1
|
R2 and Non-Site-Specific R2-Like Retrotransposons of the German Cockroach, Blattella germanica. Genes (Basel) 2020; 11:genes11101202. [PMID: 33076367 PMCID: PMC7650587 DOI: 10.3390/genes11101202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 11/17/2022] Open
Abstract
The structural and functional organization of the ribosomal RNA gene cluster and the full-length R2 non-LTR retrotransposon (integrated into a specific site of 28S ribosomal RNA genes) of the German cockroach, Blattella germanica, is described. A partial sequence of the R2 retrotransposon of the cockroach Rhyparobia maderae is also analyzed. The analysis of previously published next-generation sequencing data from the B. germanica genome reveals a new type of retrotransposon closely related to R2 retrotransposons but with a random distribution in the genome. Phylogenetic analysis reveals that these newly described retrotransposons form a separate clade. It is shown that proteins corresponding to the open reading frames of newly described retrotransposons exhibit unequal structural domains. Within these retrotransposons, a recombination event is described. New mechanism of transposition activity is discussed. The essential structural features of R2 retrotransposons are conserved in cockroaches and are typical of previously described R2 retrotransposons. However, the investigation of the number and frequency of 5′-truncated R2 retrotransposon insertion variants in eight B. germanica populations suggests recent mobile element activity. It is shown that the pattern of 5′-truncated R2 retrotransposon copies can be an informative molecular genetic marker for revealing genetic distances between insect populations.
Collapse
|
2
|
Characterization and Evolution of Germ1, an Element that Undergoes Diminution in Lampreys (Cyclostomata: Petromyzontidae). J Mol Evol 2019; 87:298-308. [PMID: 31486871 DOI: 10.1007/s00239-019-09909-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/23/2019] [Indexed: 12/23/2022]
Abstract
The sea lamprey (Petromyzon marinus) undergoes substantial genomic alterations during embryogenesis in which specific sequences are deleted from the genome of somatic cells yet retained in cells of the germ line. One element that undergoes diminution in P. marinus is Germ1, which consists of a somatically rare (SR) region and a fragment of 28S rDNA. Although the SR-region has been used as a marker for genomic alterations in lampreys, the evolutionary significance of its diminution is unknown. We examined the Germ1 element in five additional species of lamprey to better understand its evolutionary significance. Each representative species contained sequences similar enough to the Germ1 element of P. marinus to be detected via PCR and Southern hybridizations, although the SR-regions of Lampetra aepyptera and Lethenteron appendix are quite divergent from the homologous sequences of Petromyzon and three species of Ichthyomyzon. Lamprey Germ1 sequences have a number of features characteristic of the R2 retrotransposon, a mobile element that specifically targets 28S rDNA. Phylogenetic analyses of the SR-regions revealed patterns generally consistent with relationships among the species included in our study, although the 28S-fragments of each species/genus were most closely related to its own functional rDNA, suggesting that the two components of Germ1 were assembled independently in each lineage. Southern hybridizations showed evidence of genomic alterations involving Germ1 in each species. Our results suggest that Germ1 is a R2 retroelement that occurs in the genome of P. marinus and other petromyzontid lampreys, and that its diminution is incidental to the reduction in rDNA copies during embryogenesis.
Collapse
|
3
|
Scavariello C, Luchetti A, Martoni F, Bonandin L, Mantovani B. Hybridogenesis and a potential case of R2 non-LTR retrotransposon horizontal transmission in Bacillus stick insects (Insecta Phasmida). Sci Rep 2017; 7:41946. [PMID: 28165062 PMCID: PMC5292737 DOI: 10.1038/srep41946] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 01/04/2017] [Indexed: 01/16/2023] Open
Abstract
Horizontal transfer (HT) is an event in which the genetic material is transferred from one species to another, even if distantly related, and it has been demonstrated as a possible essential part of the lifecycle of transposable elements (TEs). However, previous studies on the non-LTR R2 retrotransposon, a metazoan-wide distributed element, indicated its vertical transmission since the Radiata-Bilateria split. Here we present the first possible instances of R2 HT in stick insects of the genus Bacillus (Phasmida). Six R2 elements were characterized in the strictly bisexual subspecies B. grandii grandii, B. grandii benazzii and B. grandii maretimi and in the obligatory parthenogenetic taxon B. atticus. These elements were compared with those previously retrieved in the facultative parthenogenetic species B. rossius. Phylogenetic inconsistencies between element and host taxa, and age versus divergence analyses agree and support at least two HT events. These HT events can be explained by taking into consideration the complex Bacillus reproductive biology, which includes also hybridogenesis, gynogenesis and androgenesis. Through these non-canonical reproductive modes, R2 elements may have been transferred between Bacillus genomes. Our data suggest, therefore, a possible role of hybridization for TEs survival and the consequent reshaping of involved genomes.
Collapse
Affiliation(s)
- Claudia Scavariello
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
| | - Andrea Luchetti
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
| | - Francesco Martoni
- Bio-Protection Research Centre, Lincoln University, Lincoln 7647, New Zealand
| | - Livia Bonandin
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
| | - Barbara Mantovani
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
| |
Collapse
|
4
|
Abstract
R2 elements are sequence specific non-LTR retrotransposons that exclusively insert in the 28S rRNA genes of animals. R2s encode an endonuclease that cleaves the insertion site and a reverse transcriptase that uses the cleaved DNA to prime reverse transcription of the R2 transcript, a process termed target primed reverse transcription. Additional unusual properties of the reverse transcriptase as well as DNA and RNA binding domains of the R2 encoded protein have been characterized. R2 expression is through co-transcription with the 28S gene and self-cleavage by a ribozyme encoded at the R2 5' end. Studies in laboratory stocks and natural populations of Drosophila suggest that R2 expression is tied to the distribution of R2-inserted units within the rDNA locus. Most individuals have no R2 expression because only a small fraction of their rRNA genes need to be active, and a contiguous region of the locus free of R2 insertions can be selected for activation. However, if the R2-free region is not large enough to produce sufficient rRNA, flanking units - including those inserted with R2 - must be activated. Finally, R2 copies rapidly turnover within the rDNA locus, yet R2 has been vertically maintained in animal lineages for hundreds of millions of years. The key to this stability is R2's ability to remain dormant in rDNA units outside the transcribed regions for generations until the stochastic nature of the crossovers that drive the concerted evolution of the rDNA locus inevitably reshuffle the inserted and uninserted units, resulting in transcription of the R2-inserted units.
Collapse
|
5
|
Martoni F, Eickbush DG, Scavariello C, Luchetti A, Mantovani B. Dead element replicating: degenerate R2 element replication and rDNA genomic turnover in the Bacillus rossius stick insect (Insecta: Phasmida). PLoS One 2015; 10:e0121831. [PMID: 25799008 PMCID: PMC4370867 DOI: 10.1371/journal.pone.0121831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/04/2015] [Indexed: 11/18/2022] Open
Abstract
R2 is an extensively investigated non-LTR retrotransposon that specifically inserts into the 28S rRNA gene sequences of a wide range of metazoans, disrupting its functionality. During R2 integration, first strand synthesis can be incomplete so that 5’ end deleted copies are occasionally inserted. While active R2 copies repopulate the locus by retrotransposing, the non-functional truncated elements should frequently be eliminated by molecular drive processes leading to the concerted evolution of the rDNA array(s). Although, multiple R2 lineages have been discovered in the genome of many animals, the rDNA of the stick insect Bacillus rossius exhibits a peculiar situation: it harbors both a canonical, functional R2 element (R2Brfun) as well as a full-length but degenerate element (R2Brdeg). An intensive sequencing survey in the present study reveals that all truncated variants in stick insects are present in multiple copies suggesting they were duplicated by unequal recombination. Sequencing results also demonstrate that all R2Brdeg copies are full-length, i. e. they have no associated 5' end deletions, and functional assays indicate they have lost the active ribozyme necessary for R2 RNA maturation. Although it cannot be completely ruled out, it seems unlikely that the degenerate elements replicate via reverse transcription, exploiting the R2Brfun element enzymatic machinery, but rather via genomic amplification of inserted 28S by unequal recombination. That inactive copies (both R2Brdeg or 5'-truncated elements) are not eliminated in a short term in stick insects contrasts with findings for the Drosophila R2, suggesting a widely different management of rDNA loci and a lower efficiency of the molecular drive while achieving the concerted evolution.
Collapse
Affiliation(s)
- Francesco Martoni
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
| | - Danna G. Eickbush
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Claudia Scavariello
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
| | - Andrea Luchetti
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
- * E-mail:
| | - Barbara Mantovani
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
| |
Collapse
|
6
|
Bonandin L, Scavariello C, Luchetti A, Mantovani B. Evolutionary dynamics of R2 retroelement and insertion inheritance in the genome of bisexual and parthenogenetic Bacillus rossius populations (Insecta Phasmida). INSECT MOLECULAR BIOLOGY 2014; 23:808-820. [PMID: 25134735 DOI: 10.1111/imb.12126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Theoretical and empirical studies have shown differential management of transposable elements in organisms with different reproductive strategies. To investigate this issue, we analysed the R2 retroelement structure and variability in parthenogenetic and bisexual populations of Bacillus rossius stick insects, as well as insertions inheritance in the offspring of parthenogenetic isolates and of crosses. The B. rossius genome hosts a functional (R2Br(fun) ) and a degenerate (R2Br(deg) ) element, their presence correlating with neither reproductive strategies nor population distribution. The median-joining network method indicated that R2Br(fun) duplicates through a multiple source model, while R2Br(deg) is apparently still duplicating via a master gene model. Offspring analyses showed that unisexual and bisexual offspring have a similar number of R2Br-occupied sites. Multiple or recent shifts from gonochoric to parthenogenetic reproduction may explain the observed data. Moreover, insertion frequency spectra show that higher-frequency insertions in unisexual offspring significantly outnumber those in bisexual offspring. This suggests that unisexual offspring eliminate insertions with lower efficiency. A comparison with simulated insertion frequencies shows that inherited insertions in unisexual and bisexual offspring are significantly different from the expectation. On the whole, different mechanisms of R2 elimination in unisexual vs bisexual offspring and a complex interplay between recombination effectiveness, natural selection and time can explain the observed data.
Collapse
Affiliation(s)
- L Bonandin
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
| | | | | | | |
Collapse
|
7
|
Montiel EE, Cabrero J, Ruiz-Estévez M, Burke WD, Eickbush TH, Camacho JPM, López-León MD. Preferential occupancy of R2 retroelements on the B chromosomes of the grasshopper Eyprepocnemis plorans. PLoS One 2014; 9:e91820. [PMID: 24632855 PMCID: PMC3954772 DOI: 10.1371/journal.pone.0091820] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 02/14/2014] [Indexed: 02/02/2023] Open
Abstract
R2 non-LTR retrotransposons exclusively insert into the 28S rRNA genes of their host, and are expressed by co-transcription with the rDNA unit. The grasshopper Eyprepocnemis plorans contains transcribed rDNA clusters on most of its A chromosomes, as well as non-transcribed rDNA clusters on the parasitic B chromosomes found in many populations. Here the structure of the E. plorans R2 element, its abundance relative to the number of rDNA units and its retrotransposition activity were determined. Animals screened from five populations contained on average over 12,000 rDNA units on their A chromosomes, but surprisingly only about 100 R2 elements. Monitoring the patterns of R2 insertions in individuals from these populations revealed only low levels of retrotransposition. The low rates of R2 insertion observed in E. plorans differ from the high levels of R2 insertion previously observed in insect species that have many fewer rDNA units. It is proposed that high levels of R2 are strongly selected against in E. plorans, because the rDNA transcription machinery in this species is unable to differentiate between R2-inserted and uninserted units. The B chromosomes of E. plorans contain an additional 7,000 to 15,000 rDNA units, but in contrast to the A chromosomes, from 150 to over 1,500 R2 elements. The higher concentration of R2 in the inactive B chromosomes rDNA clusters suggests these chromosomes can act as a sink for R2 insertions thus further reducing the level of insertions on the A chromosomes. These studies suggest an interesting evolutionary relationship between the parasitic B chromosomes and R2 elements.
Collapse
Affiliation(s)
- Eugenia E. Montiel
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Josefa Cabrero
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Mercedes Ruiz-Estévez
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - William D. Burke
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Thomas H. Eickbush
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Juan Pedro M. Camacho
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | | |
Collapse
|
8
|
Eickbush DG, Burke WD, Eickbush TH. Evolution of the R2 retrotransposon ribozyme and its self-cleavage site. PLoS One 2013; 8:e66441. [PMID: 24066021 PMCID: PMC3774820 DOI: 10.1371/journal.pone.0066441] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 05/07/2013] [Indexed: 12/23/2022] Open
Abstract
R2 is a non-long terminal repeat retrotransposon that inserts site-specifically in the tandem 28S rRNA genes of many animals. Previously, R2 RNA from various species of Drosophila was shown to self-cleave from the 28S rRNA/R2 co-transcript by a hepatitis D virus (HDV)-like ribozyme encoded at its 5' end. RNA cleavage was at the precise 5' junction of the element with the 28S gene. Here we report that RNAs encompassing the 5' ends of R2 elements from throughout its species range fold into HDV-like ribozymes. In vitro assays of RNA self-cleavage conducted in many R2 lineages confirmed activity. For many R2s, RNA self-cleavage was not at the 5' end of the element but at 28S rRNA sequences up to 36 nucleotides upstream of the junction. The location of cleavage correlated well with the types of endogenous R2 5' junctions from different species. R2 5' junctions were uniform for most R2s in which RNA cleavage was upstream in the rRNA sequences. The 28S sequences remaining on the first DNA strand synthesized during retrotransposition are postulated to anneal to the target site and uniformly prime second strand DNA synthesis. In species where RNA cleavage occurred at the R2 5' end, the 5' junctions were variable. This junction variation is postulated to result from the priming of second strand DNA synthesis by chance microhomologies between the target site and the first DNA strand. Finally, features of R2 ribozyme evolution, especially changes in cleavage site and convergence on the same active site sequences, are discussed.
Collapse
Affiliation(s)
- Danna G. Eickbush
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - William D. Burke
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Thomas H. Eickbush
- Department of Biology, University of Rochester, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
9
|
Non-LTR R2 element evolutionary patterns: phylogenetic incongruences, rapid radiation and the maintenance of multiple lineages. PLoS One 2013; 8:e57076. [PMID: 23451148 PMCID: PMC3581529 DOI: 10.1371/journal.pone.0057076] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 01/17/2013] [Indexed: 01/02/2023] Open
Abstract
Retrotransposons of the R2 superclade specifically insert within the 28S ribosomal gene. They have been isolated from a variety of metazoan genomes and were found vertically inherited even if their phylogeny does not always agree with that of the host species. This was explained with the diversification/extinction of paralogous lineages, being proved the absence of horizontal transfer. We here analyze the widest available collection of R2 sequences, either newly isolated from recently sequenced genomes or drawn from public databases, in a phylogenetic framework. Results are congruent with previous analyses, but new important issues emerge. First, the N-terminal end of the R2-B clade protein, so far unknown, presents a new zinc fingers configuration. Second, the phylogenetic pattern is consistent with an ancient, rapid radiation of R2 lineages: being the estimated time of R2 origin (850–600 Million years ago) placed just before the metazoan Cambrian explosion, the wide element diversity and the incongruence with the host phylogeny could be attributable to the sudden expansion of available niches represented by host’s 28S ribosomal genes. Finally, we detect instances of coexisting multiple R2 lineages showing a non-random phylogenetic pattern, strongly similar to that of the “library” model known for tandem repeats: a collection of R2s were present in the ancestral genome and then differentially activated/repressed in the derived species. Models for activation/repression as well as mechanisms for sequence maintenance are also discussed within this framework.
Collapse
|
10
|
Luchetti A, Mingazzini V, Mantovani B. 28S junctions and chimeric elements of the rDNA targeting non-LTR retrotransposon R2 in crustacean living fossils (Branchiopoda, Notostraca). Genomics 2012; 100:51-6. [PMID: 22564473 DOI: 10.1016/j.ygeno.2012.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 04/17/2012] [Accepted: 04/23/2012] [Indexed: 11/29/2022]
Abstract
The 28S rRNA genes of several metazoans are interrupted by site-specific targeting non-LTR retrotransposons, such as R2. R2 elements have been deeply analyzed but aspects of their retrotransposition mechanism and the origin of the wide diversity observed are still debated. We characterized six new R2 lineages in four tadpole shrimp species (Notostraca), samples deriving from a parthenogenetic population of Triops cancriformis (R2Tc_it) and from bisexual Lepidurus populations of L. lubbocki (R2Ll), L. couesii (R2LcA, R2LcB, R2LcC) and L. arcticus (R2La). All elements fit the canonical R2 structure but R2Ll which turned out to be a chimera with an additional ORF originating from another R2. Consistently with data on LINEs, R2Ll could be the result of recombination due to reverse transcriptase template jump. The analysis of 28S/R2 5' end junctions further suggests aberrant homologous recombination, as observed in RNA viruses.
Collapse
Affiliation(s)
- Andrea Luchetti
- Dip. Biologia Evoluzionistica Sperimentale, Università di Bologna, via Selmi 3, 40126 Bologna, Italy.
| | | | | |
Collapse
|
11
|
Ghesini S, Luchetti A, Marini M, Mantovani B. The Non-LTR Retrotransposon R2 in Termites (Insecta, Isoptera): Characterization and Dynamics. J Mol Evol 2011; 72:296-305. [DOI: 10.1007/s00239-011-9430-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 01/03/2011] [Indexed: 01/07/2023]
|