1
|
Nagy I, Nguyen TA. Characterizing and Eliminating the Inbreeding Load. Vet Sci 2023; 11:8. [PMID: 38250914 PMCID: PMC10819885 DOI: 10.3390/vetsci11010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/28/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
The authors evaluated the relevant literature related to purging, which is the interaction between selection and inbreeding in which the population may eliminate its inbreeding load at least partially. According to the relevant literature, the inbreeding load and the process of purging were evaluated via pedigree methods based on ancestral inbreeding, the inbreeding-purging model, and expressed opportunity of purging, along with genomic methods. Most ancestral inbreeding-related studies were performed in zoos, where only a small proportion of the studied populations show signs of purging. The inbreeding-purging model was developed with Drosophila, and it was used to evaluate different zoo ungulates and Pannon white rabbits. Purging was detected in both studies. The expressed opportunity of purging was applied in Jersey cattle and Pannon white rabbits. In the Jersey cattle, it had an effect of 12.6% for fitness, while in the Pannon white rabbits, the inbreeding load was between 40% and 80% of its original value. The genomic studies also signalled purging, but they also made it clear that, contrary to the detected purging, the evaluated populations still suffered from inbreeding depression. Therefore, especially for domesticated animals, it can be concluded that deliberate inbreeding with the purpose of generating purging is not advocated.
Collapse
Affiliation(s)
- István Nagy
- Institute of Animal Sciences, Hungarian University of Agriculture and Life Sciences (MATE), Guba Sándor u. 40, 7400 Kaposvár, Hungary;
| | | |
Collapse
|
2
|
Justinski C, Wilkens J, Distl O. Inbreeding Depression and Purging for Meat Performance Traits in German Sheep Breeds. Animals (Basel) 2023; 13:3547. [PMID: 38003164 PMCID: PMC10668769 DOI: 10.3390/ani13223547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/16/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
This study provides estimates on genetic parameters, inbreeding depression and purging for meat performance measures from 25 German sheep breeds. All German meat, merino sheep breeds and breeds of other breeding directions with a sufficient number of pedigree and performance data were included in this study. Phenotypic traits retrieved from the national database OviCap were evaluated: daily weight gain, meatiness score and ultrasound measurements for muscle and fat thickness. We employed animal models to estimate heritability, variance and covariance components for these meat performance traits as well as inbreeding depression and purging. The heritabilities, on average, reached estimates of 0.55, 0.34, 0.53 and 0.61 for daily weight gain, meatiness score and ultrasound measurements for muscle and fat thickness, respectively. We estimated the linear regression slopes for the individual rate of inbreeding, new and ancestral inbreeding, as well as the inbreeding coefficient and its interaction with the inbreeding coefficient of Ballou, employing animal models with non-genetic effects and the additive genetic effect of the animal. Across all breeds, inbreeding was only significant for daily weight gain, whereas for all other traits, estimates were not significant. Within sheep breeds, we found significant inbreeding depression for daily weight gain in German Mutton Merino and German Blackheaded Mutton as well as for the meatiness score in German Whiteheaded Mutton. Significant effects for purging, based on ancestral inbreeding and the interaction effect of the classical inbreeding coefficient with the inbreeding coefficient of Ballou, were not obvious either across or within any sheep breed. A 1% increase in inbreeding significantly decreased the phenotypic trait median of daily weight gain across all sheep breeds by 0.50% and 0.70% of phenotypic and genetic standard deviation, respectively. Purging effects due to ancestral inbreeding were not significant in any breed or across breeds. The results of this study may indicate that inbreeding depression may be more harmful in traits under stronger selection than in traits that exert low selection pressure. The results of this study demonstrate the different effects that result in meat performance traits due to inbreeding. With increasing rates of inbreeding and critical effective population sizes, selection intensity for breeding objectives has to be critically reviewed for each sheep breed. Inbreeding depression and purging should be evaluated in order to prevent a decrease in trait means due to inbreeding and to determine whether detrimental alleles are eliminated.
Collapse
Affiliation(s)
- Cathrin Justinski
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Hannover (Foundation), 30559 Hannover, Germany;
| | - Jens Wilkens
- VIT—Vereinigte Informationssysteme Tierhaltung w.V., Heinrich-Schröder-Weg 1, 27283 Verden, Germany;
| | - Ottmar Distl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Hannover (Foundation), 30559 Hannover, Germany;
| |
Collapse
|
3
|
Justinski C, Wilkens J, Distl O. Effect of Individual Rate of Inbreeding, Recent and Ancestral Inbreeding on Wool Quality, Muscling Conformation and Exterior in German Sheep Breeds. Animals (Basel) 2023; 13:3329. [PMID: 37958084 PMCID: PMC10648841 DOI: 10.3390/ani13213329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
This study provides comprehensive results on the current status of inbreeding depression for traits upon which sheep are selected for the herdbook in Germany. A total of 30 sheep breeds from the OviCap national database met the inclusion criteria for the present analysis regarding the depth and completeness of pedigrees and the number of animals with phenotypic data. We analyzed heritabilities and inbreeding depression for the three breeding objective traits of wool quality, muscling conformation and exterior. Heritabilities were across all breeds of moderate size, with estimates of 0.18 for wool quality and muscling conformation and of 0.14 for exterior. The models employed to estimate linear regression slopes for individual and ancestral inbreeding rates also account for non-genetic effects and the additive genetic effect of the animal. Inbreeding depression was obvious for all three traits when we averaged the estimates across all 30 sheep breeds. Inbreeding depression was significant for wool quality for only a few breeds, whereas for muscling conformation, 14/30 breeds achieved significant estimates. A 1% increase in inbreeding decreased the mean of all three traits across all sheep breeds by 0.33% of their standard deviation. Positive effects due to ancestral inbreeding were only significant in very few breeds in the different traits. Across all 30 sheep breeds, there were indications that purging effects (a reduction in negative effects of inbreeding depression due to selection for heterozygotes) may play a role for the exterior. The results of this study should help for reviewing breeding programs, particularly for sheep breeds with critical effective population sizes and increasing rates of inbreeding, with regard to the selection policy and selection intensity applied.
Collapse
Affiliation(s)
- Cathrin Justinski
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Hannover (Foundation), 30559 Hannover, Germany;
| | - Jens Wilkens
- vit—Vereinigte Informationssysteme Tierhaltung w.V., Heinrich-Schröder-Weg 1, 27283 Verden, Germany;
| | - Ottmar Distl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Hannover (Foundation), 30559 Hannover, Germany;
| |
Collapse
|
4
|
Jacques A, Leroy G, Rognon X, Verrier E, Tixier-Boichard M, Restoux G. Reintroducing genetic diversity in populations from cryopreserved material: the case of Abondance, a French local dairy cattle breed. Genet Sel Evol 2023; 55:28. [PMID: 37076793 PMCID: PMC10114384 DOI: 10.1186/s12711-023-00801-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 04/06/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Genetic diversity is a necessary condition for populations to evolve under natural adaptation, artificial selection, or both. However, genetic diversity is often threatened, in particular in domestic animal populations where artificial selection, genetic drift and inbreeding are strong. In this context, cryopreserved genetic resources are a promising option to reintroduce lost variants and to limit inbreeding. However, while the use of ancient genetic resources is more common in plant breeding, it is less documented in animals due to a longer generation interval, making it difficult to fill the gap in performance due to continuous selection. This study investigates one of the only concrete cases available in animals, for which cryopreserved semen from a bull born in 1977 in a lost lineage was introduced into the breeding scheme of a French local dairy cattle breed, the Abondance breed, more than 20 years later. RESULTS We found that this re-introduced bull was genetically distinct with respect to the current population and thus allowed part of the genetic diversity lost over time to be restored. The expected negative gap in milk production due to continuous selection was absorbed in a few years by preferential mating with elite cows. Moreover, the re-use of this bull more than two decades later did not increase the level of inbreeding, and even tended to reduce it by avoiding mating with relatives. Finally, the reintroduction of a bull from a lost lineage in the breeding scheme allowed for improved performance for reproductive abilities, a trait that was less subject to selection in the past. CONCLUSIONS The use of cryopreserved material is an efficient way to manage the genetic diversity of an animal population, by mitigating the effects of both inbreeding and strong selection. However, attention should be paid to mating of animals to limit the disadvantages associated with incorporating original genetic material, notably a discrepancy in the breeding values for selected traits or an increase in inbreeding. Therefore, careful characterization of the genetic resources available in cryobanks could help to ensure the sustainable management of populations, in particular local or small populations. These results could also be transferred to the conservation of wild threatened populations.
Collapse
Affiliation(s)
- Alicia Jacques
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Grégoire Leroy
- Food and Agriculture Organization, viale delle Terme de Caracalla, 00153, Rome, Italy
| | - Xavier Rognon
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Etienne Verrier
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | | | - Gwendal Restoux
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| |
Collapse
|
5
|
Perdomo-González DI, Laseca N, Demyda-Peyrás S, Valera M, Cervantes I, Molina A. Fine-tuning genomic and pedigree inbreeding rates in equine population with a deep and reliable stud book: the case of the Pura Raza Española horse. J Anim Sci Biotechnol 2022; 13:127. [PMID: 36336696 PMCID: PMC9639299 DOI: 10.1186/s40104-022-00781-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/13/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Estimating inbreeding, which is omnipresent and inevitable in livestock populations, is a primary goal for management and animal breeding especially for those interested in mitigating the negative consequences of inbreeding. Inbreeding coefficients have been historically estimated by using pedigree information; however, over the last decade, genome-base inbreeding coefficients have come to the forefront in this field. The Pura Raza Española (PRE) horse is an autochthonous Spanish horse breed which has been recognised since 1912. The total PRE population (344,718 horses) was used to estimate Classical (F), Ballou's ancestral, Kalinowski's ancestral, Kalinowski's new and the ancestral history coefficient values. In addition, genotypic data from a selected population of 805 PRE individuals was used to determine the individual inbreeding coefficient using SNP-by-SNP-based techniques (methods of moments -FHOM-, the diagonal elements of the genomic -FG-, and hybrid matrixes -FH-) and ROH measures (FRZ). The analyse of both pedigree and genomic based inbreeding coefficients in a large and robust population such as the PRE horse, with proven parenteral information for the last 40 years and a high degree of completeness (over 90% for the last 70 years) will allow us to understand PRE genetic variability better and the correlations between the estimations will give the data greater reliability. RESULTS The mean values of the pedigree-based inbreeding coefficients ranged from 0.01 (F for the last 3 generations -F3-) to 0.44 (ancestral history coefficient) and the mean values of genomic-based inbreeding coefficients varied from 0.05 (FRZ for three generations, FH and FHOM) to 0.11 (FRZ for nine generations). Significant correlations were also found between pedigree and genomic inbreeding values, which ranged between 0.58 (F3 with FHOM) and 0.79 (F with FRZ). In addition, the correlations between FRZ estimated for the last 20 generations and the pedigree-based inbreeding highlight the fact that fewer generations of genomic data are required when comparing total inbreeding values, and the opposite when ancient values are calculated. CONCLUSIONS Ultimately, our results show that it is still useful to work with a deep and reliable pedigree in pedigree-based genetic studies with very large effective population sizes. Obtaining a satisfactory parameter will always be desirable, but the approximation obtained with a robust pedigree will allow us to work more efficiently and economically than with massive genotyping.
Collapse
Affiliation(s)
- Davinia Isabel Perdomo-González
- Departamento Agronomía, Escuela Técnica Superior de Ingeniería Agromómica, Universidad de Sevilla, Ctra Utrera Km 1, 41013, Sevilla, Spain.
| | - Nora Laseca
- Departamento de Genética, Universidad de Córdoba, Córdoba, Spain
| | - Sebastián Demyda-Peyrás
- Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina
| | - Mercedes Valera
- Departamento Agronomía, Escuela Técnica Superior de Ingeniería Agromómica, Universidad de Sevilla, Ctra Utrera Km 1, 41013, Sevilla, Spain
| | - Isabel Cervantes
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Antonio Molina
- Departamento de Genética, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
6
|
Banos G, Talenti A, Chatziplis D, Sánchez-Molano E. Genomic analysis of the rare British Lop pig and identification of distinctive genomic markers. PLoS One 2022; 17:e0271053. [PMID: 35960784 PMCID: PMC9374264 DOI: 10.1371/journal.pone.0271053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 06/22/2022] [Indexed: 11/19/2022] Open
Abstract
Concentration of production on a few commercial pig breeds has led to the marginalization of many native, numerically small breeds, increasing their risk of endangerment. In the UK, one such rare breed is the British Lop, a lop-eared breed, of similar origin to the Welsh breed. The objective of the present study was to address the genomic status of the British Lop and its relationship with other breeds and identify a small set of genomic markers that uniquely characterize and distinguish British Lop animals. Results have shown that the British Lop is a relatively distinct population with reduced genomic diversity and effective size consistent with its status as a rare breed. Furthermore, we demonstrated the genetic closeness of the British Lop to phenotypically similar breeds such as Landrace and Welsh as well Large White, Middle White and Pietrain. Finally, a set of 75 Single Nucleotide Polymorphisms distributed across multiple chromosomes were identified and validated as markers that can consistently distinguish British Lops from other closely related breeds. Results may inform breeding and management strategies aiming to enhance diversity as well as the development of a breed purity test.
Collapse
Affiliation(s)
- Georgios Banos
- Scotland’s Rural College (SRUC), Department of Animal and Veterinary Sciences, The Roslin Institute Building, Edinburgh, United Kingdom
| | - Andrea Talenti
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, United Kingdom
| | - Dimitrios Chatziplis
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, United Kingdom
- Laboratory of Agrobiotechnology and Inspection of Agricultural Products, Department of Agriculture, International Hellenic University, Sindos, Greece
| | - Enrique Sánchez-Molano
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
7
|
Li G, Tang J, Huang J, Jiang Y, Fan Y, Wang X, Ren J. Genome-Wide Estimates of Runs of Homozygosity, Heterozygosity, and Genetic Load in Two Chinese Indigenous Goat Breeds. Front Genet 2022; 13:774196. [PMID: 35559012 PMCID: PMC9086400 DOI: 10.3389/fgene.2022.774196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Runs of homozygosity (ROH) and heterozygosity (ROHet) are windows into population demographic history and adaptive evolution. Numerous studies have shown that deleterious mutations are enriched in the ROH of humans, pigs, cattle, and chickens. However, the relationship of deleterious variants to ROH and the pattern of ROHet in goats have been largely understudied. Here, 240 Guangfeng and Ganxi goats from Jiangxi Province, China, were genotyped using the Illumina GoatSNP50 BeadChip and genome-wide ROH, ROHet, and genetic load analyses were performed in the context of 32 global goat breeds. The classes with the highest percentage of ROH and ROHet were 0.5–2 Mb and 0.5–1 Mb, respectively. The results of inbreeding coefficients (based on SNP and ROH) and ROHet measurements showed that Guangfeng goats had higher genetic variability than most Chinese goats, while Ganxi goats had a high degree of inbreeding, even exceeding that of commercial goat breeds. Next, the predicted damaging homozygotes were more enriched in long ROHs, especially in Guangfeng goats. Therefore, we suggest that information on damaging alleles should also be incorporated into the design of breeding and conservation programs. A list of genes related to fecundity, growth, and environmental adaptation were identified in the ROH hotspots of two Jiangxi goats. A sense-related ROH hotspot (chromosome 12: 50.55–50.81 Mb) was shared across global goat breeds and may have undergone selection prior to goat domestication. Furthermore, an identical ROHet hotspot (chromosome 1: 132.21–132.54 Mb) containing two genes associated with embryonic development (STAG1 and PCCB) was detected in domestic goat breeds worldwide. Tajima’s D and BetaScan2 statistics indicated that this region may be caused by long-term balancing selection. These findings not only provide guidance for the design of conservation strategies for Jiangxi goat breeds but also enrich our understanding of the adaptive evolution of goats.
Collapse
Affiliation(s)
- Guixin Li
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jianhong Tang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China.,Laboratory Animal Engineering Research Center of Ganzhou, Gannan Medical University, Ganzhou, China
| | - Jinyan Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yongchuang Jiang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yin Fan
- Department of Animal Science, Jiangxi Biotech Vocational College, Nanchang, China
| | - Xiaopeng Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jun Ren
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
8
|
Abstract
SignificanceThe dynamics of deleterious variation under contrasting demographic scenarios remain poorly understood in spite of their relevance in evolutionary and conservation terms. Here we apply a genomic approach to study differences in the burden of deleterious alleles between the endangered Iberian lynx (Lynx pardinus) and the widespread Eurasian lynx (Lynx lynx). Our analysis unveils a significantly lower deleterious burden in the former species that should be ascribed to genetic purging, that is, to the increased opportunities of selection against recessive homozygotes due to the inbreeding caused by its smaller population size, as illustrated by our analytical predictions. This research provides theoretical and empirical evidence on the evolutionary relevance of genetic purging under certain demographic conditions.
Collapse
|
9
|
Bragg JG, van der Merwe M, Yap JYS, Borevitz J, Rossetto M. Plant collections for conservation and restoration: can they be adapted and adaptable? Mol Ecol Resour 2022; 22:2171-2182. [PMID: 35229464 DOI: 10.1111/1755-0998.13605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 11/29/2022]
Abstract
Plant collections are important for the conservation of threatened species, and can provide material for ecological restoration. Typically we want collections to have high genetic diversity so populations founded from it are adaptable to future challenges. Sometimes, we have additional objectives for collections, such as enrichment for desirable traits controlled by adaptive alleles. We used landscape genomic datasets for two plants, Westringia fruticosa and Wilkiea huegeliana, to design collections that are genetically diverse, and that are adapted to warming climates. We characterized temperature adaptation by: (i) using the mean annual temperature of the sites of origin of the plants, and (ii) using the representation of alleles that are associated with warm temperatures. In Westringia fruticosa, there was a negative correlation, or tradeoff, between designing a collection that was both genetically diverse and adapted to warm temperatures. This tradeoff was weaker in Wilkiea huegeliana. We hypothesized this was because neutral genetic variation was strongly correlated with temperature in Westringia fruticosa, and not in Wilkiea huegeliana. Accordingly, when we shuffled the temperature data, breaking up the covariance between Westringia fruticosa genetic variation and temperature, there was a relaxation of the observed tradeoff. In sum, we explore tradeoffs between promoting genetic diversity and selecting for a specific trait in plant collections, and show that the strength of this tradeoff varies between two species. This represents a useful step towards understanding when selection will have a large cost in genetic diversity, and when it will be possible to design a collection that is both adapted and adaptable.
Collapse
Affiliation(s)
- Jason G Bragg
- Research Centre for Ecosystem Resilience, Royal Botanic Gardens and Domain Trust, Mrs Macquaries Rd, Sydney, NSW, 2000, Australia.,School of Biological Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Marlien van der Merwe
- Research Centre for Ecosystem Resilience, Royal Botanic Gardens and Domain Trust, Mrs Macquaries Rd, Sydney, NSW, 2000, Australia
| | - Jia-Yee Samantha Yap
- Research Centre for Ecosystem Resilience, Royal Botanic Gardens and Domain Trust, Mrs Macquaries Rd, Sydney, NSW, 2000, Australia
| | - Justin Borevitz
- Research School of Biology, Australian National University, Canberra, Australia
| | - Maurizio Rossetto
- Research Centre for Ecosystem Resilience, Royal Botanic Gardens and Domain Trust, Mrs Macquaries Rd, Sydney, NSW, 2000, Australia
| |
Collapse
|
10
|
López-Cortegano E, Moreno E, García-Dorado A. Genetic purging in captive endangered ungulates with extremely low effective population sizes. Heredity (Edinb) 2021; 127:433-442. [PMID: 34584227 PMCID: PMC8551332 DOI: 10.1038/s41437-021-00473-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023] Open
Abstract
Inbreeding threatens the survival of small populations by producing inbreeding depression, but also exposes recessive deleterious effects in homozygosis allowing for genetic purging. Using inbreeding-purging theory, we analyze early survival in four pedigreed captive breeding programs of endangered ungulates where population growth was prioritized so that most adult females were allowed to contribute offspring according to their fitness. We find evidence that purging can substantially reduce inbreeding depression in Gazella cuvieri (with effective population size Ne = 14) and Nanger dama (Ne = 11). No purging is detected in Ammotragus lervia (Ne = 4), in agreement with the notion that drift overcomes purging under fast inbreeding, nor in G. dorcas (Ne = 39) where, due to the larger population size, purging is slower and detection is expected to require more generations. Thus, although smaller populations are always expected to show smaller fitness (as well as less adaptive potential) than larger ones due to higher homozygosis and deleterious fixation, our results show that a substantial fraction of their inbreeding load and inbreeding depression can be purged when breeding contributions are governed by natural selection. Since management strategies intended to maximize the ratio from the effective to the actual population size tend to reduce purging, the search for a compromise between these strategies and purging could be beneficial in the long term. This could be achieved either by allowing some level of random mating and some role of natural selection in determining breeding contributions, or by undertaking reintroductions into the wild at the earliest opportunity.
Collapse
Affiliation(s)
- Eugenio López-Cortegano
- grid.4305.20000 0004 1936 7988Institute of Evolutionary Biology, University of Edinburgh, EH9 3FL Edinburgh, UK
| | - Eulalia Moreno
- grid.466639.80000 0004 0547 1725Estación Experimental de Zonas Áridas (CSIC), 04120 Almería, Spain
| | | |
Collapse
|
11
|
Changes in Allele Frequencies When Different Genomic Coancestry Matrices Are Used for Maintaining Genetic Diversity. Genes (Basel) 2021; 12:genes12050673. [PMID: 33947136 PMCID: PMC8146037 DOI: 10.3390/genes12050673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/21/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022] Open
Abstract
A main objective in conservation programs is to maintain genetic variability. This can be achieved using the Optimal Contributions (OC) method that optimizes the contributions of candidates to the next generation by minimizing the global coancestry. However, it has been argued that maintaining allele frequencies is also important. Different genomic coancestry matrices can be used on OC and the choice of the matrix will have an impact not only on the genetic variability maintained, but also on the change in allele frequencies. The objective of this study was to evaluate, through stochastic simulations, the genetic variability maintained and the trajectory of allele frequencies when using two different genomic coancestry matrices in OC to minimize the loss of diversity: (i) the matrix based on deviations of the observed number of alleles shared between two individuals from the expected numbers under Hardy–Weinberg equilibrium (θLH); and (ii) the matrix based on VanRaden’s genomic relationship matrix (θVR). The results indicate that the use of θLH resulted in a higher genetic variability than the use of θVR. However, the use of θVR maintained allele frequencies closer to those in the base population than the use of θLH.
Collapse
|
12
|
Bortoluzzi C, Bosse M, Derks MFL, Crooijmans RPMA, Groenen MAM, Megens H. The type of bottleneck matters: Insights into the deleterious variation landscape of small managed populations. Evol Appl 2020; 13:330-341. [PMID: 31993080 PMCID: PMC6976952 DOI: 10.1111/eva.12872] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 12/19/2022] Open
Abstract
Predictions about the consequences of a small population size on genetic and deleterious variation are fundamental to population genetics. As small populations are more affected by genetic drift, purifying selection acting against deleterious alleles is predicted to be less efficient, therefore increasing the risk of inbreeding depression. However, the extent to which small populations are subjected to genetic drift depends on the nature and time frame in which the bottleneck occurs. Domesticated species are an excellent model to investigate the consequences of population bottlenecks on genetic and deleterious variation in small populations. This is because their history is dominated by known bottlenecks associated with domestication, breed formation and intense selective breeding. Here, we use whole-genome sequencing data from 97 chickens representing 39 traditional fancy breeds to directly examine the consequences of two types of bottlenecks for deleterious variation: the severe domestication bottleneck and the recent population decline accompanying breed formation. We find that recently bottlenecked populations have a higher proportion of deleterious variants relative to populations that have been kept at small population sizes since domestication. We also observe that long tracts of homozygous genotypes (runs of homozygosity) are proportionally more enriched in deleterious variants than the rest of the genome. This enrichment is particularly evident in recently bottlenecked populations, suggesting that homozygosity of these variants is likely to occur due to genetic drift and recent inbreeding. Our results indicate that the timing and nature of population bottlenecks can substantially shape the deleterious variation landscape in small populations.
Collapse
Affiliation(s)
- Chiara Bortoluzzi
- Department of Animal Sciences, Animal Breeding and GenomicsWageningen University & ResearchGelderlandThe Netherlands
| | - Mirte Bosse
- Department of Animal Sciences, Animal Breeding and GenomicsWageningen University & ResearchGelderlandThe Netherlands
| | - Martijn F. L. Derks
- Department of Animal Sciences, Animal Breeding and GenomicsWageningen University & ResearchGelderlandThe Netherlands
| | - Richard P. M. A. Crooijmans
- Department of Animal Sciences, Animal Breeding and GenomicsWageningen University & ResearchGelderlandThe Netherlands
| | - Martien A. M. Groenen
- Department of Animal Sciences, Animal Breeding and GenomicsWageningen University & ResearchGelderlandThe Netherlands
| | - Hendrik‐Jan Megens
- Department of Animal Sciences, Animal Breeding and GenomicsWageningen University & ResearchGelderlandThe Netherlands
| |
Collapse
|
13
|
Bragg JG, Cuneo P, Sherieff A, Rossetto M. Optimizing the genetic composition of a translocation population: Incorporating constraints and conflicting objectives. Mol Ecol Resour 2019; 20:54-65. [DOI: 10.1111/1755-0998.13074] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 07/18/2019] [Accepted: 07/30/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Jason G. Bragg
- National Herbarium of New South Wales Royal Botanic Gardens and Domain Trust Sydney NSW Australia
| | - Peter Cuneo
- Australian PlantBank Australian Botanic Garden, Mount Annan Royal Botanic Gardens and Domain Trust Sydney NSW Australia
| | - Ahamad Sherieff
- NSW Office of Environment and Heritage Hurstville NSW Australia
| | - Maurizio Rossetto
- National Herbarium of New South Wales Royal Botanic Gardens and Domain Trust Sydney NSW Australia
| |
Collapse
|
14
|
Wellmann R, Bennewitz J. Key Genetic Parameters for Population Management. Front Genet 2019; 10:667. [PMID: 31475027 PMCID: PMC6707806 DOI: 10.3389/fgene.2019.00667] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 06/25/2019] [Indexed: 11/13/2022] Open
Abstract
Population management has the primary task of maximizing the long-term competitiveness of a breed. Breeds compete with each other for being able to supply consumer demands at low costs and also for funds from conservation programs. The competition for consumer preference is won by breeds with high genetic gain for total merit who maintained a sufficiently high genetic diversity, whereas the competition for funds is won by breeds with high conservation value. The conservation value of a breed could be improved by increasing its contribution to the gene pool of the species. This may include the recovery of its original genetic background and the maintenance of a high genetic diversity at native haplotype segments. The primary objective of a breeding program depends on the genetic state of the population and its intended usage. In this paper, we review the key genetic parameters that are relevant for population management, compare the methods for estimating them, derive the formulas for predicting their value at a future time, and clarify their usage in various types of breeding programs that differ in their main objectives. These key parameters are kinships, native kinships, breeding values, Mendelian sampling variances, native contributions, and mutational effects. Population management currently experiences a transition from using pedigree-based estimates to marker-based estimates, which improves the accuracies of these estimates and thereby increases response to selection. In addition, improved measures of the factors that determine the competitiveness of a breed and utilize auxiliary parameters, such as Mendelian sampling variances, mutational effects, and native kinships, enable to improve further upon historic recommendations for genetic population management.
Collapse
Affiliation(s)
- Robin Wellmann
- Animal Genetics and Breeding, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Jörn Bennewitz
- Animal Genetics and Breeding, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
15
|
Bosse M, Megens H, Derks MFL, de Cara ÁMR, Groenen MAM. Deleterious alleles in the context of domestication, inbreeding, and selection. Evol Appl 2019; 12:6-17. [PMID: 30622631 PMCID: PMC6304688 DOI: 10.1111/eva.12691] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 05/30/2018] [Accepted: 06/12/2018] [Indexed: 12/21/2022] Open
Abstract
Each individual has a certain number of harmful mutations in its genome. These mutations can lower the fitness of the individual carrying them, dependent on their dominance and selection coefficient. Effective population size, selection, and admixture are known to affect the occurrence of such mutations in a population. The relative roles of demography and selection are a key in understanding the process of adaptation. These are factors that are potentially influenced and confounded in domestic animals. Here, we hypothesize that the series of events of bottlenecks, introgression, and strong artificial selection associated with domestication increased mutational load in domestic species. Yet, mutational load is hard to quantify, so there are very few studies available revealing the relevance of evolutionary processes. The precise role of artificial selection, bottlenecks, and introgression in further increasing the load of deleterious variants in animals in breeding and conservation programmes remains unclear. In this paper, we review the effects of domestication and selection on mutational load in domestic species. Moreover, we test some hypotheses on higher mutational load due to domestication and selective sweeps using sequence data from commercial pig and chicken lines. Overall, we argue that domestication by itself is not a prerequisite for genetic erosion, indicating that fitness potential does not need to decline. Rather, mutational load in domestic species can be influenced by many factors, but consistent or strong trends are not yet clear. However, methods emerging from molecular genetics allow discrimination of hypotheses about the determinants of mutational load, such as effective population size, inbreeding, and selection, in domestic systems. These findings make us rethink the effect of our current breeding schemes on fitness of populations.
Collapse
Affiliation(s)
- Mirte Bosse
- Animal Breeding and GenomicsWageningen University & ResearchWageningenThe Netherlands
| | - Hendrik‐Jan Megens
- Animal Breeding and GenomicsWageningen University & ResearchWageningenThe Netherlands
| | - Martijn F. L. Derks
- Animal Breeding and GenomicsWageningen University & ResearchWageningenThe Netherlands
| | - Ángeles M. R. de Cara
- Centre d’Ecologie Fonctionnelle et EvolutiveCNRSUniversité de MontpellierUniversité Paul Valéry Montpellier 3EPHE, IRDMontpellierFrance
| | - Martien A. M. Groenen
- Animal Breeding and GenomicsWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
16
|
Doekes HP, Veerkamp RF, Bijma P, Hiemstra SJ, Windig JJ. Trends in genome-wide and region-specific genetic diversity in the Dutch-Flemish Holstein-Friesian breeding program from 1986 to 2015. Genet Sel Evol 2018; 50:15. [PMID: 29642838 PMCID: PMC5896142 DOI: 10.1186/s12711-018-0385-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 03/27/2018] [Indexed: 12/19/2022] Open
Abstract
Background In recent decades, Holstein–Friesian (HF) selection schemes have undergone profound changes, including the introduction of optimal contribution selection (OCS; around 2000), a major shift in breeding goal composition (around 2000) and the implementation of genomic selection (GS; around 2010). These changes are expected to have influenced genetic diversity trends. Our aim was to evaluate genome-wide and region-specific diversity in HF artificial insemination (AI) bulls in the Dutch-Flemish breeding program from 1986 to 2015. Methods Pedigree and genotype data (~ 75.5 k) of 6280 AI-bulls were used to estimate rates of genome-wide inbreeding and kinship and corresponding effective population sizes. Region-specific inbreeding trends were evaluated using regions of homozygosity (ROH). Changes in observed allele frequencies were compared to those expected under pure drift to identify putative regions under selection. We also investigated the direction of changes in allele frequency over time. Results Effective population size estimates for the 1986–2015 period ranged from 69 to 102. Two major breakpoints were observed in genome-wide inbreeding and kinship trends. Around 2000, inbreeding and kinship levels temporarily dropped. From 2010 onwards, they steeply increased, with pedigree-based, ROH-based and marker-based inbreeding rates as high as 1.8, 2.1 and 2.8% per generation, respectively. Accumulation of inbreeding varied substantially across the genome. A considerable fraction of markers showed changes in allele frequency that were greater than expected under pure drift. Putative selected regions harboured many quantitative trait loci (QTL) associated to a wide range of traits. In consecutive 5-year periods, allele frequencies changed more often in the same direction than in opposite directions, except when comparing the 1996–2000 and 2001–2005 periods. Conclusions Genome-wide and region-specific diversity trends reflect major changes in the Dutch-Flemish HF breeding program. Introduction of OCS and the shift in breeding goal were followed by a drop in inbreeding and kinship and a shift in the direction of changes in allele frequency. After introduction of GS, rates of inbreeding and kinship increased substantially while allele frequencies continued to change in the same direction as before GS. These results provide insight in the effect of breeding practices on genomic diversity and emphasize the need for efficient management of genetic diversity in GS schemes. Electronic supplementary material The online version of this article (10.1186/s12711-018-0385-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Harmen P Doekes
- Animal Breeding and Genomics, Wageningen University & Research, P.O. Box 338, 6700 AH, Wageningen, The Netherlands. .,Centre for Genetic Resources the Netherlands, Wageningen University & Research, P.O. Box 338, 6700 AH, Wageningen, The Netherlands.
| | - Roel F Veerkamp
- Animal Breeding and Genomics, Wageningen University & Research, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
| | - Piter Bijma
- Animal Breeding and Genomics, Wageningen University & Research, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
| | - Sipke J Hiemstra
- Centre for Genetic Resources the Netherlands, Wageningen University & Research, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
| | - Jack J Windig
- Animal Breeding and Genomics, Wageningen University & Research, P.O. Box 338, 6700 AH, Wageningen, The Netherlands.,Centre for Genetic Resources the Netherlands, Wageningen University & Research, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
| |
Collapse
|
17
|
|
18
|
Howard JT, Pryce JE, Baes C, Maltecca C. Invited review: Inbreeding in the genomics era: Inbreeding, inbreeding depression, and management of genomic variability. J Dairy Sci 2017; 100:6009-6024. [DOI: 10.3168/jds.2017-12787] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/25/2017] [Indexed: 11/19/2022]
|
19
|
Caballero A, Bravo I, Wang J. Inbreeding load and purging: implications for the short-term survival and the conservation management of small populations. Heredity (Edinb) 2017; 118:177-185. [PMID: 27624114 PMCID: PMC5234482 DOI: 10.1038/hdy.2016.80] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 06/14/2016] [Accepted: 07/25/2016] [Indexed: 12/11/2022] Open
Abstract
Using computer simulations, we evaluate the effects of genetic purging of inbreeding load in small populations, assuming genetic models of deleterious mutations which account for the typical amount of load empirically observed. Our results show that genetic purging efficiently removes the inbreeding load of both lethal and non-lethal mutations, reducing the amount of inbreeding depression relative to that expected without selection. We find that the minimum effective population size to avoid severe inbreeding depression in the short term is of the order of Ne≈70 for a wide range of species' reproductive rates. We also carried out simulations of captive breeding populations where two contrasting management methods are performed, one avoiding inbreeding (equalisation of parental contributions (EC)) and the other forcing it (circular sib mating (CM)). We show that, for the inbreeding loads considered, CM leads to unacceptably high extinction risks and, as a result, to lower genetic diversity than EC. Thus we conclude that methods aimed at enhancing purging by intentional inbreeding should not be generally advised in captive breeding conservation programmes.
Collapse
Affiliation(s)
- A Caballero
- Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de Vigo, Vigo (Pontevedra), Spain
| | - I Bravo
- Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de Vigo, Vigo (Pontevedra), Spain
| | - J Wang
- Institute of Zoology, Zoological Society of London, London, UK
| |
Collapse
|
20
|
Hedrick PW, Garcia-Dorado A. Understanding Inbreeding Depression, Purging, and Genetic Rescue. Trends Ecol Evol 2016; 31:940-952. [DOI: 10.1016/j.tree.2016.09.005] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 01/17/2023]
|
21
|
Cervantes I, Gutiérrez JP, Meuwissen THE. Response to selection while maximizing genetic variance in small populations. Genet Sel Evol 2016; 48:69. [PMID: 27649906 PMCID: PMC5030739 DOI: 10.1186/s12711-016-0248-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 09/09/2016] [Indexed: 11/24/2022] Open
Abstract
Background Rare breeds represent a valuable resource for future market demands. These populations are usually well-adapted, but their low census compromises the genetic diversity and future of these breeds. Since improvement of a breed for commercial traits may also confer higher probabilities of survival for the breed, it is important to achieve good responses to artificial selection. Therefore, efficient genetic management of these populations is essential to ensure that they respond adequately to genetic selection in possible future artificial selection scenarios. Scenarios that maximize the maximum genetic variance in a unique population could be a valuable option. The aim of this work was to study the effect of the maximization of genetic variance to increase selection response and improve the capacity of a population to adapt to a new environment/production system. Results We simulated a random scenario (A), a full-sib scenario (B), a scenario applying the maximum variance total (MVT) method (C), a MVT scenario with a restriction on increases in average inbreeding (D), a MVT scenario with a restriction on average individual increases in inbreeding (E), and a minimum coancestry scenario (F). Twenty replicates of each scenario were simulated for 100 generations, followed by 10 generations of selection. Effective population size was used to monitor the outcomes of these scenarios. Although the best response to selection was achieved in scenarios B and C, they were discarded because they are unpractical. Scenario A was also discarded because of its low response to selection. Scenario D yielded less response to selection and a smaller effective population size than scenario E, for which response to selection was higher during early generations because of the moderately structured population. In scenario F, response to selection was slightly higher than in Scenario E in the last generations. Conclusions Application of MVT with a restriction on individual increases in inbreeding resulted in the largest response to selection during early generations, but if inbreeding depression is a concern, a minimum coancestry scenario is then a valuable alternative, in particular for a long-term response to selection.
Collapse
Affiliation(s)
- Isabel Cervantes
- Department of Animal Production, Faculty of Veterinary, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040, Madrid, Spain.
| | - Juan Pablo Gutiérrez
- Department of Animal Production, Faculty of Veterinary, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040, Madrid, Spain
| | - Theo H E Meuwissen
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Box 1432, Ås, Norway
| |
Collapse
|
22
|
Gómez-Romano F, Villanueva B, Sölkner J, de Cara MAR, Mészáros G, Pérez O'Brien AM, Fernández J. The use of coancestry based on shared segments for maintaining genetic diversity. J Anim Breed Genet 2016; 133:357-65. [PMID: 26991632 DOI: 10.1111/jbg.12213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 02/18/2016] [Indexed: 01/06/2023]
Abstract
We have evaluated the use of genomic coancestry coefficients based on shared segments for the maintenance of genetic diversity through optimal contributions methodology for populations of three different Austrian cattle breeds. This coancestry measure has been compared with the genomic coancestry coefficient calculated on a SNP-by-SNP basis and with pedigree-based coancestry. The regressions of the shared segments coancestry on the other two coefficients suggest that the former mainly reflect Identity By Descent but with the advantage over pedigree-based coancestry of providing the realized Identity By Descent rather than an expectation. The effective population size estimated from the rate of coancestry based on shared segments was very similar to those obtained with the other coefficients and of small magnitude (from 26.24 to 111.90). This result highlights the importance of implementing active management strategies to control the increase of inbreeding and the loss of genetic diversity in livestock breeds, even when the population size is reasonably large. One problem for the implementation of coancestry based on shared segments is the need of estimating the gametic phases of the SNPs which, given the techniques used to obtain the genotypes, are a priori unknown. This study shows, through computer simulations, that using estimates of gametic phases for computing coancestry based on shared segments does not lead to a significant loss in the diversity maintained. This has been shown to be true even when the size of the population is very small as it is usually the case in populations subjected to conservation programmes.
Collapse
Affiliation(s)
- F Gómez-Romano
- Departamento de Mejora Genética Animal, INIA, Madrid, Spain
| | - B Villanueva
- Departamento de Mejora Genética Animal, INIA, Madrid, Spain
| | - J Sölkner
- University of Natural Resources and Life Sciences, Vienna, Austria
| | - M A R de Cara
- Laboratoire d'Eco-anthropologie et Ethnobiologie, Museum National d'Histoire Naturelle, Paris, France
| | - G Mészáros
- University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - J Fernández
- Departamento de Mejora Genética Animal, INIA, Madrid, Spain.
| |
Collapse
|
23
|
Fernández J, Toro M, Gómez-Romano F, Villanueva B. The use of genomic information can enhance the efficiency of conservation programs. Anim Front 2016. [DOI: 10.2527/af.2016-0009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- J. Fernández
- Departamento de Mejora Genética Animal, INIA, Madrid, Spain
| | - M.A. Toro
- Departamento de Producción Agraria, ETSI Agrónomos, UPM, Madrid, Spain
| | | | - B. Villanueva
- Departamento de Mejora Genética Animal, INIA, Madrid, Spain
| |
Collapse
|
24
|
Enders LS, Nunney L. Reduction in the cumulative effect of stress-induced inbreeding depression due to intragenerational purging in Drosophila melanogaster. Heredity (Edinb) 2015; 116:304-13. [PMID: 26604190 DOI: 10.1038/hdy.2015.103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 11/09/2022] Open
Abstract
Environmental stress generally exacerbates the harmful effects of inbreeding and it has been proposed that this could be exploited in purging deleterious alleles from threatened inbred populations. However, understanding what factors contribute to variability in the strength of inbreeding depression (ID) observed across adverse environmental conditions remains a challenge. Here, we examined how the nature and timing of stress affects ID and the potential for purging using inbred and outbred Drosophila melanogaster larvae exposed to biotic (larval competition, bacteria infection) and abiotic (ethanol, heat) stressors compared with unstressed controls. ID was measured during (larval survival) and after (male mating success) stress exposure. The level of stress imposed by each stressor was approximately equal, averaging a 42% reduction in outbred larval survival relative to controls. All stressors induced on average the same ID, causing a threefold increase in lethal equivalents for larval survival relative to controls. However, stress-induced ID in larval success was followed by a 30% reduction in ID in mating success of surviving males. We propose that this fitness recovery is due to 'intragenerational purging' whereby fitness correlations facilitate stress-induced purging that increases the average fitness of survivors in later life history stages. For biotic stressors, post-stress reductions in ID are consistent with intragenerational purging, whereas for abiotic stressors, there appeared to be an interaction between purging and stress-induced physiological damage. For all stressors, there was no net effect of stress on lifetime ID compared with unstressed controls, undermining the prediction that stress enhances the effectiveness of population-level purging across generations.
Collapse
Affiliation(s)
- L S Enders
- Department of Biology, University of California, Riverside, Riverside, CA, USA.,Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - L Nunney
- Department of Biology, University of California, Riverside, Riverside, CA, USA
| |
Collapse
|
25
|
Baumung R, Farkas J, Boichard D, Mészáros G, Sölkner J, Curik I. GRAIN: a computer program to calculate ancestral and partial inbreeding coefficients using a gene dropping approach. J Anim Breed Genet 2015; 132:100-8. [PMID: 25823836 DOI: 10.1111/jbg.12145] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/04/2015] [Indexed: 12/24/2022]
Abstract
GRain is freely available software intended to enable and promote testing of hypotheses with respect to purging and heterogeneity of inbreeding depression. The program is based on a stochastic approach, the gene dropping method, and calculates various coefficients from large and complex pedigrees. GRain calculates, together with the 'classical' inbreeding coefficient, ancestral inbreeding coefficients proposed by Ballou, (1997) J. Hered., 88, 169 and Kalinowski et al., (2000) Conserv. Biol., 14, 1375 as well as an ancestral history coefficient (AHC ), defined here for the first time. AHC is defined as the number that tells how many times during pedigree segregation (gene dropping) a randomly taken allele has been in IBD status. Furthermore, GRain enables testing of heterogeneity and/or purging of inbreeding depression with respect to different founders/ancestors by calculating partial coefficients for all previously obtained coefficients.
Collapse
Affiliation(s)
- R Baumung
- Division of Livestock Sciences, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
26
|
Bosse M, Megens HJ, Madsen O, Crooijmans RPMA, Ryder OA, Austerlitz F, Groenen MAM, de Cara MAR. Using genome-wide measures of coancestry to maintain diversity and fitness in endangered and domestic pig populations. Genome Res 2015; 25:970-81. [PMID: 26063737 PMCID: PMC4484394 DOI: 10.1101/gr.187039.114] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 05/13/2015] [Indexed: 01/08/2023]
Abstract
Conservation and breeding programs aim at maintaining the most diversity, thereby avoiding deleterious effects of inbreeding while maintaining enough variation from which traits of interest can be selected. Theoretically, the most diversity is maintained using optimal contributions based on many markers to calculate coancestries, but this can decrease fitness by maintaining linked deleterious variants. The heterogeneous patterns of coancestry displayed in pigs make them an excellent model to test these predictions. We propose methods to measure coancestry and fitness from resequencing data and use them in population management. We analyzed the resequencing data of Sus cebifrons, a highly endangered porcine species from the Philippines, and genotype data from the Pietrain domestic breed. By analyzing the demographic history of Sus cebifrons, we inferred two past bottlenecks that resulted in some inbreeding load. In Pietrain, we analyzed signatures of selection possibly associated with commercial traits. We also simulated the management of each population to assess the performance of different optimal contribution methods to maintain diversity, fitness, and selection signatures. Maximum genetic diversity was maintained using marker-by-marker coancestry, and least using genealogical coancestry. Using a measure of coancestry based on shared segments of the genome achieved the best results in terms of diversity and fitness. However, this segment-based management eliminated signatures of selection. We demonstrate that maintaining both diversity and fitness depends on the genomic distribution of deleterious variants, which is shaped by demographic and selection histories. Our findings show the importance of genomic and next-generation sequencing information in the optimal design of breeding or conservation programs.
Collapse
Affiliation(s)
- Mirte Bosse
- ABGC Wageningen University, 6700 Wageningen, The Netherlands
| | | | - Ole Madsen
- ABGC Wageningen University, 6700 Wageningen, The Netherlands
| | | | - Oliver A Ryder
- San Diego Zoo Institute for Conservation Research, Escondido, California 92027, USA
| | | | | | | |
Collapse
|
27
|
Theodorou K, Couvet D. The efficiency of close inbreeding to reduce genetic adaptation to captivity. Heredity (Edinb) 2015; 114:38-47. [PMID: 25052417 PMCID: PMC4815592 DOI: 10.1038/hdy.2014.63] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 04/02/2014] [Accepted: 05/21/2014] [Indexed: 11/09/2022] Open
Abstract
Although ex situ conservation is indispensable for thousands of species, captive breeding is associated with negative genetic changes: loss of genetic variance and genetic adaptation to captivity that is deleterious in the wild. We used quantitative genetic individual-based simulations to model the effect of genetic management on the evolution of a quantitative trait and the associated fitness of wild-born individuals that are brought to captivity. We also examined the feasibility of the breeding strategies under a scenario of a large number of loci subject to deleterious mutations. We compared two breeding strategies: repeated half-sib mating and a method of minimizing mean coancestry (referred to as gc/mc). Our major finding was that half-sib mating is more effective in reducing genetic adaptation to captivity than the gc/mc method. Moreover, half-sib mating retains larger allelic and adaptive genetic variance. Relative to initial standing variation, the additive variance of the quantitative trait increased under half-sib mating during the sojourn in captivity. Although fragmentation into smaller populations improves the efficiency of the gc/mc method, half-sib mating still performs better in the scenarios tested. Half-sib mating shows two caveats that could mitigate its beneficial effects: low heterozygosity and high risk of extinction when populations are of low fecundity and size and one of the following conditions are met: (i) the strength of selection in captivity is comparable with that in the wild, (ii) deleterious mutations are numerous and only slightly deleterious. Experimental validation of half-sib mating is therefore needed for the advancement of captive breeding programs.
Collapse
Affiliation(s)
- K Theodorou
- Biodiversity Conservation Laboratory, Department of Environment, University of the Aegean, Mytilene, Greece
| | - D Couvet
- UMR 7204CESCO MNHN-CNRS-UPMC, CP 51, Paris, France
| |
Collapse
|
28
|
Population genetics and the effects of a severe bottleneck in an ex situ population of critically endangered Hawaiian tree snails. PLoS One 2014; 9:e114377. [PMID: 25470182 PMCID: PMC4255004 DOI: 10.1371/journal.pone.0114377] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/06/2014] [Indexed: 11/19/2022] Open
Abstract
As wild populations decline, ex situ propagation provides a potential bank of genetic diversity and a hedge against extinction. These programs are unlikely to succeed if captive populations do not recover from the severe bottleneck imposed when they are founded with a limited number of individuals from remnant populations. In small captive populations allelic richness may be lost due to genetic drift, leading to a decline in fitness. Wild populations of the Hawaiian tree snail Achatinella lila, a hermaphroditic snail with a long life history, have declined precipitously due to introduced predators and other human impacts. A captive population initially thrived after its founding with seven snails, exceeding 600 captive individuals in 2009, but drastically declined in the last five years. Measures of fitness were examined from 2,018 captive snails that died between 1998 and 2012, and compared with genotypic data for six microsatellite loci from a subset of these deceased snails (N = 335), as well as live captive snails (N = 198) and wild snails (N = 92). Surprisingly, the inbreeding coefficient (Fis) declined over time in the captive population, and is now approaching values observed in the 2013 wild population, despite a significant decrease in allelic richness. However, adult annual survival and fecundity significantly declined in the second generation. These measures of fitness were positively correlated with heterozygosity. Snails with higher measures of heterozygosity had more offspring, and third generation offspring with higher measures of heterozygosity were more likely to reach maturity. These results highlight the importance of maintaining genetic diversity in captive populations, particularly those initiated with a small number of individuals from wild remnant populations. Genetic rescue may allow for an increase in genetic diversity in the captive population, as measures of heterozygosity and rarified allelic richness were higher in wild tree snails.
Collapse
|
29
|
Toro MA, Villanueva B, Fernández J. Genomics applied to management strategies in conservation programmes. Livest Sci 2014. [DOI: 10.1016/j.livsci.2014.04.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
30
|
de Cara MÁR, Villanueva B, Toro MÁ, Fernández J. Using genomic tools to maintain diversity and fitness in conservation programmes. Mol Ecol 2013; 22:6091-9. [PMID: 24128280 DOI: 10.1111/mec.12560] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/01/2013] [Accepted: 10/11/2013] [Indexed: 12/31/2022]
Abstract
Conservation programmes aim at maximizing the survival probability of populations, by minimizing the loss of genetic diversity, which allows populations to adapt to changes, and controlling inbreeding increases. The best known strategy to achieve these goals is optimizing the contributions of the parents to minimize global coancestry in their offspring. Results on neutral scenarios showed that management based on molecular coancestry could maintain more diversity than management based on genealogical coancestry when a large number of markers were available. However, if the population has deleterious mutations, managing using optimal contributions can lead to a decrease in fitness, especially using molecular coancestry, because both beneficial and harmful alleles are maintained, compromising the long-term viability of the population. We introduce here two strategies to avoid this problem: The first one uses molecular coancestry calculated removing markers with low minor allele frequencies, as they could be linked to selected loci. The second one uses a coancestry based on segments of identity by descent, which measures the proportion of genome segments shared by two individuals because of a common ancestor. We compare these strategies under two contrasting mutational models of fitness effects, one assuming many mutations of small effect and another with few mutations of large effect. Using markers at intermediate frequencies maintains a larger fitness than using all markers, but leads to maintaining less diversity. Using the segment-based coancestry provides a compromise solution between maintaining diversity and fitness, especially when the population has some inbreeding load.
Collapse
|