Science and Pest Management, Graduate Degree Program in Ecology, Colorado State University Ft Collins, CO, USA ; UMR CBGP (INRA-IRD-CIRAD, Montpellier SupAgro), Campus International de Baillarguet Montferrier/Lez Cedex, France
| | - Benoît Facon
- UMR CBGP (INRA-IRD-CIRAD, Montpellier SupAgro), Campus International de Baillarguet Montferrier/Lez Cedex, France
| | - Virginie Ravigné
- CIRAD, UMR BGPI, Campus International de Baillarguet Montpellier Cedex 5, France
| | - Julie Turgeon
- UMR CBGP (INRA-IRD-CIRAD, Montpellier SupAgro), Campus International de Baillarguet Montferrier/Lez Cedex, France ; Département de Biologie, Université Laval Quebec, QC, Canada
| | - Julien Foucaud
- Laboratoire Evolution, Génomes, Spéciation UMR-CNRS 9034, Gif-sur-Yvette, France
| | - Carol E Lee
- Center of Rapid Evolution (CORE), University of Wisconsin Madison, WI, USA
| | - Olivier Rey
- UMR CBGP (INRA-IRD-CIRAD, Montpellier SupAgro), Campus International de Baillarguet Montferrier/Lez Cedex, France
| | - Arnaud Estoup
- UMR CBGP (INRA-IRD-CIRAD, Montpellier SupAgro), Campus International de Baillarguet Montferrier/Lez Cedex, France
| |
Collapse
|
19
|
Wenseleers T, Van Oystaeyen A. Unusual modes of reproduction in social insects: shedding light on the evolutionary paradox of sex. Bioessays 2011; 33:927-37. [PMID: 21997278 DOI: 10.1002/bies.201100096] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The study of alternative genetic systems and mixed modes of reproduction, whereby sexual and asexual reproduction is combined within the same lifecycle, is of fundamental importance as they may shed light on classical evolutionary issues, such as the paradox of sex. Recently, several such cases were discovered in social insects. A closer examination of these systems has revealed many amazing facts, including the mixed use of asexual and sexual reproduction for the production of new queens and workers, males that can clone themselves and the routine use of incest without deleterious genetic consequences. In addition, in several species, remarkable cases of asexually reproducing socially parasitic worker lineages have been discovered. The study of these unusual systems promises to provide insight into many basic evolutionary questions, including the maintenance of sex, the expression of sexual conflict and kin conflict and the evolution of cheating in asexual lineages.
Collapse
Affiliation(s)
- Tom Wenseleers
- Laboratory of Entomology, Department of Biology, University of Leuven, Leuven, Belgium.
| | | |
Collapse
|
20
|
Cryptic sexual populations account for genetic diversity and ecological success in a widely distributed, asexual fungus-growing ant. Proc Natl Acad Sci U S A 2011; 108:12366-71. [PMID: 21768368 DOI: 10.1073/pnas.1105467108] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Sex and recombination are central processes in life generating genetic diversity. Organisms that rely on asexual propagation risk extinction due to the loss of genetic diversity and the inability to adapt to changing environmental conditions. The fungus-growing ant species Mycocepurus smithii was thought to be obligately asexual because only parthenogenetic populations have been collected from widely separated geographic localities. Nonetheless, M. smithii is ecologically successful, with the most extensive distribution and the highest population densities of any fungus-growing ant. Here we report that M. smithii actually consists of a mosaic of asexual and sexual populations that are nonrandomly distributed geographically. The sexual populations cluster along the Rio Amazonas and the Rio Negro and appear to be the source of independently evolved and widely distributed asexual lineages, or clones. Either apomixis or automixis with central fusion and low recombination rates is inferred to be the cytogenetic mechanism underlying parthenogenesis in M. smithii. Males appear to be entirely absent from asexual populations, but their existence in sexual populations is indicated by the presence of sperm in the reproductive tracts of queens. A phylogenetic analysis of the genus suggests that M. smithii is monophyletic, rendering a hybrid origin of asexuality unlikely. Instead, a mitochondrial phylogeny of sexual and asexual populations suggests multiple independent origins of asexual reproduction, and a divergence-dating analysis indicates that M. smithii evolved 0.5-1.65 million years ago. Understanding the evolutionary origin and maintenance of asexual reproduction in this species contributes to a general understanding of the adaptive significance of sex.
Collapse
|
21
|
Rey O, Loiseau A, Facon B, Foucaud J, Orivel J, Cornuet JM, Robert S, Dobigny G, Delabie JHC, Mariano CDSF, Estoup A. Meiotic recombination dramatically decreased in thelytokous queens of the little fire ant and their sexually produced workers. Mol Biol Evol 2011; 28:2591-601. [PMID: 21459760 DOI: 10.1093/molbev/msr082] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The little fire ant, Wasmannia auropunctata, displays a peculiar breeding system polymorphism. Classical haplo-diploid sexual reproduction between reproductive individuals occurs in some populations, whereas, in others, queens and males reproduce clonally. Workers are produced sexually and are sterile in both clonal and sexual populations. The evolutionary fate of the clonal lineages depends strongly on the underlying mechanisms allowing reproductive individuals to transmit their genomes to subsequent generations. We used several queen-offspring data sets to estimate the rate of transition from heterozygosity to homozygosity associated with recombination events at 33 microsatellite loci in thelytokous parthenogenetic queen lineages and compared these rates with theoretical expectations under various parthenogenesis mechanisms. We then used sexually produced worker families to define linkage groups for these 33 loci and to compare meiotic recombination rates in sexual and parthenogenetic queens. Our results demonstrate that queens from clonal populations reproduce by automictic parthenogenesis with central fusion. These same parthenogenetic queens produce normally segregating meiotic oocytes for workers, which display much lower rates of recombination (by a factor of 45) than workers produced by sexual queens. These low recombination rates also concern the parthenogenetic production of queen offspring, as indicated by the very low rates of transition from heterozygosity to homozygosity observed (from 0% to 2.8%). We suggest that the combination of automixis with central fusion and a major decrease in recombination rates allows clonal queens to benefit from thelytoky while avoiding the potential inbreeding depression resulting from the loss of heterozygosity during automixis. In sterile workers, the strong decrease of recombination rates may also facilitate the conservation over time of some coadapted allelic interactions within chromosomes that might confer an adaptive advantage in habitats disturbed by human activity, where clonal populations of W. auropunctata are mostly found.
Collapse
Affiliation(s)
- Olivier Rey
- INRA, UMR Centre de Biologie pour la Gestion des Populations (INRA/IRD/CIRAD/Montpellier SupAgro), Montferrier-sur-Lez cedex, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Pearcy M, Goodisman MAD, Keller L. Sib mating without inbreeding in the longhorn crazy ant. Proc Biol Sci 2011; 278:2677-81. [PMID: 21288949 DOI: 10.1098/rspb.2010.2562] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Sib matings increase homozygosity and, hence, the frequency of detrimental phenotypes caused by recessive deleterious alleles. However, many species have evolved adaptations that prevent the genetic costs associated with inbreeding. We discovered that the highly invasive longhorn crazy ant, Paratrechina longicornis, has evolved an unusual mode of reproduction whereby sib mating does not result in inbreeding. A population genetic study of P. longicornis revealed dramatic differences in allele frequencies between queens, males and workers. Mother-offspring analyses demonstrated that these allele frequency differences resulted from the fact that the three castes were all produced through different means. Workers developed through normal sexual reproduction between queens and males. However, queens were produced clonally and, thus, were genetically identical to their mothers. In contrast, males never inherited maternal alleles and were genetically identical to their fathers. The outcome of this system is that genetic inbreeding is impossible because queen and male genomes remain completely separate. Moreover, the sexually produced worker offspring retain the same genotype, combining alleles from both the maternal and paternal lineage over generations. Thus, queens may mate with their brothers in the parental nest, yet their offspring are no more homozygous than if the queen mated with a male randomly chosen from the population. The complete segregation of the male and female gene pools allows the queens to circumvent the costs associated with inbreeding and therefore may act as an important pre-adaptation for the crazy ant's tremendous invasive success.
Collapse
Affiliation(s)
- Morgan Pearcy
- Department of Ecology and Evolution, Université de Lausanne, Bâtiment de Biologie, 1015 Lausanne, Switzerland.
| | | | | |
Collapse
|
23
|
Segregation distortion causes large-scale differences between male and female genomes in hybrid ants. Proc Natl Acad Sci U S A 2010; 107:7371-6. [PMID: 20368452 DOI: 10.1073/pnas.0912409107] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hybridization in isolated populations can lead either to hybrid breakdown and extinction or in some cases to speciation. The basis of hybrid breakdown lies in genetic incompatibilities between diverged genomes. In social Hymenoptera, the consequences of hybridization can differ from those in other animals because of haplodiploidy and sociality. Selection pressures differ between sexes because males are haploid and females are diploid. Furthermore, sociality and group living may allow survival of hybrid genotypes. We show that hybridization in Formica ants has resulted in a stable situation in which the males form two highly divergent gene pools whereas all the females are hybrids. This causes an exceptional situation with large-scale differences between male and female genomes. The genotype differences indicate strong transmission ratio distortion depending on offspring sex, whereby the mother transmits some alleles exclusively to her daughters and other alleles exclusively to her sons. The genetic differences between the sexes and the apparent lack of multilocus hybrid genotypes in males can be explained by recessive incompatibilities which cause the elimination of hybrid males because of their haploid genome. Alternatively, differentiation between sexes could be created by prezygotic segregation into male-forming and female-forming gametes in diploid females. Differentiation between sexes is stable and maintained throughout generations. The present study shows a unique outcome of hybridization and demonstrates that hybridization has the potential of generating evolutionary novelties in animals.
Collapse
|
24
|
Foucaud J, Orivel J, Loiseau A, Delabie JHC, Jourdan H, Konghouleux D, Vonshak M, Tindo M, Mercier JL, Fresneau D, Mikissa JB, McGlynn T, Mikheyev AS, Oettler J, Estoup A. Worldwide invasion by the little fire ant: routes of introduction and eco-evolutionary pathways. Evol Appl 2010; 3:363-74. [PMID: 25567931 PMCID: PMC3352468 DOI: 10.1111/j.1752-4571.2010.00119.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 12/24/2009] [Indexed: 11/30/2022] Open
Abstract
Biological invasions are generally thought to occur after human aided migration to a new range. However, human activities prior to migration may also play a role. We studied here the evolutionary genetics of introduced populations of the invasive ant Wasmannia auropunctata at a worldwide scale. Using microsatellite markers, we reconstructed the main routes of introduction of the species. We found three main routes of introduction, each of them strongly associated to human history and trading routes. We also demonstrate the overwhelming occurrence of male and female clonality in introduced populations of W. auropunctata, and suggest that this particular reproduction system is under selection in human-modified habitats. Together with previous researches focused on native populations, our results suggest that invasive clonal populations may have evolved within human modified habitats in the native range, and spread further from there. The evolutionarily most parsimonious scenario for the emergence of invasive populations of the little fire ant might thus be a two-step process. The W. auropunctata case illustrates the central role of humans in biological change, not only due to changes in migration patterns, but also in selective pressures over species.
Collapse
Affiliation(s)
- Julien Foucaud
- INRA, UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro) Montferrier-sur-Lez cedex, France
| | - Jérôme Orivel
- Université de Toulouse, UPS, EDB (Laboratoire Evolution et Diversité Biologique) Toulouse, France ; CNRS, EDB (Laboratoire Evolution et Diversité Biologique) Toulouse, France
| | - Anne Loiseau
- INRA, UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro) Montferrier-sur-Lez cedex, France
| | | | - Hervé Jourdan
- INRA, UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro) Montferrier-sur-Lez cedex, France
| | - Djoël Konghouleux
- INRA, UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro) Montferrier-sur-Lez cedex, France
| | - Merav Vonshak
- Department of Zoology, Tel-Aviv University Tel-Aviv, Israel
| | - Maurice Tindo
- Département de biologie des organismes animaux, Faculté des sciences de l'université de Douala Douala, Cameroun
| | - Jean-Luc Mercier
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 6035, Faculté des Sciences et Techniques Tours, France
| | - Dominique Fresneau
- Laboratoire d'Ethologie Expérimentale et Comparée, CNRS UMR 7153 Université Paris 13, Villetaneuse, France
| | - Jean-Bruno Mikissa
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 6035, Faculté des Sciences et Techniques Tours, France
| | - Terry McGlynn
- Department of Biology, University of San Diego San Diego, CA, USA
| | | | - Jan Oettler
- Biologie I, Universität Regensburg Regensburg, Germany
| | - Arnaud Estoup
- INRA, UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro) Montferrier-sur-Lez cedex, France
| |
Collapse
|