1
|
Lollar MJ, Kim E, Stern DL, Pool JE. Courtship song differs between African and European populations of Drosophila melanogaster and involves a strong effect locus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.14.594231. [PMID: 38798463 PMCID: PMC11118343 DOI: 10.1101/2024.05.14.594231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The courtship song of Drosophila melanogaster has long served as excellent model system for studies of animal communication and differences in courtship song have been demonstrated among populations and between species. Here, we report that flies of African and European origin, which diverged approximately 13,000 years ago, show significant genetic differentiation in the use of slow versus fast pulse song. Using a combination of quantitative trait mapping and population genetic analysis we detected a single strong QTL underlying this trait and we identified candidate genes that may contribute to the evolution of this trait. Song trait variation between parental strains of our recombinant inbred panel enabled detection of genomic intervals associated with six additional song traits, some of which include known courtship-related genes. These findings improve the prospects for further genetic insights into the evolution of reproductive behavior and the biology underlying courtship song.
Collapse
|
2
|
Syed ZA, Gomez RA, Borziak K, Asif A, Cong AS, O'Grady PM, Kim BY, Suvorov A, Petrov DA, Lüpold S, Wengert P, McDonough-Goldstein C, Ahmed-Braimah YH, Dorus S, Pitnick S. Genomics of a sexually selected sperm ornament and female preference in Drosophila. Nat Ecol Evol 2025; 9:336-348. [PMID: 39578595 DOI: 10.1038/s41559-024-02587-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024]
Abstract
Our understanding of animal ornaments and the mating preferences driving their exaggeration is limited by knowledge of their genetics. Post-copulatory sexual selection is credited with the rapid evolution of female sperm-storage organ morphology and corresponding sperm quality traits across diverse taxa. In Drosophila, the mechanisms by which longer flagella convey an advantage in the competition among sperm for limited storage space in the female, and by which female sperm-storage organ morphology biases fertilization in favour of longer sperm have been resolved. However, the evolutionary genetics underlying this model post-copulatory ornament and preference system have remained elusive. Here we combined comparative analyses of 149 Drosophila species, a genome-wide association study in Drosophila melanogaster and molecular evolutionary analysis of ~9,400 genes to elucidate how sperm and female sperm-storage organ length co-evolved into one of nature's most extreme ornaments and preferences. Our results reveal a diverse repertoire of pleiotropic genes linking sperm length and seminal receptacle length expression to central nervous system development and sensory biology. Sperm length development appears condition-dependent and is governed by conserved hormonal (insulin/insulin-like growth factor) and developmental (including Notch and Fruitless) pathways. Central developmental pathway genes, including Notch, also comprised the majority of a restricted set of genes contributing to both intraspecific and interspecific variation in sperm length. Our findings support 'good genes' models of female preference evolution.
Collapse
Affiliation(s)
- Zeeshan A Syed
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY, USA.
| | - R Antonio Gomez
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY, USA
| | - Kirill Borziak
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY, USA
| | - Amaar Asif
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY, USA
| | - Abelard S Cong
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY, USA
| | | | - Bernard Y Kim
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Anton Suvorov
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Dmitri A Petrov
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Peter Wengert
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY, USA
| | | | - Yasir H Ahmed-Braimah
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY, USA
| | - Steve Dorus
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY, USA.
| | - Scott Pitnick
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY, USA.
| |
Collapse
|
3
|
Merrill RM, Arenas-Castro H, Feller AF, Harenčár J, Rossi M, Streisfeld MA, Kay KM. Genetics and the Evolution of Prezygotic Isolation. Cold Spring Harb Perspect Biol 2024; 16:a041439. [PMID: 37848246 PMCID: PMC10835618 DOI: 10.1101/cshperspect.a041439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
The significance of prezygotic isolation for speciation has been recognized at least since the Modern Synthesis. However, fundamental questions remain. For example, how are genetic associations between traits that contribute to prezygotic isolation maintained? What is the source of genetic variation underlying the evolution of these traits? And how do prezygotic barriers affect patterns of gene flow? We address these questions by reviewing genetic features shared across plants and animals that influence prezygotic isolation. Emerging technologies increasingly enable the identification and functional characterization of the genes involved, allowing us to test established theoretical expectations. Embedding these genes in their developmental context will allow further predictions about what constrains the evolution of prezygotic isolation. Ongoing improvements in statistical and computational tools will reveal how pre- and postzygotic isolation may differ in how they influence gene flow across the genome. Finally, we highlight opportunities for progress by combining theory with appropriate data.
Collapse
Affiliation(s)
- Richard M Merrill
- Faculty of Biology, Division of Evolutionary Biology, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Henry Arenas-Castro
- School of Biological Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Anna F Feller
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
- Arnold Arboretum of Harvard University, Boston, Massachusetts 02131, USA
| | - Julia Harenčár
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, California 95060, USA
| | - Matteo Rossi
- Faculty of Biology, Division of Evolutionary Biology, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Matthew A Streisfeld
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403-5289, USA
| | - Kathleen M Kay
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, California 95060, USA
| |
Collapse
|
4
|
Groot AT, Blankers T, Halfwerk W, Burdfield Steel E. The Evolutionary Importance of Intraspecific Variation in Sexual Communication Across Sensory Modalities. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:21-40. [PMID: 37562048 DOI: 10.1146/annurev-ento-030223-111608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
The evolution of sexual communication is critically important in the diversity of arthropods, which are declining at a fast pace worldwide. Their environments are rapidly changing, with increasing chemical, acoustic, and light pollution. To predict how arthropod species will respond to changing climates, habitats, and communities, we need to understand how sexual communication systems can evolve. In the past decades, intraspecific variation in sexual signals and responses across different modalities has been identified, but never in a comparative way. In this review, we identify and compare the level and extent of intraspecific variation in sexual signals and responses across three different modalities, chemical, acoustic, and visual, focusing mostly on insects. By comparing causes and possible consequences of intraspecific variation in sexual communication among these modalities, we identify shared and unique patterns, as well as knowledge needed to predict the evolution of sexual communication systems in arthropods in a changing world.
Collapse
Affiliation(s)
- Astrid T Groot
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Netherlands; , ,
| | - Thomas Blankers
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Netherlands; , ,
| | - Wouter Halfwerk
- Amsterdam Institute for Life and Environment (A-LIFE), VU Amsterdam, Netherlands;
| | - Emily Burdfield Steel
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Netherlands; , ,
| |
Collapse
|
5
|
Genevcius BC, Calandriello DC, Torres TT. Molecular and Developmental Signatures of Genital Size Macro-Evolution in Bugs. Mol Biol Evol 2022; 39:6742344. [PMID: 36181434 PMCID: PMC9585474 DOI: 10.1093/molbev/msac211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Our understanding of the genetic architecture of phenotypic traits has experienced drastic growth over the last years. Nevertheless, the majority of studies associating genotypes and phenotypes have been conducted at the ontogenetic level. Thus, we still have an elusive knowledge of how these genetic-developmental architectures evolve themselves and how their evolution is mirrored in the phenotypic change across evolutionary time. We tackle this gap by reconstructing the evolution of male genital size, one of the most complex traits in insects, together with its underlying genetic architecture. Using the order Hemiptera as a model, spanning over 350 million years of evolution, we estimate the correlation between genitalia and three features: development rate, body size, and rates of DNA substitution in 68 genes associated with genital development. We demonstrate that genital size macro-evolution has been largely dependent on body size and weakly influenced by development rate and phylogenetic history. We further revealed significant correlations between mutation rates and genital size for 19 genes. Interestingly, these genes have diverse functions and participate in distinct signaling pathways, suggesting that genital size is a complex trait whose fast evolution has been enabled by molecular changes associated with diverse morphogenetic processes. Our data further demonstrate that the majority of DNA evolution correlated with the genitalia has been shaped by negative selection or neutral evolution. Thus, in terms of sequence evolution, changes in genital size are predominantly facilitated by relaxation of constraints rather than positive selection, possibly due to the high pleiotropic nature of the morphogenetic genes.
Collapse
Affiliation(s)
| | - Denis C Calandriello
- Department of Genetics and Evolutionary Biology, University of Sao Paulo, Sao Paulo (SP), Brazil
| | - Tatiana T Torres
- Department of Genetics and Evolutionary Biology, University of Sao Paulo, Sao Paulo (SP), Brazil
| |
Collapse
|
6
|
Rios DA, Specht A, Roque-Specht VF, Sosa-Gómez DR, Fochezato J, Malaquias JV, Gonçalves GL, Moreira GR. Helicoverpa armigera and Helicoverpa zea hybridization: constraints, heterosis, and implications for pest management. PEST MANAGEMENT SCIENCE 2022; 78:955-964. [PMID: 34729903 DOI: 10.1002/ps.6705] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The invasion of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) into the New World has made it possible for this pest to hybridize with a native American species, H. zea (Boddie), under natural conditions. We investigated the viability and development of hybrids of these two Helicoverpa species. We reared the parental species and evaluated crosses between H. armigera males and H. zea females and vice versa, two intercrosses between hybrids, and eight backcrosses between hybrids and parental species. We estimated the length of immature stages, fecundity, survival, sex ratio, and heterosis. RESULTS Although hybridization occcurred, with heterosis during the development of immatures, reproductive incompatibilities also were observed between the parental species and between hybrids from subsequent crosses. The interspecific crosses between hybrids and backcrosses confirmed the possibility of introgression events and their perpetuation in field populations. The results indicate that hybridization events are favored at high population levels, while at low population levels the 'species identities' will be maintained. CONCLUSIONS The possibility of interspecific gene flow and its perpetuation through successive crosses and backcrosses suggests several recommenations for management. Populations of both species should be maintained at an equilibrium level to reduce the chance of interspecific crosses, which are presumably more likely to occur during pest outbreaks. The existence of hybridization and resistance to different active pesticide ingredients should be monitored. All practices related to managing the resistance of these pests to chemical and biological insecticides should be systematized to reduce the chance of selecting for resistant individuals.
Collapse
Affiliation(s)
- Danielly Am Rios
- Faculdade UnB Planaltina, Universidade de Brasília, Planaltina, Brazil
| | | | | | | | - Júlia Fochezato
- Departamento de Zoologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Gislene L Gonçalves
- Departamento de Recursos Ambientales, Facultad de Ciencias Agronómicas, Universidad de Tarapacá, Arica, Chile
| | - Gilson Rp Moreira
- Departamento de Zoologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
7
|
Ma WJ, Pannebakker BA, Li X, Geuverink E, Anvar SY, Veltsos P, Schwander T, van de Zande L, Beukeboom LW. A single QTL with large effect is associated with female functional virginity in an asexual parasitoid wasp. Mol Ecol 2021; 30:1979-1992. [PMID: 33638236 PMCID: PMC8252104 DOI: 10.1111/mec.15863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/07/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
During the transition from sexual to asexual reproduction, a suite of reproduction-related sexual traits become superfluous, and may be selected against if costly. Female functional virginity refers to asexual females resisting to mate or not fertilizing eggs after mating. These traits appear to be among the first that evolve during transitions from sexual to asexual reproduction. The genetic basis of female functional virginity remains elusive. Previously, we reported that female functional virginity segregates as expected for a single recessive locus in the asexual parasitoid wasp Asobara japonica. Here, we investigate the genetic basis of this trait by quantitative trait loci (QTL) mapping and candidate gene analyses. Consistent with the segregation of phenotypes, we found a single QTL of large effect, spanning over 4.23 Mb and comprising at least 131 protein-coding genes, of which 15 featured sex-biased expression in the related sexual species Asobara tabida. Two of the 15 sex-biased genes were previously identified to differ between related sexual and asexual population/species: CD151 antigen and nuclear pore complex protein Nup50. A third gene, hormone receptor 4, is involved in steroid hormone mediated mating behaviour. Overall, our results are consistent with a single locus, or a cluster of closely linked loci, underlying rapid evolution of female functional virginity in the transition to asexuality. Once this variant, causing rejection to mate, has swept through a population, the flanking region does not get smaller owing to lack of recombination in asexuals.
Collapse
Affiliation(s)
- Wen-Juan Ma
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.,Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Bart A Pannebakker
- Laboratory of Genetics, Wageningen University and Research, Wageningen, The Netherlands
| | - Xuan Li
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Elzemiek Geuverink
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Seyed Yahya Anvar
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Paris Veltsos
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
| | - Tanja Schwander
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Louis van de Zande
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Leo W Beukeboom
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
8
|
Kulikov AM, Sorokina SY, Melnikov AI, Gornostaev NG, Seleznev DG, Lazebny OE. The effects of the sex chromosomes on the inheritance of species-specific traits of the copulatory organ shape in Drosophila virilis and Drosophila lummei. PLoS One 2020; 15:e0244339. [PMID: 33373382 PMCID: PMC7771703 DOI: 10.1371/journal.pone.0244339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/07/2020] [Indexed: 11/30/2022] Open
Abstract
The shape of the male genitalia in many taxa is the most rapidly evolving morphological structure, often driving reproductive isolation, and is therefore widely used in systematics as a key character to distinguish between sibling species. However, only a few studies have used the genital arch of the male copulatory organ as a model to study the genetic basis of species-specific differences in the Drosophila copulatory system. Moreover, almost nothing is known about the effects of the sex chromosomes on the shape of the male mating organ. In our study, we used a set of crosses between D. virilis and D. lummei and applied the methods of quantitative genetics to assess the variability of the shape of the male copulatory organ and the effects of the sex chromosomes and autosomes on its variance. Our results showed that the male genital shape depends on the species composition of the sex chromosomes and autosomes. Epistatic interactions of the sex chromosomes with autosomes and the species origin of the Y-chromosome in a male in interspecific crosses also influenced the expression of species-specific traits in the shape of the male copulatory system. Overall, the effects of sex chromosomes were comparable to the effects of autosomes despite the great differences in gene numbers between them. It may be reasonably considered that sexual selection for specific genes associated with the shape of the male mating organ prevents the demasculinization of the X chromosome.
Collapse
Affiliation(s)
- Alex M. Kulikov
- Department of Evolutionary Genetics of Development, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Svetlana Yu. Sorokina
- Department of Evolutionary Genetics of Development, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Anton I. Melnikov
- Department of Evolutionary Genetics of Development, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Nick G. Gornostaev
- Department of Evolutionary Genetics of Development, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Dmitriy G. Seleznev
- Department of Ecology of Aquatic Invertebrates, Papanin Institute for Biology of Inland Waters of the Russian Academy of Sciences, Borok village, Yaroslavl Region, Russia
| | - Oleg E. Lazebny
- Department of Evolutionary Genetics of Development, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
- * E-mail:
| |
Collapse
|
9
|
The complex genetic architecture of male mate choice evolution between Drosophila species. Heredity (Edinb) 2020; 124:737-750. [PMID: 32203250 DOI: 10.1038/s41437-020-0309-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 12/14/2022] Open
Abstract
Mate choice behaviors are among the most important reproductive isolating barriers in many animals. Little is known about the genetic basis of reproductively isolating behaviors, but examples to date provide evidence that they can have a simple genetic basis. However, it is unclear if these results indicate that individual genes with large effects are common, or are instead due to ascertainment biases. Here, we present the results of a QTL mapping study for the most important behavioral isolating barrier between Drosophila simulans and D. sechellia: male mate choice. Our QTL results initially suggested that differences in male mate choice may be due to a couple loci with large effects. However, as we divided the largest-effect QTL using stable introgression strains, we found evidence of multiple interacting loci. We further find that separate regions of the genome control different aspects of male choice. Taken together, our results suggest that the genetic architecture of mate choice behavior, in this case, is more complex than QTL mapping suggested, highlighting potential challenges to future mapping studies. We discuss the implications of these results as they relate to signal-receiver coevolution, mate choice, and reproductive isolation.
Collapse
|
10
|
Fischer A, Goh XH, Varney JLS, Blake AJ, Takács S, Gries G. Multimodal and multifunctional signaling? - Web reduction courtship behavior in a North American population of the false black widow spider. PLoS One 2020; 15:e0228988. [PMID: 32101544 PMCID: PMC7043733 DOI: 10.1371/journal.pone.0228988] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 01/27/2020] [Indexed: 01/18/2023] Open
Abstract
Males of widow spiders courting on the web of females engage in web-reduction behavior which entails excising a section of the web, bundling it up, and wrapping it with their silk. Males of the false black widow spider, Steatoda grossa, in European populations also produce stridulatory courtship sound which has not yet been studied in their invaded North American range. Working with a North American population of S. grossa, we tested the hypotheses that (1) web reduction by males renders webs less attractive to rival males; (2) deposition of silk by courting males has an inter-sexual (male-female) signal function that enhances their likelihood of copulation; and (3) stridulatory sound is a courtship signal of males. Testing anemotactic attraction of males in Y-tube olfactometer experiments revealed that reduced webs (indicative of a mated female) and intact webs (indicative of a virgin female) were equally attractive to males. Recording courtship behavior of males with either functional (silk-releasing) spinnerets or spinnerets experimentally occluded on the web of virgin females showed that males with functional spinnerets were more likely to copulate with the female they courted. Although males possess the stridulatory apparatus to produce courtship sound, they did not stridulate when courting or copulating on the web of females. Our data support the conclusion that web-reduction behavior of S. grossa males in their invaded North American range has no long-range effect on mate seeking males. Instead, web-reduction behavior has an inter-sexual signaling function that seems to be linked to functional spinnerets of the courting male. The signal produced by a male likely entails a volatile silk-borne pheromone, but may also embody a gauge of his endurance (the amount of time he engages in web reduction causing web vibrations).
Collapse
Affiliation(s)
- Andreas Fischer
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Xiang Hao Goh
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | | | - Adam J. Blake
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Stephen Takács
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Gerhard Gries
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
11
|
Kastally C, Trasoletti M, Mardulyn P. Limited gene exchange between two sister species of leaf beetles within a hybrid zone in the Alps. J Evol Biol 2019; 32:1406-1417. [DOI: 10.1111/jeb.13538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 08/02/2019] [Accepted: 08/30/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Chedly Kastally
- Evolutionary Biology and Ecology Université Libre de Bruxelles Brussels Belgium
| | - Marta Trasoletti
- Evolutionary Biology and Ecology Université Libre de Bruxelles Brussels Belgium
| | - Patrick Mardulyn
- Evolutionary Biology and Ecology Université Libre de Bruxelles Brussels Belgium
| |
Collapse
|
12
|
Blankers T, Berdan EL, Hennig RM, Mayer F. Physical linkage and mate preference generate linkage disequilibrium for behavioral isolation in two parapatric crickets. Evolution 2019; 73:777-791. [PMID: 30820950 PMCID: PMC6593781 DOI: 10.1111/evo.13706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/04/2019] [Indexed: 12/23/2022]
Abstract
Behavioral isolation is a potent barrier to gene flow and a source of striking diversity in the animal kingdom. However, it remains unclear if the linkage disequilibrium (LD) between sex‐specific traits required for behavioral isolation results mostly from physical linkage between signal and preference loci or from directional mate preferences. Here, we test this in the field crickets Gryllus rubens and G. texensis. These closely related species diverged with gene flow and have strongly differentiated songs and preference functions for the mate calling song rhythm. We map quantitative trait loci for signal and preference traits (pQTL) as well as for gene expression associated with these traits (eQTL). We find strong, positive genetic covariance between song traits and between song and preference. Our results show that this is in part explained by incomplete physical linkage: although both linked pQTL and eQTL couple male and female traits, major effect loci for different traits were never on the same chromosome. We suggest that the finely tuned, highly divergent preference functions are likely an additional source of LD between male and female traits in this system. Furthermore, pleiotropy of gene expression presents an underappreciated mechanism to link sexually dimorphic phenotypes.
Collapse
Affiliation(s)
- Thomas Blankers
- Department of Behavioral Physiology, Humboldt-Universität zu Berlin, Berlin, Germany.,Leibniz Institute for Evolution and Biodiversity Science, Museum für Naturkunde Berlin, Berlin, Germany.,Current address: Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Emma L Berdan
- Leibniz Institute for Evolution and Biodiversity Science, Museum für Naturkunde Berlin, Berlin, Germany.,Current address: Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - R Matthias Hennig
- Department of Behavioral Physiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Frieder Mayer
- Leibniz Institute for Evolution and Biodiversity Science, Museum für Naturkunde Berlin, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
13
|
Abstract
Recent years have seen an increase in studies that associate genomic loci with behavioral variation both within and across animal species. Ryan York compiles and analyzes over 1,000 of these loci, finding that the genetic... Although most animal behaviors are associated with some form of heritable genetic variation, we do not yet understand how genes sculpt behavior across evolution, either directly or indirectly. To address this, I here compile a data set comprised of over 1000 genomic loci representing a spectrum of behavioral variation across animal taxa. Comparative analyses reveal that courtship and feeding behaviors are associated with genomic regions of significantly greater effect than other traits, on average threefold greater than other behaviors. Investigations of whole-genome sequencing and phenotypic data for 87 behavioral traits from the Drosophila Genetics Reference Panel indicate that courtship and feeding behaviors have significantly greater genetic contributions and that, in general, behavioral traits overlap little in individual base pairs but increasingly interact at the levels of genes and traits. These results provide evidence that different types of behavior are associated with variable genetic bases and suggest that, across animal evolution, the genetic landscape of behavior is more rugged, yet predictable, than previously thought.
Collapse
|
14
|
Oppenheim SJ, Gould F, Hopper KR. The genetic architecture of ecological adaptation: intraspecific variation in host plant use by the lepidopteran crop pest Chloridea virescens. Heredity (Edinb) 2018; 120:234-250. [PMID: 29238078 PMCID: PMC5836587 DOI: 10.1038/s41437-017-0016-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 10/03/2017] [Accepted: 10/04/2017] [Indexed: 11/09/2022] Open
Abstract
Intraspecific variation in ecologically important traits is a cornerstone of Darwin's theory of evolution by natural selection. The evolution and maintenance of this variation depends on genetic architecture, which in turn determines responses to natural selection. Some models suggest that traits with complex architectures are less likely to respond to selection than those with simple architectures, yet rapid divergence has been observed in such traits. The simultaneous evolutionary lability and genetic complexity of host plant use in the Lepidopteran subfamily Heliothinae suggest that architecture may not constrain ecological adaptation in this group. Here we investigate the response of Chloridea virescens, a generalist that feeds on diverse plant species, to selection for performance on a novel host, Physalis angulata (Solanaceae). P. angulata is the preferred host of Chloridea subflexa, a narrow specialist on the genus Physalis. In previous experiments, we found that the performance of C. subflexa on P. angulata depends on many loci of small effect distributed throughout the genome, but whether the same architecture would be involved in the generalist's adoption of P. angulata was unknown. Here we report a rapid response to selection in C. virescens for performance on P. angulata, and establish that the genetic architecture of intraspecific variation is quite similar to that of the interspecific differences in terms of the number, distribution, and effect sizes of the QTL involved. We discuss the impact of genetic architecture on the ability of Heliothine moths to respond to varying ecological selection pressures.
Collapse
Affiliation(s)
- Sara J Oppenheim
- The Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th St., New York, NY, 10024, USA.
| | - Fred Gould
- Department of Entomology and Department of Biological Sciences, Program in Genetics, North Carolina State University, Raleigh, NC, 27607, USA
| | - Keith R Hopper
- USDA-ARS, Beneficial Insect Introductions Research Unit, Newark, DE, 19713, USA
| |
Collapse
|
15
|
Svensson O, Woodhouse K, van Oosterhout C, Smith A, Turner GF, Seehausen O. The genetics of mate preferences in hybrids between two young and sympatric Lake Victoria cichlid species. Proc Biol Sci 2018; 284:rspb.2016.2332. [PMID: 28202807 DOI: 10.1098/rspb.2016.2332] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/24/2017] [Indexed: 12/29/2022] Open
Abstract
The genetic architecture of mate preferences is likely to affect significant evolutionary processes, including speciation and hybridization. Here, we investigate laboratory hybrids between a pair of sympatric Lake Victoria cichlid fish species that appear to have recently evolved from a hybrid population between similar predecessor species. The species demonstrate strong assortative mating in the laboratory, associated with divergent male breeding coloration (red dorsum versus blue). We show in a common garden experiment, using DNA-based paternity testing, that the strong female mate preferences among males of the two species are fully recovered in a large fraction of their F2 hybrid generation. Individual hybrid females often demonstrated consistent preferences in multiple mate choice trials (more than or equal to five) across a year or more. This result suggests that female mate preference is influenced by relatively few major genes or genomic regions. These preferences were not changed by experience of a successful spawning event with a male of the non-preferred species in a no-choice single-male trial. We found no evidence for imprinting in the F2 hybrids, although the F1 hybrid females may have been imprinted on their mothers. We discuss this nearly Mendelian inheritance of consistent innate mate preferences in the context of speciation theory.
Collapse
Affiliation(s)
- Ola Svensson
- School of Environmental Sciences, University of Hull, Hull HU6 7RX, UK
| | - Katie Woodhouse
- School of Environmental Sciences, University of Hull, Hull HU6 7RX, UK
| | | | - Alan Smith
- School of Environmental Sciences, University of Hull, Hull HU6 7RX, UK
| | - George F Turner
- School of Environmental Sciences, University of Hull, Hull HU6 7RX, UK
| | - Ole Seehausen
- Department of Fish Ecology and Evolution, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Center for Ecology, Evolution and Biogeochemistry, Seestrasse 79, 6047 Kastanienbaum, Switzerland.,Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
| |
Collapse
|
16
|
Otte T, Hilker M, Geiselhardt S. Phenotypic plasticity of mate recognition systems prevents sexual interference between two sympatric leaf beetle species. Evolution 2016; 70:1819-28. [PMID: 27272669 DOI: 10.1111/evo.12976] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 05/10/2016] [Accepted: 05/21/2016] [Indexed: 11/30/2022]
Abstract
Maladaptive sexual interactions among heterospecific individuals (sexual interference) can prevent the coexistence of animal species. Thus, the avoidance of sexual interference by divergence of mate recognition systems is crucial for a stable coexistence in sympatry. Mate recognition systems are thought to be under tight genetic control. However, we demonstrate that mate recognition systems of two closely related sympatric leaf beetle species show a high level of host-induced phenotypic plasticity. Mate choice in the mustard leaf beetles, Phaedon cochleariae and P. armoraciae, is mediated by cuticular hydrocarbons (CHCs). Divergent host plant use causes a divergence of CHC phenotypes, whereas similar host use leads to their convergence. Consequently, both species exhibit significant behavioral isolation when they feed on alternative host species, but mate randomly when using a common host. Thus, sexual interference between these syntopic leaf beetles is prevented by host-induced phenotypic plasticity rather than by genotypic divergence of mate recognition systems.
Collapse
Affiliation(s)
- Tobias Otte
- Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Street 9, 12163, Berlin, Germany
| | - Monika Hilker
- Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Street 9, 12163, Berlin, Germany
| | - Sven Geiselhardt
- Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Street 9, 12163, Berlin, Germany.
| |
Collapse
|
17
|
Quantitative Trait Locus Analysis of Mating Behavior and Male Sex Pheromones in Nasonia Wasps. G3-GENES GENOMES GENETICS 2016; 6:1549-62. [PMID: 27172207 PMCID: PMC4889652 DOI: 10.1534/g3.116.029074] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A major focus in speciation genetics is to identify the chromosomal regions and genes that reduce hybridization and gene flow. We investigated the genetic architecture of mating behavior in the parasitoid wasp species pair Nasonia giraulti and Nasonia oneida that exhibit strong prezygotic isolation. Behavioral analysis showed that N. oneida females had consistently higher latency times, and broke off the mating sequence more often in the mounting stage when confronted with N. giraulti males compared with males of their own species. N. oneida males produce a lower quantity of the long-range male sex pheromone (4R,5S)-5-hydroxy-4-decanolide (RS-HDL). Crosses between the two species yielded hybrid males with various pheromone quantities, and these males were used in mating trials with females of either species to measure female mate discrimination rates. A quantitative trait locus (QTL) analysis involving 475 recombinant hybrid males (F2), 2148 reciprocally backcrossed females (F3), and a linkage map of 52 equally spaced neutral single nucleotide polymorphism (SNP) markers plus SNPs in 40 candidate mating behavior genes revealed four QTL for male pheromone amount, depending on partner species. Our results demonstrate that the RS-HDL pheromone plays a role in the mating system of N. giraulti and N. oneida, but also that additional communication cues are involved in mate choice. No QTL were found for female mate discrimination, which points at a polygenic architecture of female choice with strong environmental influences.
Collapse
|
18
|
Noh S, Henry CS. Speciation is not necessarily easier in species with sexually monomorphic mating signals. J Evol Biol 2015; 28:1925-39. [PMID: 26230311 DOI: 10.1111/jeb.12707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 07/27/2015] [Indexed: 11/28/2022]
Abstract
Should we have different expectations regarding the likelihood and pace of speciation by sexual selection when considering species with sexually monomorphic mating signals? Two conditions that can facilitate rapid species divergence are Felsenstein's one-allele mechanism and a genetic architecture that includes a genetic association between signal and preference loci. In sexually monomorphic species, the former can manifest in the form of mate choice based on phenotype matching. The latter can be promoted by selection acting upon genetic loci for divergent signals and preferences expressed simultaneously in each individual, rather than acting separately on signal loci in males and preference loci in females. Both sexes in the Chrysoperla carnea group of green lacewings (Insecta, Neuroptera, Chrysopidae) produce sexually monomorphic species-specific mating signals. We hybridized the two species C. agilis and C. carnea to test for evidence of these speciation-facilitating conditions. Hybrid signals were more complex than the parents and we observed a dominant influence of C. carnea. We found a dominant influence of C. agilis on preferences in the form of hybrid discrimination against C. carnea. Preferences in hybrids followed patterns predicting preference loci that determine mate choice rather than a one-allele mechanism. The genetic association between signal and preference we detected in the segregating hybrid crosses indicates that speciation in these species with sexually monomorphic mating signals can have occurred rapidly. However, we need additional evidence to determine whether such genetic associations form more readily in sexually monomorphic species compared to dimorphic species and consequently facilitate speciation.
Collapse
Affiliation(s)
- S Noh
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - C S Henry
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
19
|
Veltsos P, Gregson E, Morrissey B, Slate J, Hoikkala A, Butlin RK, Ritchie MG. The genetic architecture of sexually selected traits in two natural populations of Drosophila montana. Heredity (Edinb) 2015. [PMID: 26198076 DOI: 10.1038/hdy.2015.63] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We investigated the genetic architecture of courtship song and cuticular hydrocarbon traits in two phygenetically distinct populations of Drosophila montana. To study natural variation in these two important traits, we analysed within-population crosses among individuals sampled from the wild. Hence, the genetic variation analysed should represent that available for natural and sexual selection to act upon. In contrast to previous between-population crosses in this species, no major quantitative trait loci (QTLs) were detected, perhaps because the between-population QTLs were due to fixed differences between the populations. Partitioning the trait variation to chromosomes suggested a broadly polygenic genetic architecture of within-population variation, although some chromosomes explained more variation in one population compared with the other. Studies of natural variation provide an important contrast to crosses between species or divergent lines, but our analysis highlights recent concerns that segregating variation within populations for important quantitative ecological traits may largely consist of small effect alleles, difficult to detect with studies of moderate power.
Collapse
Affiliation(s)
- P Veltsos
- Centre for Biological Diversity, University of St Andrews, St Andrews, UK
| | - E Gregson
- Animal & Plant Sciences, University of Sheffield, Alfred Denny Building, Sheffield, UK
| | - B Morrissey
- Animal & Plant Sciences, University of Sheffield, Alfred Denny Building, Sheffield, UK
| | - J Slate
- Animal & Plant Sciences, University of Sheffield, Alfred Denny Building, Sheffield, UK
| | - A Hoikkala
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - R K Butlin
- Animal & Plant Sciences, University of Sheffield, Alfred Denny Building, Sheffield, UK.,Sven Lovén Centre-Tjärnö, University of Gothenburg, Strömstad, Sweden
| | - M G Ritchie
- Centre for Biological Diversity, University of St Andrews, St Andrews, UK
| |
Collapse
|
20
|
Blankers T, Lübke AK, Hennig RM. Phenotypic variation and covariation indicate high evolvability of acoustic communication in crickets. J Evol Biol 2015; 28:1656-69. [DOI: 10.1111/jeb.12686] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 11/27/2022]
Affiliation(s)
- T. Blankers
- Behavioural Physiology; Department of Biology; Humboldt-Universität zu Berlin; Berlin Germany
- Museum für Naturkunde Berlin; Leibniz Institute for Evolution and Biodiversity Science; Berlin Germany
| | - A. K. Lübke
- Behavioural Physiology; Department of Biology; Humboldt-Universität zu Berlin; Berlin Germany
| | - R. M. Hennig
- Behavioural Physiology; Department of Biology; Humboldt-Universität zu Berlin; Berlin Germany
| |
Collapse
|
21
|
Castillo DM, Moyle LC. Intraspecific sperm competition genes enforce post-mating species barriers in Drosophila. Proc Biol Sci 2015; 281:rspb.2014.2050. [PMID: 25355478 DOI: 10.1098/rspb.2014.2050] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Sexual selection and sexual conflict are considered important drivers of speciation, based on both theoretical models and empirical correlations between sexually selected traits and diversification. However, whether reproductive isolation between species evolves directly as a consequence of intrapopulation sexual dynamics remains empirically unresolved, in part because knowledge of the genetic mechanisms (if any) connecting these processes is limited. Here, we provide evidence of a direct mechanistic link between intraspecies sexual selection and reproductive isolation. We examined genes with known roles in intraspecific sperm competition (ISC) in D. melanogaster and assayed their impact on conspecific sperm precedence (CSP). We found that two such genes (Acp36DE and CG9997) contribute to both offensive sperm competition and CSP; null/knockdown lines both had lower competitive ability against D. melanogaster conspecifics and were no longer able to displace heterospecific D. simulans sperm in competitive matings. In comparison, Sex Peptide (Acp70A)-another locus essential for ISC-does not contribute to CSP. These data indicate that two loci important for sperm competitive interactions have an additional role in similar interactions that enforce post-mating reproductive isolation between species, and show that sexual selection and sexual isolation can act on the same molecular targets in a gene-specific manner.
Collapse
Affiliation(s)
- Dean M Castillo
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Leonie C Moyle
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
22
|
How consistent are the transcriptome changes associated with cold acclimation in two species of the Drosophila virilis group? Heredity (Edinb) 2015; 115:13-21. [PMID: 25669607 DOI: 10.1038/hdy.2015.6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 01/21/2023] Open
Abstract
For many organisms the ability to cold acclimate with the onset of seasonal cold has major implications for their fitness. In insects, where this ability is widespread, the physiological changes associated with increased cold tolerance have been well studied. Despite this, little work has been done to trace changes in gene expression during cold acclimation that lead to an increase in cold tolerance. We used an RNA-Seq approach to investigate this in two species of the Drosophila virilis group. We found that the majority of genes that are differentially expressed during cold acclimation differ between the two species. Despite this, the biological processes associated with the differentially expressed genes were broadly similar in the two species. These included: metabolism, cell membrane composition, and circadian rhythms, which are largely consistent with previous work on cold acclimation/cold tolerance. In addition, we also found evidence of the involvement of the rhodopsin pathway in cold acclimation, a pathway that has been recently linked to thermotaxis. Interestingly, we found no evidence of differential expression of stress genes implying that long-term cold acclimation and short-term stress response may have a different physiological basis.
Collapse
|
23
|
Genetic mapping of two components of reproductive isolation between two sibling species of moths, Ostrinia nubilalis and O. scapulalis. Heredity (Edinb) 2013; 112:370-81. [PMID: 24220089 DOI: 10.1038/hdy.2013.113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 07/16/2013] [Accepted: 09/06/2013] [Indexed: 01/24/2023] Open
Abstract
We report the quantitative trait loci (QTL) mapping of reproductive isolation traits between Ostrinia nubilalis (the European corn borer) and its sibling species O. scapulalis (the Adzuki bean borer), focusing on two traits: mating isolation (mi) and pheromone production (Pher). Four genetic maps were generated from two backcross families, with two maps (one chromosomal map and one linkage map) per backcross. We located 165-323 AFLP markers on these four maps, resulting in the identification of 27-31 linkage groups, depending on the map considered. No-choice mating experiments with the offspring of each backcross led to the detection of at least two QTLs for mi in different linkage groups. QTLs underlying Pher were located in a third linkage group. The Z heterochromosome was identified by a specific marker (Tpi) and did not carry any of these QTLs. Finally, we considered the global divergence between the two sibling species, distortions of segregation throughout the genome, and the location and effect of mi and Pher QTLs in light of the known candidate genes for reproductive isolation within the genus Ostrinia and, more broadly, in phytophagous insects.
Collapse
|
24
|
Alem S, Streiff R, Courtois B, Zenboudji S, Limousin D, Greenfield MD. Genetic architecture of sensory exploitation: QTL mapping of female and male receiver traits in an acoustic moth. J Evol Biol 2013; 26:2581-96. [DOI: 10.1111/jeb.12252] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/09/2013] [Accepted: 08/18/2013] [Indexed: 02/01/2023]
Affiliation(s)
- S. Alem
- Centre National de la Recherche Scientifique (CNRS); UMR 7261 (IRBI); Université François Rabelais de Tours; Tours France
| | - R. Streiff
- Institut National de la Recherche Agronomique (INRA); UMR CBGP (INRA-IRD-CIRAD-Montpellier SupAgro); Montferrier sur Lez France
| | - B. Courtois
- Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD); UMR AGAP; Montpellier France
| | - S. Zenboudji
- Centre National de la Recherche Scientifique (CNRS); UMR 5175 (CEFE); Montpellier France
| | - D. Limousin
- Institut National de la Recherche Agronomique (INRA); UMR 1272; Physiologie de l'Insecte Signalisation et Communication; Versailles France
| | - M. D. Greenfield
- Centre National de la Recherche Scientifique (CNRS); UMR 7261 (IRBI); Université François Rabelais de Tours; Tours France
| |
Collapse
|
25
|
Chen L, Zhu C, Zhang D. Naturally occurring incompatibilities between different Culex pipiens pallens populations as the basis of potential mosquito control measures. PLoS Negl Trop Dis 2013; 7:e2030. [PMID: 23383354 PMCID: PMC3561155 DOI: 10.1371/journal.pntd.0002030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 12/08/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Vector-borne diseases remain a threat to public health, especially in tropical countries. The incompatible insect technique has been explored as a potential control strategy for several important insect vectors. However, this strategy has not been tested in Culex pipiens pallens, the most prevalent mosquito species in China. Previous works used introgression to generate new strains that matched the genetic backgrounds of target populations while harboring a new Wolbachia endosymbiont, resulting in mating competitiveness and cytoplasmic incompatibility. The generation of these incompatible insects is often time-consuming, and the long-term stability of the newly created insect-Wolbachia symbiosis is uncertain. Considering the wide distribution of Cx. pipiens pallens and hence possible isolation of different populations, we sought to test for incompatibilities between natural populations and the possibility of exploiting these incompatibilities as a control strategy. METHODOLOGY/PRINCIPAL FINDINGS Three field populations were collected from three geographic locations in eastern China. Reciprocal cross results showed that bi-directional patterns of incompatibility existed between some populations. Mating competition experiments indicated that incompatible males could compete with cognate males in mating with females, leading to reduced overall fecundity. F1 offspring from incompatible crosses maintained their maternal crossing types. All three populations tested positive for Wolbachia. Removal of Wolbachia by tetracycline rendered matings between these populations fully compatible. CONCLUSIONS/SIGNIFICANCE Our findings indicate that naturally occurring patterns of cytoplasmic incompatibility between Cx. pipiens pallens populations can be the basis of a control strategy for this important vector species. The observed incompatibilities are caused by Wolbachia. More tests including field trials are warranted to evaluate the feasibility of this strategy as a supplement to other control measures.
Collapse
Affiliation(s)
- Lin Chen
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Changliang Zhu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Donghui Zhang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
- * E-mail:
| |
Collapse
|
26
|
Groot AT, Staudacher H, Barthel A, Inglis O, Schöfl G, Santangelo RG, Gebauer-Jung S, Vogel H, Emerson J, Schal C, Heckel DG, Gould F. One quantitative trait locus for intra- and interspecific variation in a sex pheromone. Mol Ecol 2013; 22:1065-80. [PMID: 23294019 DOI: 10.1111/mec.12171] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 11/08/2012] [Accepted: 11/08/2012] [Indexed: 12/27/2022]
Abstract
Even though premating isolation is hypothesized to be a major driving force in speciation, its genetic basis is poorly known. In the noctuid moth Heliothis subflexa, one group of sex pheromone components, the acetates, emitted by the female, plays a crucial isolating role in preventing interspecific matings to males of the closely related Heliothis virescens, in which females do not produce acetates and males are repelled by them. We previously found intraspecific variation in acetates in H. subflexa: females in eastern North America contain significantly more acetates than females in Western Mexico. Here we describe the persistence of this intraspecific variation in laboratory-reared strains and the identification of one major quantitative trait locus (QTL), explaining 40% of the variance in acetate amounts. We homologized this intraspecific QTL to our previously identified interspecific QTL using restriction-associated DNA (RAD) tags. We found that a major intraspecific QTL overlaps with one of the two major interspecific QTL. To identify candidate genes underlying the acetate variation, we investigated a number of gene families with known or suspected acetyl- or acyltransferase activity. The most likely candidate genes did not map to our QTL, so that we currently hypothesize that a transcription factor underlies this QTL. Finding a single, large QTL that impacts variation in pheromone blends between and within species is, to our knowledge, the first such example for traits that have been demonstrated to affect premating isolation.
Collapse
Affiliation(s)
- A T Groot
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Pillay N, Rymer TL. Behavioural divergence, interfertility and speciation: A review. Behav Processes 2012; 91:223-35. [DOI: 10.1016/j.beproc.2012.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 08/27/2012] [Indexed: 11/25/2022]
|
28
|
Oppenheim SJ, Gould F, Hopper KR. The genetic architecture of a complex ecological trait: host plant use in the specialist moth, Heliothis subflexa. Evolution 2012; 66:3336-51. [PMID: 23106701 DOI: 10.1111/j.1558-5646.2012.01712.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We used genetic mapping to examine the genetic architecture of differences in host plant use between two species of noctuid moths, Heliothis subflexa, a specialist on Physalis spp., and its close relative, the broad generalist H. virescens. We introgressed H. subflexa chromosomes into the H. virescens background and analyzed 1462 backcross insects. The effects of H. subflexa-origin chromosomes were small when measured as the percent variation explained in backcross populations (0.2-5%), but were larger when considered in relation to the interspecific difference explained (1.5-165%). Most significant chromosomes had effects on more than one trait, and their effects varied between years, sexes, and genetic backgrounds. Different chromosomes could produce similar phenotypes, suggesting that the same trait might be controlled by different chromosomes in different backcross populations. It appears that many loci of small effect contribute to the use of Physalis by H. subflexa. We hypothesize that behavioral changes may have paved the way for physiological adaptation to Physalis by the generalist ancestor of H. subflexa and H. virescens.
Collapse
Affiliation(s)
- Sara J Oppenheim
- Department of Entomology, North Carolina State University, Raleigh, North Carolina 27695, USA.
| | | | | |
Collapse
|
29
|
|
30
|
Hartke TR, Rosengaus RB. Heterospecific pairing and hybridization between Nasutitermes corniger and N. ephratae. Naturwissenschaften 2011; 98:745-53. [PMID: 21761130 DOI: 10.1007/s00114-011-0823-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 06/24/2011] [Accepted: 06/25/2011] [Indexed: 10/18/2022]
Abstract
The sympatric neotropical termites Nasutitermes corniger and Nasutitermes ephratae are clearly distinguishable based on morphology, nest architecture, defensive secretion composition, and molecular markers. However, given the extensive ecological, geographical, and behavioral overlap of these closely related species, the potential for interbreeding may exist. To explore this possibility, heterospecific pairs were formed experimentally to examine courtship and colony-establishment behaviors, and reproductive potential. Courtship and nest construction behavior occurred in heterospecific pairs in a similar manner to that of conspecific pairs. Survival of pairs depended upon the species of the female partner. N. ephratae females paired with N. corniger males produced as many offspring as conspecific pairs. N. corniger females mated to N. ephratae males, however, produced significantly fewer offspring at 60 days post-establishment than the reciprocal cross or conspecific N. ephratae or N. corniger pairs. This was also the only pairing in which any aggression was observed. Heterospecific pairs and groups formed in mate choice mesocosms, suggesting that species recognition between these two termites is not an important aspect of mate choice. Overall, species mismatch tolerance and hybrid offspring viability are high. The present data, together with previous evidence from defensive secretions and isozyme analysis, suggest that hybridization may periodically occur in nature, and that reproductive barriers between these two species may be incomplete. Hybridization could provide a rare but important source of genetic diversity and may ensure mating opportunities for the more abundant sex of alates in each species.
Collapse
Affiliation(s)
- Tamara R Hartke
- Northeastern University Biology Department, 360 Huntington Avenue, Boston, MA 02115, USA.
| | | |
Collapse
|
31
|
Pannebakker BA, Watt R, Knott SA, West SA, Shuker DM. The quantitative genetic basis of sex ratio variation in Nasonia vitripennis: a QTL study. J Evol Biol 2011; 24:12-22. [PMID: 20977519 PMCID: PMC3025119 DOI: 10.1111/j.1420-9101.2010.02129.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Our understanding of how natural selection should shape sex allocation is perhaps more developed than for any other trait. However, this understanding is not matched by our knowledge of the genetic basis of sex allocation. Here, we examine the genetic basis of sex ratio variation in the parasitoid wasp Nasonia vitripennis, a species well known for its response to local mate competition (LMC). We identified a quantitative trait locus (QTL) for sex ratio on chromosome 2 and three weaker QTL on chromosomes 3 and 5. We tested predictions that genes associated with sex ratio should be pleiotropic for other traits by seeing if sex ratio QTL co-occurred with clutch size QTL. We found one clutch size QTL on chromosome 1, and six weaker QTL across chromosomes 2, 3 and 5, with some overlap to regions associated with sex ratio. The results suggest rather limited scope for pleiotropy between these traits.
Collapse
Affiliation(s)
- B A Pannebakker
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| | | | | | | | | |
Collapse
|
32
|
Henry CS, Wells MM. Acoustic niche partitioning in two cryptic sibling species of Chrysoperla green lacewings that must duet before mating. Anim Behav 2010. [DOI: 10.1016/j.anbehav.2010.08.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Chenoweth SF, McGuigan K. The Genetic Basis of Sexually Selected Variation. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2010. [DOI: 10.1146/annurev-ecolsys-102209-144657] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sexually selected traits contribute greatly to phenotypic diversity, yet we have historically understood little about their genetic basis and how that basis may affect their evolution. Recent work in developmental and quantitative genetics has provided both mechanistic and statistical descriptions of genotype-phenotype maps for sexually selected traits. These studies expose generally complex genetic architectures; genotype-phenotype maps are polygenic with allelic effects that are pleiotropic and highly context-dependent. At the same time, developments in quantitative genetics have provided new insights into the microevolutionary potential of standing variation and indicate genetic constraints on the contemporary evolution of male sexually selected characters, mate preferences, and also male mating success itself. Understanding the extent to which these constraints are a function of genetic architecture will require a tighter integration of developmental, molecular, and quantitative genetic approaches in a variety of model systems. Emerging genomic technologies offer an unprecedented opportunity to deepen our understanding of sexual selection as an evolutionary process.
Collapse
Affiliation(s)
- Stephen F. Chenoweth
- School of Biological Sciences, The University of Queensland, St Lucia 4072, Australia
| | - Katrina McGuigan
- School of Biological Sciences, The University of Queensland, St Lucia 4072, Australia
| |
Collapse
|
34
|
SCHÄFER MA, MAZZI D, KLAPPERT K, KAURANEN H, VIEIRA J, HOIKKALA A, RITCHIE MG, SCHLÖTTERER C. A microsatellite linkage map forDrosophila montanashows large variation in recombination rates, and a courtship song trait maps to an area of low recombination. J Evol Biol 2010; 23:518-27. [DOI: 10.1111/j.1420-9101.2009.01916.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
35
|
Ortiz-Barrientos D, Grealy A, Nosil P. The genetics and ecology of reinforcement: implications for the evolution of prezygotic isolation in sympatry and beyond. Ann N Y Acad Sci 2009; 1168:156-82. [PMID: 19566707 DOI: 10.1111/j.1749-6632.2009.04919.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Reinforcement, the evolution of prezygotic reproductive barriers by natural selection in response to maladaptive hybridization, is one of the most debated processes in speciation. Critics point to "fatal" conceptual flaws for sympatric evolution of prezygotic isolation, but recent theoretical and empirical work on genetics and ecology of reinforcement suggests that such criticisms can be overcome. New studies provide evidence for reinforcement in frogs, fish, insects, birds, and plants. While such evidence lays to rest the argument over reinforcement's existence, our understanding remains incomplete. We lack data on (1) the genetic basis of female preferences and the links between genetics of pre- and postzygotic isolation, (2) the ecological basis of reproductive isolation, (3) connections between prezygotic isolation between species and within-species sexual selection (potentially leading to a "cascade" of effects on reproductive isolation), (4) the role of habitat versus mate preference in reinforcement, and (5) additional detailed comparative studies. Here, we review data on these issues and highlight why they are important for understanding speciation.
Collapse
|